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ABSTRACT

Advances in wireless sensor networks have enabled the mon-
itoring of daily activities of elderly people. The goal of these
monitoring applications is to learn normal behavior in terms
of daily activities and look for any deviation, i.e., anoma-
lies, so that alerts can be sent to relatives or caregivers.
However, human behavior is very complex, and many ex-
isting anomaly detection systems are too simplistic which
cause many false alarms, resulting in unreliable systems. We
present Holmes, a comprehensive anomaly detection system
for daily in-home activities. Holmes accurately learns a res-
ident’s normal behavior by considering variability in daily
activities based not only on a per day basis, but also consid-
ering specific days of the week, different time periods such as
per week and per month, and collective, temporal, and corre-
lation based features. This approach of learning complicated
normal behaviors reduces false alarms. Also, based on resi-
dent and expert feedback, Holmes learns semantic rules that
explain specific variations of activities in specific scenarios
to further reduce false alarms. We evaluate Holmes using
data collected from our own deployed system, public data
sets, and data collected by a senior safety system provider
company from an elderly resident’s home. Our evaluation
shows that compared to state of the art systems, Holmes
reduces false positives and false negatives by at least 46%
and 27%, respectively.
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1. INTRODUCTION

Due to increasing numbers of elderly people living alone,
widespread ubiquitous deployment of sensors has become
prominent for monitoring in-home activities of daily liv-
ing (e.g., eating, sleeping, exercising, and entertainment).
Research in accurate detection and summarization of these

daily activities has progressed significantly over the last decade
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[19, 34, 23, 35, 9] which enables long-term monitoring of a
resident’s in-home activities, learning normal behavior, and
detecting deviation from normal behavior i.e., anomalies.
Reliable anomaly detection in daily in-home activities is the
most important component of many home health care ap-
plications such as assessing behavioral rhythms [32, 10], and
monitoring cognitive decline [14, 24]. Existing research has
emphasized minimizing false positives and false negatives for
reliably detecting anomalous events in assisted living sys-
tems [33, 20, 27, 7]. Moreover, reducing false positives in
assisted living facilities is also desirable as it raises anxiety
levels of patients and their relatives and often causes real
alarms to be ignored [22, 12]. Some studies have found false
positives as the major cause of client and caregiver dissatis-
faction [12].

An anomaly detection system needs to model a resident’s
regular behavior accurately, and define types of deviation
from the model that would be considered anomalies. Reg-
ular behavior may depend on day of the week, season, and
other events of a resident’s life (e.g., special occasions, vis-
itors, medications). Anomalies can be classified as point,
collective and contextual anomalies [6]. In the domain of
in-home activities, point anomalies consider each instance
of each activity independently and decide whether that in-
stance is normal or not. Collective anomalies consider groups
of activity instances together to determine whether the group
is normal or not. Contextual anomalies consider activities
under some context (e.g., day of week, under medication).
Since human behavior is complex, an anomaly detection sys-
tem for in-home activities should be designed to address
these multiple types of anomalies. Otherwise, an anomaly
detection system would become unreliable due to excessive
false positives and false negatives. Existing anomaly detec-
tion systems [13, 26, 25, 24, 18, 17] either consider each ac-
tivity instance as an independent data point (point anoma-
lies) or consider sequence of activities together (collective
anomalies). However, none of the existing algorithms com-
bines context with point and collective anomalies.

Regular behavior may consist of different features for dif-
ferent in-home activities. For some activities, features gen-
erated from individual activity instances may be important.
However, for some other activities, we may need to combine
multiple activity instances from a day / week / some other
period to construct useful features that represent regular-
ity. However, existing anomaly detection systems do not
address this issue; they use features from individual activity



instances. Moreover, anomaly in an activity may be caused
by a previous activity on which the later activity is tem-
porally dependent. In such cases, reporting anomalies for
the later activity would generate false alarms. Also, a resi-
dent’s behavior may also be affected by different explainable
scenarios (e.g., new medication, special occasions, visitors).
We argue that there must be a mechanism in an anomaly
detection system that can learn such explainable scenarios
to reduce false alarms.

We present Holmes, a comprehensive anomaly detection
system for daily in-home activities. Holmes learns a resi-
dent’s normal behavior in terms of in-home activities from
training data. Note that based on the training data, each
activity may have multiple models as part of normal be-
havior (e.g., weekdays, weekends, Fridays). Holmes auto-
matically learns these multiple models for each activity us-
ing a novel context-aware hierarchical clustering algorithm.
Holmes also learns temporal relationships (e.g., if two activi-
ties often happen concurrently, if one activity often happens
before another) among multiple activities using sequential
pattern mining and itemset mining algorithms. A highly
accurate normal behavior assessment system forms the crit-
ical base upon which to detect anomalies.

Holmes is also designed to use semantic rules that de-
fine logical deviations from regular behavior. Holmes starts
with an initial set of predefined rules defined from domain
knowledge. As the system runs, newly detected anomalies
are verified by the resident / experts to be included as new
rules if appropriate. If there is repeated occurrence of one
specific scenario (i.e., semantic rule), Holmes trains models
for that particular scenario for future use; thus decreasing
false alarms.

The main contributions of Holmes are:

e A fully implemented system composed of a compre-
hensive and multi-model solution for modeling regular
resident behaviors, carefully integrated with a sophisti-
cated multi-level, semantic anomaly detection system.

e The novelty in modeling regular behavior includes the
collection of following techniques: (i) hierarchically
merging clusters from different days of the week en-
suring that the merged clusters do not become too
generalized compared to the original ones, (ii) preser-
vation of noise points found in training for future use
during re-training, (iii) the use of a combination of fea-
tures extracted from both individual activity instances
and group of activity instances combined over a spe-
cific period, and (iv) use of sequential pattern mining
and itemset mining algorithms to learn groups and se-
quences of activities that are part of a resident’s regu-
lar behavior (i.e., temporal correlations among activi-
ties).

e The novelty in the anomaly detection arises due to the
combination of the following: combining point, collec-
tive and context anomalies to ensure reliability, use
of semantic rules that represent logical deviation from
regular behavior to reduce false alarms, and learning
new semantic rules based on resident / expert feed-
back.

e Evaluation of Holmes using 1) six months of activ-
ity data collected from one single-resident home; 2)
two publicly available data sets each of which has six

months of user-labeled in-home activity data; and 3)
one data set from BeClose (a commercial senior safety
system provider [2]) that contains four months of ac-
tivity data in one single-resident home. Our evaluation
shows that Holmes reduces false positives by at least
46% and false negatives by at least 27% compared to
three state of the art anomaly detection systems. Also,
the use of semantic rules reduces false positives by an
additional 20%.

2. RELATED WORK

Many current solutions use training data as a baseline
and use statistical or clustering based anomaly detection
approaches to find point anomalies. Such as, Virone et al.
[32] monitored 22 patients in an assisted living facility for
two weeks that was treated as a baseline behavior. Then the
baseline was used for the next six months to find behavioral
changes in their circadian rhythms. For changes of one order
of magnitude a warning was signaled, and for changes of two
orders of magnitude an alarm was signaled to a caregiver.
In [28, 24, 29], authors learn which rooms the resident is in
during different times of day and monitor anomalies in room
occupancy. However, circadian rhythms and room locations
are very limited features to represent behavior.

Han et al. [13] use the mean of different features for dif-
ferent activities to define regular behavior and look for point
anomalies based on predefined thresholds of deviation. Clus-
tering based techniques are used in [26] to detect anomalies
in timings and durations of different activities. All the above
anomaly detection systems often suffer from generating nu-
merous false positives that makes them unreliable. One rea-
son of generating higher number of false positives is treating
each activity instance independently ignoring the correlation
among them.

There are existing systems that consider correlations among
activities to detect collective anomalies. Anderson et al.
[5] take an automata based approach to define sequence
of activities as behaviors and learn those behaviors. They
also support combining multiple days of activities to detect
anomalies that occur over the time. However, they do not
consider durations of each of the activities or the intervals
among activities. These features are very useful for many
health care applications. Jakkula et al. [18] use temporal
mining to learn different temporal relations among differ-
ent activities. In [17], authors use support vector machines
to detect anomalies in sequences of activities. Authors use
unsupervised pattern clustering techniques [31] to identify
behavior model of the resident. However, none of these col-
lective anomaly detection techniques considers differences
in daily routines in different days of the week and specific
features related to individual or group of activity instances
which may cause both false positives and false negatives.

A survey of anomaly detection techniques in various appli-
cation domains is presented in [6] where the authors explain
how context plays an important role in detecting anomaly.
None of existing anomaly detection systems for in-home ac-
tivities addresses the effect of context (e.g., day of the week,
weather) on daily activities. Holmes is novel compared to
existing systems in this respect. Another shortcoming of the
above techniques is the lack of semantic rules to filter out
false positives as logical deviation from normal behavior.

3. SYSTEM DESCRIPTION



Training Data Testing Data

Learn Regular
Behavior

Regular Behavior Anomaly Detection & Multi-Model Filtering

Models

Semantics: Expert
«—> Knowledge & User
Feedback

Semantic
Anomaly Filters

|

Reported Anomalies

Explainable
Scenarios

Figure 1: Holmes Framework for Anomaly Detection

3.1 Holmes Framework

The first step of any anomaly detection system is to learn
the normal behavior based on training data. Normal behav-
ior consists of what in-home activities a resident performs,
which time of day each activity takes place, how long an ac-
tivity lasts, and relationships among different activities. For
some activities, features generated from individual activity
instances may be important. However, for some other ac-
tivities, we may need to combine multiple activity instances
from a day / week / some other period to construct useful
features that represent regularity. Moreover, anomaly in an
activity may be caused by a previous activity on which the
current activity is temporally dependent. In such cases, re-
porting anomalies for the later activity would generate false
alarms. Therefore, a holistic approach is necessary to con-
sider the different kinds of anomalies (e.g., point, collective,
contextual anomalies) and filter false alarms that may be
caused by other anomalies. Once normal behavior is mod-
eled and labeled, an anomaly detection system can detect
any deviation from the normal behavior that is represented
by and learned from the training data. Different applica-
tions may need to monitor a different subset of anomalies
that Holmes can detect. It is up to the domain experts to
decide what anomalies they want to detect for their appli-
cations.

Figure 1 shows the Holmes framework for anomaly detec-
tion. The training and testing data consist of sets of activity
instances. An activity instance is represented by an activity
identifier, the time when the activity starts, and the total
duration of that activity; we use the notation (activityl D,
startTime, duration) for this representation. The start time
and duration of each activity instance may be logged by the
user, or may be detected by an activity recognition system
based on in-home sensors. The function of the ‘Learn Regu-
lar Behavior’ component of Holmes (Section 3.2) is learning
a resident’s regular behavior from the training data. Since
human behaviors are complex, this results in multiple regu-
lar behavior models. Based on these models, the ‘Anomaly
Detection and Multi-Model Filtering’ module (Section 3.3)
detects anomalies in the activity instances of the testing data
first. Next, this module filters out the detected anomalies
that do not satisfy the anomaly conditions in all the corre-

sponding models learned during the ‘Learn Regular Behav-
ior’ module. Only the anomalies that pass the filtering are
forwarded to the ‘Semantic Anomaly Filters’ module.

The ‘Semantic Anomaly Filters’ module, described in Sec-
tion 3.4, filters out those anomalies that may be explained by
‘Expert Knowledge & User Feedback’, i.e., semantics. For
example, the user may be recovering from a major opera-
tion, or there may be a power outage which caused loss of
sensor data. This module detects such scenarios and does
not report them as behavioral anomalies. Such scenarios are
saved in ‘Explainable Scenarios’. If there is significant num-
ber of instances of a particular scenario, a new behavioral
model is developed for this scenario and stored in the ‘Regu-
lar Behavior Models’ so that such scenarios are not detected
as anomalies in future. Thus, the set of regular behavior
models is continuously enriched.

3.2 Learning Regular Behavior

First, we explain how each activity is modeled. Then we
describe how different temporal correlations among activi-
ties are identified. The result is a set of models representing
complex regular behavior in terms of daily activities.

3.2.1 Modeling Each Individual Activity

One part of learning complex behavior is to model regu-
larities in each individual activity. For example, when does
the resident usually go to bed, duration of sleep, how many
times a week the resident goes to the gym, whether the resi-
dent usually has lunch at home: all this information may be
indicative of regular behavior and deviations from that may
indicate change of lifestyle or may be due to some illness.
We propose a novel context-aware hierarchical clustering al-
gorithm to model each individual activity. The context we
consider here is ‘day of the week’. Our hypothesis is that
people may have different routines for different days of the
week. We model each day’s behavior (e.g., Sunday, Mon-
day) separately and then merge models for multiple days
(e.g, merge Friday and Saturday together) if they are very
similar. If adequate data is available, the algorithm can also
handle other context and model behavior accordingly e.g.,
for different seasons, for 4th of July, for Thanksgiving.

[Feature Selection] For modeling each activity instance,
we cluster the activities based on the startTime and duration
of the activities. If any additional feature is available for
an activity, then that can also be incorporated in the fea-
ture set. For example, sleep can have an additional feature
named sleepQuality, breakfast can have an additional fea-
ture calories. We do not have these features in our data
sets. For each activity, we also combine all activity in-
stances in a day and calculate the following two features: 1)
totalCountPerDay represents how many times an activity
takes place in a day 2) total DurationPer Day represents the
total duration of an activity in a day (the sum of durations
of all activity instances). Note that we also consider the days
when an activity does not happen (i.e., totalCountPerDay
is zero). As a result, if an activity does not take place often
in a specific day, then that is also represented by a cluster.

[Context-aware Hierarchical Clustering Algorithm)]
Figure 2 explains our context-aware clustering algorithm
that works in a bottom-up hierarchical way. The novelties
include (i) merging clusters from different days of the week
hierarchically ensuring that the merged clusters are not too
generalized compared to the original ones, (ii) preservation
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Figure 2: Per-activity Context-aware Hierarchical Clustering

of the noise points for future use during retraining, and (iii)
use of combination of features extracted from both individ-
ual activity instances and group of activity instances com-
bined over a specific period. Note that the algorithm runs
separately for each activity.

At the bottom layer, for each day of the week, the algo-
rithm combines different instances of an activity and clusters
them based on their features. When we model the activ-
ity instances independently, the features are startTime and
duration. When we model the collection of all activity in-
stances of a day, the features are totalCountPerDay and
total DurationPer Day. For clustering in the bottom layer,
we use the DBSCAN clustering algorithm [11] which is a
density based clustering algorithm. The major advantage of
DBSCAN is that we do not need to specify how many clus-
ters there are. This is important, because we do not know
how many different activities there are. DBSCAN has two
parameters; one is min_pts which is the minimum number
of points in a cluster, and the other is Eps which is the
minimum distance between two data points for them to be
considered in the same cluster. We only specify the param-
eter min_pts and use the corresponding value of Eps that
DBSCAN suggests. In Section 5.1 we discuss the effect of
varying min_pts on clustering performance. After cluster-
ing, DBSCAN marks each point as belonging to a cluster or
as noise.

Note that there may be some activity instances that are
not part of any cluster. During training, we do not consider
them as part of any model i.e., regular behavior. However,
we do not totally discard these activity instances. After
training, when Holmes is used for anomaly detection, if an
activity instance does not fall into any regular model, we try
to combine them with similar other activity instances that
were left alone during training.

From the bottom layer of Figure 2, we get one or more
clusters for each day of the week. From here on, the algo-
rithm progresses upwards like agglomerative clustering [1]
i.e., it merges two clusters from the bottom layer which are
closest to each other and advances the merged cluster to the
upper layer. The important part of this merging step is cal-
culating the distance between two clusters i.e., the linkage.
For each cluster, we define the diameter of a cluster as the
maximum distance between any two points. We merge two
clusters with diameter d; and ds only if after merging the
diameter of the new cluster dpe. satisfies the relations in (1)
and (2). Note that if only one of the conditions is satisfied,
then we do not merge these two clusters. Merging in such
cases would generalize the cluster (for which the condition
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Figure 3: Sample scatter plot of instances of a specific activity for 2
different cases showing need of context-aware clustering

is not satisfied) too much. In each layer of Figure 2, a clus-
ter can be merged with multiple clusters under the merging
condition, Holmes selects the one with minimum dpeq,. If a
cluster cannot be merged with another one, it moves to the
upper layer. The merged clusters move to the upper layer
together as one cluster. If at any layer no new merging is
possible, the algorithm stops.
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We argue that our context-aware (day of the week being
the context here) clustering algorithm is necessary to model
regular behavior, because without it we may not capture if
the resident behaves in a specific way on specific days of the
week. For example, consider the sample scatter plots of two
different cases shown in Figure 3. If we cluster the activity
instances without considering the day of the week, then all
the activity instances of Tuesday and Friday would be clus-
tered together in one cluster in both cases. We may separate
the cluster of Tuesday in Case 1, if we specifically mention
that we want three clusters. However, it is difficult to know
how many different clusters there may be apriori. However,
even then it won’t be possible to separate instances of Tues-
day in Case 2. This is why clustering activity instances from
different days separately is necessary, and we go one step
further by also merging days that have similar behavior.

Our algorithm creates a separate cluster for Tuesday, and
two different clusters for Friday for Case 1. However, for
Case 2, our algorithm creates one cluster for Tuesday and
one cluster for Friday. Another point to note from Figure 3
is that there is one activity instance from Tuesday (in both
cases, on the right side) which is abnormal. If we cluster
all instances together, we are not able to identify it. One
alternate to our solution is just to use different models (i.e.,
clusters) for different days of the week. We argue that such
an approach would fail to capture several high level regular-
ities in a user’s behavior, such as, in which days of the week
the behavior is similar.

Note that there may be activities that do not take place
daily. If any of these activities happen only on specific days
of the week, then it would be included in that days model.
However, if any of these activities do not have any corre-
lation with specific days of week, then there may not be
enough instances of that activity in any specific day for the
clustering algorithm to run. To address this, we cluster all
instances of any such activity together based on startTime
and duration using DBSCAN and get one or more models.



Also, for each activity instance of such activities, we calcu-
late a new feature named interval which is defined as the
interval of this activity instance from the last time that ac-
tivity took place in terms of days. We also test if the interval
of the activity instances follow any particular model.

3.2.2 Modeling Activities Together

Modeling activities indpendently may not represent regu-
lar behavior completely. We also need to model the tempo-
ral correlations among activities. The temporal correlation
among activities can be sequential or non-sequential. For
example, two or more activities may frequently happen con-
currently or in a specific sequence maintaining a similar time
interval, e.g., cooking dinner at Friday night is followed by
watching TV. We need to model such sequential temporal
correlations. Alternately, two activities can often take place
in a segment of the same day of the week, but in no specific
order, e.g., the duration of resident’s dinner is long only dur-
ing the days when he/she goes to the gym. In this section we
describe the detail of modeling sequential and non-sequential
temporal correlations.

Prior to finding temporal correlations among activities,
we pre-process the activity instances. Note that activity in-
stances are represented by tuples of the form (activitylD,
startTime, duration). From the clustering step of the previ-
ous section each activity instance belongs to a unique model
(cluster), and some instances do not belong to any clus-
ter (considered not regular). We assign the instances not
belonging to any cluster a default model number. In this
pre-processing step, for each activity instance, we create
two new tuples: (acID_ModNo_Start, startTime) and (acID
_ModNo_End, endTime).

We find the frequent sequences of activities and the nor-
mal time intervals between successive activities. We apply a
sequential pattern mining algorithm [4] to learn these tem-
poral correlations as frequent patterns. For example, for
a particular day of the week, we may find a frequent pat-
tern (acl_Mod11_Start, ac2_Mod21_Start, ac2_Mod21_End,
acl_Mod11_End) which represents that on that day, activity2

frequently starts after activityl starts, and ends before activityl

ends. We also know start and end times of all activity in-
stances, so we can model the duration of each activity and
intervals between successive events as normal distributions.

However, it may not be useful to find temporal correla-
tions between breakfast and dinner, or between two activ-
ities one of which happen in the morning and the other at
night. Therefore, we divide each day’s tuples into multiple
segments using a SEG.THRESHOLD. Starting from the
first tuple of the day, if the interval between two succes-
sive tuples exceeds SEG_.THRESHOLD, we end the cur-
rent segment with all tuples so far but the last one, and
start a new segment with the last tuple as the starting one.
Each day’s tuples are divided into multiple segments each of
which has a sequence of tuples. Our sequential pattern min-
ing algorithm runs on the tuples generated from the activity
instances of each day of the week separately.

For each day of the week D;, there is a set of segments
{sij}, where each segment s;; is a sequence of tuples of the
form (acID_ModNo_Start, startTime) or (acID_ModNo_End,
endTime); each such tuple is represented by (aijk, tijr). We
consider this sequence <(a;jk, tijr)> corresponding to each
segment s;; as one stream st;;. We apply sequential pattern
mining [4] on the set of streams corresponding to each day

of week to get the set of frequent patterns for that day.

We use a state of the art sequential pattern mining algo-
rithm PrefixSpan [30]. For each day of week D;, we run Pre-
fixSpan separately with {st;;} as input. For each member
sequence sti; = <(aijk, tijx)>, the algorithm only considers
the activity identifiers (<a;;,>) and ignores the timestamps.
As output, we get the set of frequent patterns { FP;;}, where
each F'P;; is a sequence of activity identifiers of the form
<aim>. A pattern is considered to be frequent if the num-
ber of different instances of the day of week D; when the pat-
tern occurs is more than a threshold FP.THRESHOLD.
For each day of week, thus we get a set of frequent patterns
each of which represents a pattern of activities. For each
frequent pattern, we model the duration of each individual
activity (that is part of the pattern) and the interval between
successive activities separately as normal distributions. This
enables us to identify cases where anomaly in start time or
duration in one activity may cause irregularities in later ac-
tivities in a pattern.

[Modeling Out-of-sequence Temporal Correlations]
Although the sequential pattern mining algorithm above
enables us to understand sequential temporal correlations
among activities it would ignore the group of activities that
only have out-of-sequence temporal correlations. Hence, we
also apply an itemset mining algorithm on the segments of
each day of the week to find the non sequential temporal
correlations. In our case, an itemset represents a group of
activities, and the goal of the itemset mining algorithm is
to find the frequent itemsets i.e., those where the group of
activities often happen together within the same segment.

Similar to the sequential pattern mining algorithm, the
itemset mining algorithm is applied separately on the seg-
ments of each day of the week. We apply a state of the
art itemset mining algorithm named apriori algorithm [3].
As output, we get the set of frequent itemsets {F'Ij}, where
each F'Iy is a set of activity identifiers. An itemset is consid-
ered frequent for a specific day of the week, if it’s set of activ-
ities happen  together more than a  threshold
(ITEM_THRESHOLD) number of different instances.

3.3 Anomaly Detection and Multi-Model Fil-
tering

After training, for each day of the week, each activity has
one or more models (i.e., clusters). For example, in our
evaluation, the number of clusters generated for all activi-
ties in different datasets range between 15 - 35 (details in
Section 4). Note that some clusters are calculated based on
startTime and duration of the activity instances for that
day of the week; each activity instance (except the irregular
ones) belongs to one of these clusters. And the remain-
ing clusters are calculated based on totalCountPer Day and
total DurationPer Day. For the later type of clusters, if an
activity does not often take place in a specific day of the
week, then a cluster is formed representing this so that dur-
ing testing similar irregularity is not reported as an anomaly.

An anomaly score can be represented based on discrete
values (e.g., ‘normal’, ‘abnormal’, ‘very abnormal’) or based
on continuous values where a higher value would represent
a more anomalous event (or the opposite). We choose a
discrete representation because it is easier to interpret for
the experts / caregivers. After training, for each cluster,
we calculate the mean p; and standard deviation o; of each
feature ¢ based on the data points belonging to that clus-



ter. During testing, for a new data point x represented by
(T1, T2, e , Tk ), we calculate the Mahalanobis Distance d
from a cluster according to Equation (3). If the instances
in a cluster are normally distributed along the k dimensions
(ie., k features), then d < vk means z is within one stan-
dard deviation from the cluster center. If z is not within
two standard deviations (i.e., d > 2 % v/k) from the cluster
center, we consider that x does not belong to this cluster.
Mahalanobis Distance is widely used for cluster analysis, as
it normalizes variation in each feature value by its standard
deviation in the training data [16].

At the end of each specific day of the week, we take the set
of activities that took place that day and look for different
anomalies. First of all, we look for any missing activity (one
type of point anomaly) that are either daily or periodic. Af-
ter that, we consider each individual activity instance which
took place during that day. If an activity instance does not
belong to any of the clusters representing that activity on
that day, then we consider that activity instance an anomaly.
Otherwise, we consider that activity instance normal. In this
way, Holmes can detect point anomalies based on irregular
features.

Next, for each activity, Holmes tests if there is any anomaly
from the clusters based on collective features to detect the
collective anomalies of type ‘Instances from Same Activity’.
During testing, for each activity, if there is an anomaly from
the clusters based on features from individual instances, but
no anomaly from the clusters based on collective features,
then such anomalies are suppressed in this layer to reduce
false alarms. Otherwise, if there is an anomaly from the
clusters based on collective features and / or in the clusters
based on features from individual instances, such anoma-
lies are forwarded to the ‘Semantic Anomaly Filter’ layer if
they are not caused by any prior activity instance in a fre-
quent pattern (discussed below). This logic can be changed
according to the requirements of different applications.

We also report anomalies in the set of frequent patterns
and frequent itemsets for each day of the week. In this
way, Holmes detects collective anomalies of type ‘Activity
Instances from Multiple Activities’. For each frequent pat-
tern (i.e., sequence of activities), if we find one or more ac-
tivities are out of sequence, we report an anomaly in that
pattern to the ‘Semantic Anomaly Filter’ layer. The time
intervals between successive activities in a pattern is mod-
eled as a normal distribution, and if any interval in testing
data falls two standard deviation outside the mean, we also
report it as an anomaly. Similarly, for each frequent item-
set (i.e., group of activities), if only a subset of them takes
place, we report an anomaly in that itemset.

Together, the set of frequent patterns and itemsets may
modify number of anomalies in individual activity instances.
For instance, during training, if we find that dishwashing
often takes place after dinner, then there will be a corre-
sponding pattern. Now, if during testing, on a particular
day, dinner takes place long after normal time, then the
start time of dishwashing will also be delayed. In that case
only anomaly in dinner should be reported. In general, if
any activity instance within a pattern is marked as abnor-

mal by the Mahalanobis Distance, we check if the anomaly is
due to any of the previous activity instances of the pattern.
We can check that with the help of our models of duration of
each individual activity and intervals of successive activity
instances for that pattern. If the anomaly is due to a previ-
ous activity instance of the pattern, we do not report that
anomaly. This checking helps in reducing false alarms. If the
anomaly is not due to one / more anomalies in previous ac-
tivities in a frequent pattern, then that anomaly is reported
to the ‘Semantic Anomaly Filter’ layer. This logic can be
changed by the domain experts according to the necessities
of different applications.

If Holmes is used to monitor symptoms of a particular
disease (e.g., depression, diabetes, dementia), then an ex-
pert can select a group of activities and specific sets of fre-
quent patterns and itemsets so that Holmes monitors only
those anomalies. Also, an expert can assign different weights
to anomalies in different activities or patterns. Note that
anomaly scores are calculated on a daily basis.

3.4 Semantic Anomaly Filters

Here, the goal is to detect anomalies that may be nor-
mal under explainable scenarios. Each of these explainable
scenarios is represented by a semantic rule. If Holmes is
informed that one of the explainable scenarios is currently
true, then it checks if any anomaly is related to that scenario
so that the corresponding anomaly can be suppressed.

The ’Explainable Scenarios’ may include: entertaining vis-
itors, power outage, recovering from major medical opera-
tion, and extreme weather (cold/heat wave). This list is ex-
tensible over time. One of the novelties of our system is this
set of semantic rules that will help to reduce false alarms in
anomaly detection. For example, if our system detects that
the user is out of house for more than a day, it does not
look for anomalies in other activities, e.g., eating, sleeping.
It only reports that user is not in house and thus reduces
false positives in other activities. As another example, if it
is now known that a person is suffering from prostate prob-
lems, then frequent toilet visits are highly likely and thus
should not be reported as anomalies. Another type of se-
mantic filter is defined by experts in the form “Do not report
anomaly in an activity if there are less than X anomalies in
Y days”. Holmes does not claim or aim to detect these
explainable scenarios automatically. However, if Holmes is
notified about the presence of a specific scenario, it learns
to look for specific anomalies that may occur during that
scenario and discards them from the set of anomalies.

4. EXPERIMENTAL SETUP
4.1 Our System with Real Deployment

We have collected activity data from a single resident
home for six months for a comprehensive evaluation of Holmes.
We use the system described in [15] for obtaining the ground
truth pertaining to activities occurring in the home by plac-
ing microphones in the rooms and using grammar based
speech recognition for processing the speech. We deployed
this system in a single resident home and collected data for
six months. The resident is a graduate student. The activ-
ity labels collected during this deployment include sleeping,
meal preparation, cooking, breakfast, lunch, dinner, snack,
dish washing, watching TV, using laptop, going to toilet,
taking showers, and leaving and entering the home. The



resident also labels all activity instances as regular or ir-
regular. For example, if the resident most often has dinner
at home, then occasional dinner out of home is marked as
irregular.

4.2 Public Data Sets

We use two public data sets from the CASAS smart home
data set [8]. Each data set contains four months of in-home
activity data labeled by the resident. The set of activities
includes sleeping, meal preparation, working, watching tele-
vision, showering, leaving and entering home, and using the
toilet. The data sets do not provide information on whether
any of the activity instances is anomalous.

4.3 BeClose Commercial System

BeClose is a commercially available home monitoring tech-
nology that promotes safety and wellness for aged and dis-
abled individuals [2]. The BeClose technology platform con-
sists of wireless, battery operated ambient sensors such as
passive infrared motion sensors, door and cabinet sensors,
bed and chair occupancy sensors, and floor presence mats.
The sensors communicate with a base station connected via
a cellular link to a remote monitoring data center in the
cloud. Sensor data is then contextualized to human behav-
ior and to activities via hierarchical clustering and heuristics
based approaches. Activities include sleep, sedentary behav-
ior, entries and exits, ambulatory activity, and kitchen use.
For this study the BeClose system was deployed in the home
of one individual over the age of 70 and data was collected
for four months.

4.4 Baseline Approaches

We compare the performance of Holmes with the follow-
ing three standard techniques of anomaly detection that are
widely used in the domain of behavior analysis and smart
health care [32, 18].

Statistical Approach

We implement a statistical approach similar to [32]. For each
activity and for each hour of the day, we calculate the mean
(1) and standard deviation (o) of how long that activity
takes place in that hour in the training data. During testing,
if the duration of an activity in a specific hour of the day
is outside p £ 20, then we consider it as an anomaly. Each
activity instance can generate at most one anomaly. From
that probability, we get an anomaly score and calculate the
mean (u) and standard deviation (o) of anomaly scores over
all activity instances of an activity.

Statistical Approach with Temporal Correlations

Here, in addition to statistical measures, we implement the
temporal relationships among activities as in [18] which mod-
els an activity based on what other activities happen before
/ after / during that activity. From the training data, a
probability is calculated for each activity based on what ac-
tivities happen before / after / during that activity. From
that probability, we get an anomaly score and calculate the
mean (u) and standard deviation (o) of anomaly scores over
all activity instances of an activity. During testing, if an
activity instance’s anomaly score falls outside p + 20, we
consider it an anomaly.

Clustering Based Approach

In this case, we cluster activity instances of each activity
based on starTime and duration without considering the
day of the week as in [26]. A new activity instance is clas-
sified as anomalous or normal based on same technique as
Holmes. We do not consider any temporal correlation in this
baseline approach.
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at least 27%.

Figure 4

5.1 Evaluation on Six-month Deployment

Table 1 shows a list of clusters for all activities after train-
ing with the first three months’ data. Although many com-
mon activities can be learned in as little as 2 or 3 weeks
of data, we perform our evaluation with 3 months of train-
ing data since we are also interested in weekly, bi-weekly
and even monthly behaviors. In the subsection labelled as
effect of training size we also show the effect on accuracy
of different training periods. We describe the clusters for
each activity non-technically in the table for ease of under-
standing. For some activities (e.g., sleeping, breakfast), the
clusters consist of only per instance features (i.e., startTime
and duration); this means that there is no variation in the



collective features (i.e., totalCount and total Duration). For
some activities, both types of features are used. For exam-
ple, the resident’s regular behavior includes having dinner
occasionally out of home on Friday / Saturday / Sunday;
therefore, ‘No Dinner’ is included as a model for those days
along with models based on timing and duration of dinner
when in home. Some activities do not happen daily, they
only happen every few days (e.g., cooking, shower). For
such activities, the interval between successive occurrences
is used in the models. Table 1 also shows us that some ac-
tivities (e.g., lunch) take place in the home only on specific
days (e.g., weekends).

Holmes also extracts 21 frequent patterns in daily activi-
ties after training with the first three months of data. Table
2 lists some of the patterns. Each of the patterns contains
temporal relationships among the activities that belong to
that pattern. Patterns no. 1 and 2 show us that on week-
ends, the resident often has breakfast while watching TV.
However, for weekdays, it is not the case. The other pat-
terns in the table show us that while having lunch, dinner or
snack, the resident often watches TV. ‘dishwash2’ in pattern
no. 10 represents instances of dish washing that have longer
duration and the pattern shows us that on days when the
resident cooks, the duration of dish washing is longer.

We compare the performance of Holmes on this data set
with the three baseline approaches described in Section 4.4.
We train each algorithm on the training data, and test for
anomalies on the testing data. We use a 20 fold cross val-
idation, where in each fold we use three months data for
training, and the remaining three months for testing (e.g.,
data from month 1, 2, 3 for training and data from month
4, 5, 6 for testing). All the activity instances are hand la-
beled by the resident as regular / anomaly. Based on that
ground truth, we calculate the average (rounded) number of
false positives and false negatives in anomaly detection over
all folds by each algorithm. Figure 4a shows comparison of
number of false positives of all the algorithms. The figure
only shows the activities for which at least one of the algo-
rithms have false positives. Here, we see that Holmes has the
least number of false positives for all activities. For example,
Holmes has no false positive for lunch, and for toileting, the
standard deviation approach has nine false positives while
Holmes has only one.

The statistical approach, used by many existing systems,
performs the worst; on average, it generates almost one false
positive per day. This is mainly because it does not con-
sider the temporal relations among activities. For example,
if the resident returns home later than normal one night,
then all the subsequent activities are delayed. However, the
only anomaly was his late arrival. The statistical approach
would report anomalies in all subsequent activities. When
we add the temporal relations to the statistical approach, the
number of false positives decreases. Holmes performs even
better because it learns different temporal relations in more
detail by considering the sequence of activities rather than
just considering temporal relations among pair of activities.
The normal clustering based approach performs better than
the statistical approach because of modeling the temporal
regularity better. However, it does not consider temporal
relations; therefore, it has many false positives. the number
of false positives in ‘toilet use’ is high in other algorithms be-
cause the collective features are more significant in terms of
representing normal behavior than exact timing of each toi-

let visit. On average (over all activities), Holmes reduces the
number of false positives by 67%, 46%, and 56% compared
to statistical approach, statistical approach with temporal
relations, and normal clustering, respectively.

Figure 4b shows comparison of number of false negatives
of all algorithms; it only shows the activities for which at
least one of the algorithms has false negatives. From this
figure, we see that Holmes has the least number of false
negatives for all activities. The main reason is that Holmes
captures the variability in resident’s behavior on different
days of the week. There are few instances for each of these
activities in Figure 4b, when the resident behaves unusu-
ally compared to his routine for a particular day of the
week. Holmes correctly identifies such anomalies. On av-
erage (over all activities), Holmes reduces number of false
negatives by 59%, 27%, and 51% compared to statistical
approach, statistical approach with temporal relations, and
normal clustering, respectively.
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validation for different activities. Holmes has the maximum precision
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100 B Statistical
90 7 %
% % ; 2
80 .,
= 0 g é g é é é Statistical +
g 60 7 7 7 7 7 7
< % % % A % 7 Temporal
= 50 7 7 7 7 7 7 .
= % % % % % % Relations
g 11 1 1 1
& 40 % % % % % % Normal
30 % % % % % % Clustering
7 7 / 2 2 7
18 é 7 é % Z % 7 Holmes
> & o o & &
¥ %é@ S & \90 (_}(b &OQ\) 0\;~
© Activity \,’DQ

(b) Average recall values for different algorithms using cross-
validation for different activities. Holmes has the maximum recall
for each activity and increases recall by at least 6%. As some of the
activities have no false negative in any algorithm, they result into
100% recall. They are not shown here.

Figure 5

Figures 5a and 5b show the corresponding average preci-
sion and recall values for different algorithms, respectively.
Holmes has the highest precision and recall values for each
activity. The relatively low precision values for some activi-
ties (even for Holmes) indicate that for those activities (e.g.,
‘Sleep’, ‘Toilet’, ‘Dishwash’) the number of true anomalies



Activity No. of | Model Description Activity No. of | Model Description
| Models | Models
Sleep 3 1) Mon - Thu Dinner 3 1) Mon - Thu
2) Fri - Sat 2) Fri - Sun
3) Sun 3) Fri - Sun (No Dinner)
Lunch 3 1) Mon - Fri (No Lunch) Dishwash 3 1, 2) Mon - Sun (based
2) Sat - Sun on single & collective features)
3) Sat - Sun (No Lunch) 3) Sat - Sun (No Dishwash)
Breakfast 2 1) Mon - Fri Laptop 2 Based on single &
2) Sat - Sun Use collective features
Out of 3 1) Mon - Fri Toilet 3 1, 2) Mon - Sun (based
Home 2) Sat - Sun on single & collective features)
3) Sat - Sun (out of town) 3) Sat - Sun (collective features)
Cook 1 Based on interval & duration Snack 1 Based on duraion
Prepare 5 1, 2, 3) Mon - Sun TV 4 1, 2) Mon - Thu (based
Meal 4) Mon - Fri (Collective) on single & collective features)
5) Sat - Sun (Collective) 3, 4) Fri - Sun (Same)
Shower 1 Based on interval & duration

Table 1: List of models based on 3 months of training data for all activities.

ID | Pattern Days

1 sleep_end, prepMeal, breakfast, leave_start Mon - Fri

2 sleep_end, prepMeal, TV_start,breakfast, Sat - Sun
TV_end

3 prepMeal, TV_start, lunch, TV_end Sat - Sun

4 leave_end, laptop Mon - Sun

5 leave_end, TV_start, snack, TV_end Mon - Sun

6 laptop, prepMeal, T'V_start, dinner, Mon - Sun
dishwashl, TV_end

7 TV_end, laptop, sleep_start Mon - Fri

8 laptop_end, TV, sleep_start Mon - Fri

9 TV _end, sleep_start Mon - Sun

10 | cook, TV_start, dinner, dishwash2, TV_end Periodic

Table 2: A subset of frequent patterns generated from 3 months of
training. If there is no other activity between start and end of an
activity, it is represented by its name.

is very low. On average, Holmes increases precision by at
least 17%, and recall by at least 6%. However there is a
trade off between precision and recall as with the increase
of recall, false positives will increase and thus the precision
will decrease. We can achieve the required balance between
precision and recall for a specific application by tuning the
values of different thresholds.

Effect of Semantic Rules

Based on the resident’s feedback, we find the following se-
mantic rules for this deployment: 1) The presence of guests
causes specific variation in cooking, watching TV and the
amount of time outside home; 2) The ordering of food for
home delivery causes specific variations in preparing meal
and dish washing; 3) Going to or coming back from a trip
cause specific changes in entry or exit and sleeping; 4) Sick-
ness causes variations in most daily activities.

For each of these rules, if Holmes remembers the corre-
sponding variations in activities after the first occurrence,
then the same variations may be considered as normal in
later occurrences of similar scenarios. This reduces the num-
ber of false positives on average by 5 over all testing sets
(20%). Note that Holmes does not detect such scenarios
such as the presence of guests or ordering of food from out-
side by itself. Rather, if such information is provided to
Holmes, then it can learn the corresponding specific vari-
ations. We expect that as deployment time grows, more
semantic rules can be learned which will reduce false alarms
further.

Effect of Training Size

For frequent activities only 2 to 3 weeks of training are nec-
essary. But this does not capture people’s behaviors, many
of which are weekly, bi-weekly or monthly. Here we show
the effect on accuracy for different training periods. Figures
6a and 6b show the corresponding average cross-validated
precision and recall of Holmes with the variation of training
set size of 2, 3, and 4 months while the rest of the data is
used as the test set. For all activities other than breakfast,
an increase of 2 months in training set increase the average
precision by at least 8%. For most of the activities, an in-
crease of 2 months in training set increase the average recall
by at least 13%. To minimize training time an interesting
approach might be to employ a crowd-sourcing approach as
found in [21].

Effect of Different Components of Holmes

Figure 7 shows number of false alarms for different activities
under three settings. In the baseline setting, we just cluster
based on features of different activities without considering
the context. In the second setting, we calculate the number
of false alarms after applying our context aware hierarchi-
cal clustering algorithm. Finally, we apply our temporal
correlation based anomaly detection in addition to the con-
text aware clustering (as in Holmes). From Figure 7, we
see that the context aware clustering algorithm reduces the
number of false positives for sleep from 6 to 4. On average
the context aware clustering algorithm reduces false alarms
by 34% from normal clustering baseline. Adding the tem-
poral correlation analysis further reduces false alarms for
some activities, e.g., sleep, breakfast, dinner, TV. On aver-
age adding the temporal correlation analysis reduces false
alarms by 32% from the context aware clustering algorithm.

Detecting Different Types of Anomalies

Figure 8 shows different kinds of true anomalies detected
by Holmes in one of the cross-validation folds. For exam-
ple, for the activity sleep, there is no point anomaly due to
missing sleep episodes. However, three sleeping episodes are
detected as point anomalies due to irregularities in tempo-
ral features. One collective anomaly is detected by combin-
ing sleep episodes of the same day when the subject took
more naps than usual during that day. Finally, on two
cases anomalies are detected due to irregularities in the fre-
quent patterns containing sleep. Similarly, for each activity,
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increases at least 13% when the training set size increases by two
months. The activities that have 100% recall for all algorithms are
not shown here.

Figure 6

Holmes detects different types of true anomalies which are
summarized in Figure 8. For example, in case of preparing
meal, Holmes finds two point anomalies due to missing activ-
ity and two point anomalies due to irregularity of schedule.

Effect of Threshold Values

There are different thresholds used in different parts of the
Holmes framework. Based on different application domains,
different values may be appropriate for these thresholds and
these should be set by the experts or estimated by exper-
iments. We experimented with different values for these
thresholds and use the values that produced most accurate
results in terms of reducing false positives and negatives in
our data. In the following section, we discuss the effect of
varying different thresholds.

Effect of Merge Threshold

Figure 9 shows the effect of MERGE_ THRESHOLD
on the precision and recall values. Precision values do not
vary with MERGE_THRESHOLD a lot, this is because
false positives are mainly reduced due to using both point
and collective features, and correlations among activities.
However, at higher MERGE_THRESHOLD values (more
than 80%), precision values decrease due to the clusters be-
ing too specific. On the other hand, recall values generally
increase with the increase of MERGE_ THRESHOLD. At
lower values, most of the clusters for an activity are merged.
Therefore, some clusters get very generalized which causes
false negatives, and recall values decrease as a result. If we
increase the M ERGE_THRESHOLD value, such general-
ization of clusters does not happen. However beyond 80%,
we do not see significant increase in the recall values. There-
fore, we use 80% as the MERGE_THRESHOLD value.
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Figure 7: Effect of different components of Holmes in reducing false
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Figure 8: Different types of true anomalies detected by Holmes for
each activity

Effect of Other Thresholds The value of min_pts (used
in DBSCAN) is set to 4, i.e., in each cluster there has to be
at least four data points (four different days). We use a
relatively low value so that we do not exclude too many
data points as noise. [11] also suggests that using min_pts
more than four often produces the same sets of clusters as
it produces when min_pts is set to four. Our experiments
also confirmed this.

As SEG.THRESHOLD, we use 60 minutes. If the in-
terval between successive activities is more than an hour,
we consider them in different episodes. As the value of both
FP.THRESHOLD and ITEM_THRESHOLD, we use
80%. We select this relatively high value to avoid too many
frequent patterns and item sets. These values were selected
based on similar experiments as discussed before.

5.2 Evaluation on Public Data Sets

The two public data sets do not have ground truth for
anomalies. However, one of the main problems in the usabil-
ity of anomaly detection systems is large numbers of false
alarms. Our evaluation on the data that we collected also
shows a high number of false positives. Therefore, in the ab-
sence of ground truth for anomalies, we compare the number
of anomalies each system detects on the two public data sets.
We conjecture that many of the detected anomalies would
be false alarms that can be explained by semantic rules or
some special conditions. Hence, the system generating fewer
number of alarms is desirable. We do a 4-fold leave-one-out
cross validation; in each fold, we use three months data for
training, and the remaining months for testing. We show
the average (rounded) number of anomalies generated by
each system. Figures 10a and 10b show the comparison of
number of anomalies in data set 1 and 2, respectively. The
figures only show the activities for which at least one of the
algorithms detects an anomaly.
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Figure 10

Figure 10a shows that for data set 1, Holmes detects more
anomalies than other systems for showering which usually
takes place in every two / three days. However, there are
some cases where there are no instances of showering in a
week. Because, other systems do not consider the interval
between activity instances, they do not detect such anoma-
lies. Either the resident did not shower in such cases or did
not record shower events. On average, Holmes reduces the
number of alarms by 41%, 26%, and 31% compared to statis-
tical approach, statistical approach with temporal relations,
and normal clustering, respectively for data set 1, and for
data set 2, on average Holmes reduces number of alarms
by 57%, 31%, and 51%, respectively. The context-aware
clustering algorithm of Holmes helps to reduce the number
of alarms, because some activities (e.g., sleeping, preparing
meals and working) show different temporal characteristics
on specific days of the week in both data sets. Such instances
may be few in numbers if considered together with all other
instances. Statistical and normal clustering approaches gen-
erate alarms as they do not isolate activity instances of such

days which Holmes avoids.

5.3 Evaluation on BeClose Data

As this dataset does not have ground truth for anomalies,
we compare the number of anomalies generated by different
systems. Here, we do a 4-fold leave-one-out cross valida-
tion; in each fold, we use three months data for training,
and the remaining month for testing. Table 3 shows the
average number of anomalies generated across all four folds
by different algorithms for different activities. Such as, for
sleeping normal clustering produces fewer anomalies than
other baselines. Holmes reduces the number of detected
anomalies for sleeping from four to two. Holmes produces
the minimum number of alarms for all activities in this data
set. The statistical approach with temporal relations does
not reduce the number of anomalies compared to the sta-
tistical approach without temporal relations mainly due to
limited activities in this data set. The reduction in alarms by
Holmes is mainly due to it’s use of features based on collec-
tive activity instances and day of the week based clustering
approach.

Number of Detected Anomalies
Activity Stat | Stat+Temporal | Norm. Cluster | Holmes
Sleep 5 5 4 2
TV / Leisure 4 4 4 2
Out of Home 2 2 2 0

Table 3: Average detected anomalies per month (rounded) using 4-
fold cross-validation for BeClose data set.

6. CONCLUSIONS

Anomaly detection systems for realistic and long-term in-
home activities face many challenges including the inherent
complexity in human behavior, correlations among activi-
ties, and many outside factors (e.g., weather, visitors). Cur-
rent research works and actual deployed systems have too
many false alarms because they do not address all of these
issues. Holmes is the first system to address these challenges
in an important, comprehensive, and novel way by using a
combination of features based on both individual and col-
lective activity instances, applying context-aware clustering
and pattern mining algorithms, and learning semantic rules
that explain deviation in behavior due to outside factors.
Our evaluation shows that Holmes reduces the number of
false alarms compared to existing techniques and to achieve
this employs between 5 and 35 models depending on the
complexity of the behavior of an individual (instead of just
one model per activity used in most of the existing works).
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