
Towards Optimal Sleep Scheduling in Sensor Networks for
Rare-Event Detection

Qing Cao, Tarek Abdelzaher, Tian He, John Stankovic
Department of Computer Science, University of Virginia, Charlottesville, VA 22904

email:
�
qingcao, zaher, tianhe, stankovic � @cs.virginia.edu

Abstract— Lifetime maximization is one key element in the design of
sensor-network-based surveillance applications. We propose a protocol for
node sleep scheduling that guarantees a bounded-delay sensing coverage
while maximizing network lifetime. Our sleep scheduling ensures that
coverage rotates such that each point in the environment is sensed within
some finite interval of time, called the detection delay. The framework is
optimized for rare event detection and allows favorable compromises to
be achieved between event detection delay and lifetime without sacrificing
(eventual) coverage for each point. We compare different sleep scheduling
policies in terms of average detection delay, and show that ours is closest
to the detection delay lower bound for stationary event surveillance. We
also explain the inherent relationship between detection delay, which
applies to persistent events, and detection probability, which applies
to temporary events. Finally, a connectivity maintenance protocol is
proposed to minimize the delay of multi-hop delivery to a base-station.
The resulting sleep schedule achieves the lowest overall target surveillance
delay given constraints on energy consumption.

I. INTRODUCTION

Sensor networks promise surveillance of large areas with possibly
unprecedented accuracy. Currently, energy supply is one fundamental
bottleneck. It is very expensive to replace sensor node batteries once
they are deployed, both because of the large number of sensing nodes
and because of the typically hazardous or unfriendly environment in
which these nodes are deployed. Hence, prolonging battery life is a
prime consideration in network design. Current literature advocates
employing redundancy to allow some nodes to go to sleep with-
out jeopardizing sensory coverage. These approaches imply that a
minimum number of nodes must remain awake for the right degree
of coverage to remain satisfied. A trade-off exists between energy
savings and coverage. For example, in [1], [2] partial coverage
schemes are investigated to increase energy saving gains. In these
efforts, both random and synchronized sleep schedules are proposed
and studied for certain scenarios. The former refers to the case where
each node independently chooses random sleep and wakeup times.
The latter refers to the case where all nodes go to sleep and wake
up together in a synchronized fashion.

In contrast, we develop a near-optimal deterministically rotating
sensory coverage. In this scheme, the area is only partially covered
at any point in time. However, any point is eventually sensed within
a finite delay bound. The energy/coverage trade-off is thus more
meaningfully expressed as one between energy savings and the
average detection delay, defined as the average time elapsed between
event occurrence at a point and its detection by a nearby sensor. It is
desired to minimize average detection delay subject to a constraint
on energy consumption (expressed as a duty-cycle constraint). The
goal of this paper is to develop a localized distributed protocol for
(near-optimally) solving the aforementioned constrained optimization
problem while ensuring upper bounds on the worst-case detection
delay.

The paper also addresses sleep scheduling schemes for minimizing
packet delivery latency to a common base-station. Observe that at
very low duty cycles, it is likely that sensor nodes that are awake at

any given time do not form a connected graph unless their wakeup
times are appropriately synchronized. Such synchronization, however,
may deviate from the optimal sleep schedule from the perspective
of minimizing average detection delay. We develop a heuristic that
provides partial synchronization to reduce delivery latency without
significantly impacting the average detection delay.

The combination of detection delay and packet delivery latency
is the perceived surveillance delay, which refers to the time elapsed
from the occurrence of an event in the system to the time the event
is reported to a base-station. Hence, the overall contribution of this
paper is to develop a protocol for minimizing the surveillance delay
subject to energy (namely, duty cycle) constraints.

Our protocol is optimized for detection of rare (but urgent) events.
In such applications, network longevity is especially important, since
mission lifetime must be appropriately large. Nodes operate at very
low duty cycles and do not communicate unless an event is detected.
Therefore, we consider sensing power as the predominant energy
drain over the system lifetime. Once detection occurs, a prompt
reaction may be needed (e.g., activating a camera or reporting an
emergency). Consider, for example, the detection of forest fires. There
are two natural concerns with this application: first, how long will
the network last once deployed? Second, how responsive will it be in
reacting to fire events? Our design translates these two questions into
two related design parameters; namely, the energy consumption rate
(i.e., the duty cycle which determines lifetime) and the surveillance
delay. Our protocol offers a design space in which the designer can
trade-off these parameters in a near-optimal fashion.

The rest of the paper is organized as follows. Section II presents
the general framework and assumptions underlying our approach. A
localized distributed optimization algorithm is presented in Section III
to produce a sleep schedule that approaches the optimal on detection
delay. This algorithm is subsequently enhanced to reduce delivery
latency as well. Simulation results are presented in Section IV.
We survey related work in Section V, and conclude this paper in
Section VI with our summary and directions for future work.

II. GENERAL FRAMEWORK

We consider an area covered by sensing nodes. Let some event
(e.g., a fire) occur at one point in the area. The maximal detection
delay for an event occurring at this point is defined as the longest
time that may elapse before the event is detected by a nearby node.
The average detection delay for this point is defined as the average
time elapsed until the event is detected. The maximal detection delay
for the entire area is the largest value of all maximal detection delays
at points in the area. Similarly, the average detection delay for the
area, denoted � , is the average value for all detection delays of all
points. Trivially, when the area is sensing covered, both the maximal
detection delay and the average detection delay for the area are � ,
since all events are detected immediately.

Sensors in the area are duty-cycled. Most sensors have a finite
“warm-up” time ��� upon startup before reliable readings can be
reported. Following the warm-up time, a sensor takes a sample of the
environment, which itself takes time ��� (possibly including repeated
sensor readings). This may be followed by other necessary processing
(such as data logging) which takes time �
	 . Hence, from the instant a
node is powered on, a minimum time interval, ���
����� ��� ��� � ��	 ,
must elapse before the node can go to sleep again. Given a duty
cycle constraint � which defines the maximum percentage of time
a node can be awake, the node must sleep for at least a duration
��� , where � �
����� � �
� � ��������� . Hence, any event is detected in at
most ��� � ����� time units. It is desired to minimize the average event
detection time. We are especially interested in very low duty-cycle
operation where � �
�! " ��� .

We propose a two-level sleep scheduling framework. The first level
selects a minimal subset of all deployed nodes, called the primary
subset, such that sensing coverage is maintained using the fewest
primary nodes. We assume that there are enough nodes in the network
for sensory coverage to be achieved. The remaining nodes are turned
off. This process is repeated periodically at a fairly large period (e.g.,
of the order of tens of hours) to change the set of primary nodes
so that their energy is not depleted. Algorithms for such rotation
have been proposed in prior literature and are not considered in this
paper. The second level focuses on the current primary nodes. It
contributes further energy savings by duty-cycling these nodes at a
higher frequency (e.g., seconds or minutes). That is to say, each node
in the primary subset sleeps for ��� then wakes up for ���
� , where
� �
����� � �
� � � � �#�$� , the desired duty cycle. Our purpose, in this
paper, is to coordinate the duty cycles of primary nodes such that the
average detection delay in the area is minimized.

One interesting remark is that although the maximum energy
savings by first level scheduling are bounded by the need to maintain
sensory coverage, the second level savings can be made arbitrarily
large by decreasing the duty cycle of primary nodes. In principle,
there is no lower bound on energy consumption after the second
level scheduling. The only consideration is that lowering the duty
cycle increases average detection delay.

If the average number of primary nodes within a sensory radius is% , any point in the environment is sensed by % nodes on average.
Since each node sleeps for ��� and wakes up for � �
� , at low duty
cycles (i.e., when ����� " ���), a point is sensed on average no
more than once every � �&� % time units. An event arriving randomly
between sense instants will thus suffer an average detection delay no
lower than ��� ��' % . This value establishes a lower bound on detection
delay given the sensor wakeup period, � �
� , and the chosen duty cycle,
�(�)� �
����� � �
� � ����� , which uniquely determine the minimum ��� ,
and hence the minimum ��� ��' % .

On the other extreme, if all primary nodes sleep and wake up in
unison, each point is sensed only once every ��� , and the average
detection delay for a randomly arriving event is ��� �&' . Our purpose
is to design a sleep scheduling protocol that approaches the lower
bound, ��� �&' % , on the average detection delay.

It can be shown that minimizing detection delay leads to mini-
mizing the variance in detection delay as well. Intuitively, this is
because the sum of the squares (or higher powers) of numbers that
add up to a constant is minimized when these numbers are equal.
Hence, equally spacing sensor wakeup times within an interval ���
leads to minimizing both the mean and variance of detection delay.
The complete proof is omitted for space limitations.

Finally, observe a relationship between detection delay and de-
tection probability. An event with a short lifespan can be detected

as long as its lifespan intersects any of the waking periods of
neighboring sensor nodes. It is easy to show that the probability of
such intersection is maximized when the wakeup periods are equally
spaced. Thus, the sleep scheduling that optimizes the detection delay
also maximizes the detection probability of short-lived events. Next
we present a protocol that produces a near-optimal sleep schedule.

III. SLEEP SCHEDULE OPTIMIZATION

In this section, we describe a sleep scheduling protocol that
outperforms both random and synchronized scheduling in terms of
average detection delay. The protocol is distributed, and has the
favorable feature that it guarantees local optimality in that every node
ends up with a wakeup point that cannot be further improved in
terms of the average detection delay within its sensing range. We
also present a protocol for optimizing end-to-end delivery latency.
The combination of these two protocols is explored to reduce overall
surveillance delay.

A. Detection Delay Optimization

Our overall algorithm for minimizing detection delay is a three
stage transition process, shown in Figure 1.

1

Stage II: Each node re-calculates its
wakeup time, exactly once in each

iteration Tc, based on the most recently
updated neighbor schedules. If one node
does not receive any updates within an
iteration and has not changed its own

wakeup time, proceed to stage III.

Stage III:
The wakeup time is

finalized.
3

2

Stage I: Each node chooses
a wakeup time regardless of

other nodes.

Receive neighbor beacon,
update neighbor wakeup

time

Fig. 1. State Transition of Optimization Algorithm

We assume that neighboring nodes have approximately synchro-
nized clocks. Protocols for clock synchronization in sensor networks
can be found in [3]. Each node * starts at Stage 1, where it randomly
picks an initial wakeup time, +-,/. �10 for itself on a common timeline in
the cyclic interval [�32-��� � �����). For the purposes of this analysis, the
wakeup time denotes the instant at which the node’s wakeup interval
� �
� starts. The initial selection of the wakeup times of different nodes
is completely uncoordinated. Each node communicates its randomly
chosen wakeup time to its neighbors, sets up an iteration timer to
fire at a period ��4 , and enters Stage 2. Observe that in this stage all
primary nodes are still awake (i.e., have not yet started their duty-
cycling). The period � 4 is called the schedule iteration period, which
is different from the period � �
� � ��� of the would-be duty cycles.

In Stage 2, each node undergoes multiple schedule iterations.
Within a single iteration, a node makes at most one adjustment to its
wakeup time to reduce the average detection delay. Ultimately, a local

minimum is reached where no more reductions can be obtained. More
specifically, when the iteration timer of node * fires, denoting the
beginning of a new schedule iteration, 5 , the node considers adjusting
its wakeup time from + , . 57698:0 (the value chosen in the previous
iteration) to a new value, +-,-. 530 . This new value should minimize the
average detection delay in the area within node * ’s sensing range,
denoted � , . 5;0 , given the updated wakeup times received from * ’s
neighbors in the last iteration. Note that by neighbors, we are only
referring to those nodes that have overlapping sensing ranges with the
current node, since for the the current node, only the waking times
of these sensing neighbors are relevant. We will use communication
neighbor to specifically refer to the nodes within communication
range of the current node, and without further explanation, use
neighbor to denote sensing neighbors.

In our discussion, we assume that each node knows its sensing
range. This assumption is supported by our observations with current
sensor nodes. For example, in XSM2 [4] motes developed by OSU
and CrossBow, a roughly circular sensing range can be measured
for the set of PIR sensors before deployment. Each node can use
this knowledge to determine whether or not a given point is located
within its sensing range.

If the difference between the old and new detection delays (�<,-. 530
6
� , . 5"6=8:0) is larger than a preset threshold, > , the new wakeup time,
+ , . 5;0 , is adopted and the node reports this new wakeup time to all its
neighbors. Otherwise, the old wakeup time, +-,/. 5?6@8:0 , remains in place
and no updates are sent. The node then waits for the next invocation
of the iteration timer � 4 to start a new iteration. If the node does not
receive any updates within an iteration and has not changed its own
wakeup time, it enters Stage 3 in which it starts duty-cycling, phased
in accordance with its computed wakeup time. Once all nodes reach
Stage 3, we consider the detection delay optimization complete. Note
that, since clocks drift over time, the duty cycle period ��� � ����� must
be large enough to accommodate a fair amount of phase drift without
the need for clock re-synchronization. This constraint is met naturally,
since we are interested in very low duty cycles (���@A"AB���
�) in which
��� must be reasonably large (of the order of seconds or minutes).

The critical part of the above optimization process lies in the
localized computation of the optimal wakeup time of an individual
node at Stage 2 as a function of those of its neighbors. The problem
is formulated as follows. Given a node, * , that is informed of all
the current wakeup times of its neighbors, what wakeup time, + , . 5;0 ,
should it choose to minimize the average detection delay, ��,/. 5;0 , in
the area within its sensing range?

To answer this question, in the following, we first derive an
expression for the average detection delay within the sensory range
of node * as a function C , � +/� of the node’s unknown wakeup time
+ (and the known wakeup times of its neighbors). We then find the
wakeup time + that minimizes this expression (i.e., for which C�, � +-�
is minimum). Finally, we present an implementation that computes
C , � +/� and the corresponding wakeup time efficiently at run-time.

1) Derivation of an Optimal Wakeup Time: To derive CD, � +-� ,
consider an arbitrary point E in node * ’s sensing range. Let point
E be located within the intersection of the sensing ranges of F nodes
(including node *). The average detection delay at point E is the
average time elapsed from the occurrence of an event at E to the next
time some neighboring node wakes up and samples the environment.
It depends on the relative spacing of the respective sampling times of
the F neighbors. Since each node will sample the environment once
every duty cycle period, there will be a total of exactly F samples
within each interval ��� � � �
� . Let the samples of different nodes be
separated by time intervals GIH , ..., G
� , where G3JLK�� for 8"MONPMQF .

Figure 2 shows an example of a duty cycle of length 8 , with
nodes RS8 , R ' and T , sampling the environment at times ��U '&V ,
��U W and + respectively. The intervals GIH , ..., G
X between successive
samples are indicated. The circle in this figure depicts a repeated
duty-cycle. The arrows indicate the direction of the passage of time.
Observe that while a node might be awake for a finite period of
time, ����� (which includes sensor warm-up and data post-processing
times), its sampling time, for purposes of this analysis, refers to the
time instant at which the node completes its environmental reading.
In our model, this instant occurs at a fixed offset from the node’s
wakeup time (namely, at offset ��� � � � defined in Section I).
However, it is straightforward to extend our analysis to the case where
nodes continue sampling the environment for some contiguous finite
duration.

Given inter-sample separations G H , ..., G � , the average detection
delay Y at point E is given by the sum of the average detection delays
for event arrivals in an interval G3J (given by, G3J �&'), each multiplied
by the probability of arriving within that respective interval, which is
G3J ��� ��� � ���
�). Hence, Y equals the sum of � G3J ��' �ZG3J ��� ��� � ���
��� ,
8"MONPMQF , which gives:

Y[� G�\ H � U]U]U � G�\�
'3� ��� � ������� (1)

0.25

0.6

N2

O

N1Point A

t

x1 = 1.25 - t

x2 = 0.35

Start of cycle

x3 = t - 0.6

of time
Passage

Fig. 2. A Cyclic Sleep Schedule

Since node * knows the wakeup times of all its neighbors, substituting
in Equation (1) we get a quadratic expression that is a function only
of node * ’s own wakeup time. For example, substituting with intervals
G?H , G \ and G
X , shown in Figure 2, into Equation (1) we get a quadratic
function of + that represents the average detection delay at point E .
Observe that this quadratic function depends on the ordering of the
unknown wakeup time + with respect to the wakeup times of the
neighboring nodes. For example, Figure 2 shows + to be in the range
��U W^M_+ 8 . Substituting in Equation (1) gives an expression that
is valid only for the corresponding range. Similar expressions can be
derived for the other ranges. Putting the expressions for different
ranges of + together, we obtain a continuous piecewise quadratic
equation that yields the average detection delay at point E as a
function of the unknown wakeup time + anywhere in the duty cycle.
We call it the optimality curve for point E . The optimality curve for
point E shown in Figure 2 is given in Figure 3.

To minimize the average detection delay across the entire sensing
range of some node * , the quadratic optimality curves of all points
in * ’s sensing range are added. The resulting piecewise quadratic
function is the sought function C , � +/� that is then solved for a global

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.2

0.25

0.3

wakeup time of node O

A
ve

ra
ge

 D
et

ec
tio

n
D

el
ay

Maximal Value
 0.2725

Minimal Value
 0.166875

Maximal Value
 0.2725

Fig. 3. Optimality Curve for node O at point A

minimum. This conceptual procedure lends itself to an efficient
implementation in view of the following two observations.

First, note that points covered only by node * (and no other nodes)
will always have the same average detection delay regardless of
when * chooses to wake up. At low duty cycles, this delay is well
approximated by ��� ��' . Such points need not be considered in the
aforementioned summation as they do not change the optimization re-
sult. Second, note that all points that lie at the intersection of sensing
ranges of the same nodes lead to the same quadratic optimality curves.
Hence, it is enough to compute such curves only once. For example,
node T in Figure 4 needs to consider only five distinct optimality
curves corresponding to the five intersection regions between its
sensory range and that of other nodes. The equation for each curve is
weighted by the area of the corresponding intersection and the results
added up to obtain C , � +-� .

It can be shown that the resulting overall function is piecewise
quadratic with a number of segments that depends only on the total
number of neighbors, ` , of node * . Its global minimum can only
occur at one of the local minima of the individual segments or at the
points at which these segments are joined. Inspecting these points is
an T � `a� operation. The algorithm can therefore efficiently determine
the position of the global minimum and hence the new wakeup time.
Next, we present a detailed example of computing an optimality
curve, and our actual implementation of the entire algorithm.

2) Example: Computing the Optimality Curve: Consider again
node T in Figure 4. Node T has four neighbors denoted RS8 to
Rcb . In this example, there are five distinct sensor range intersection
regions within T ’s sensing range that need to be considered. Figure 4
depicts these regions and the wakeup times of all neighboring nodes.
Point E exemplifies one region that lies at the intersection of the
sensing ranges of nodes RS8 , R ' and T . In the duty cycle [��2:8),
there are three cases to consider for the wakeup time + of node T ,
namely. �OMd+ ��U '&V , �3U '&V Md+ ��U W and �3U W(M$+ 8 , where
�3U '&V and �3U W are the known wakeup times of neighbors RS8 and R ' .
Figure 2 depicts the case where ��U WeMf+ 8 . As seen in Figure 2,
the intervals between successive wakeup times are 8&U '�V 6�+ , ��U g V and
+:6#�3U W respectively. Substituting in Equation (1), the average detection
delay in this case is h H-i \-j�k
lnmporq�s i X jtouq h lvk
s i w mxo\ , which evaluates to
+ \ 6L8&U y V + � 8&U � '�'&V . Similarly, we can determine that for �zM{+ �3U '�V
the average detection delay is given by + \ 6^8&U y V + � ��U b '�'&V , and that
for �3U '�V M|+ �3U W it is given by +/\ � �3U}8 V + � �3U]81~ '�V . Together,

N1 N2

N3
N4

O

Sensing
Range

Sampling
Points

A

B

C

Wakeup = 0.25
Wakeup = 0.6

Wakeup = 0.8 Wakeup = 0.9

Fig. 4. An Optimization Example

the above three segments constitute the optimality curve for point A
(shown in Figure 3).

3) Efficient Implementation: In our implementation, a node builds
a polynomial function table for each optimality curve, in which each
segment of the function is stored as a three-element tuple �n� 2-��2-�r� ,
denoting the function as C � +/��� � + \ � �
+ � � , It also stores the starting
and ending point of each segment. For the optimality curve computed
above, the polynomial function table is shown in Table I.

A node also sorts the wakeup times of its ` neighbors to
determine the ` � 8 intervals between these wakeup times within
a duty cycle. It then initializes a new polynomial function table that
will hold the final function C1, � +-� for the area covered by node * . We
call it the result table.

To simplify computation, a node then considers a virtual grid
within its sensing range. Points on this grid are considered sequen-
tially, each with the same weight. For each point, the algorithm clas-
sifies this point based on which nodes are less than one sensing range
away from it. Then, the coefficients of all segments of its optimality
curve are fetched from the corresponding polynomial function table
and added to the coefficients of the corresponding segments in the
result table, which generates an intermediate segmented quadratic
polynomial function. When all points have been considered, the result
function is complete. For example, the result table for point T in
Figure 4, is shown in Table II. The corresponding aggregated function
is plotted in Figure 5. The optimal wakeup time can be decided
by finding the lowest value on the aggregated function (which turns
out to be b�U b�8uW�W at +e���3U g�y V). This can be done by inspecting
function values at segment boundaries and local minima (a local
minimum of a function � +/\ � �
+ � � occurs at +���6�� �&'1�). The
time at which the lowest value occurs is the sought wakeup time
+-,-. 5;0 of node * at iteration 5 . Once the wakeup time is determined,
the node sends out its decision. We now briefly explain the content
of the decision packet. Each node keeps an incrementing counter
as the current version of its wakeup time. It also keeps the latest
versions of its neighbors. Once it makes a new adjustment, it sends
out its ID, its new wakeup time, the version counter, as well as the
version counters of its neighbors. The last piece of information is
necessary to avoid non-serializable modifications of wakeup times of
neighboring nodes. Such modifications may lead to endless loops in
the adjustment. Therefore, once two nodes find that they have each
adjusted their sleeping times independently, the node with lower ID

TABLE I
POLYNOMIAL FUNCTION TABLE FOR POINT A

Range Tuple Function
1 � ������� ���
� �n�r����� �
�1����� �
���:��� � o�� �D� �
��� � ��� �/�:���
2 � ��� ���D����� �/� ���u� �D�
����� ���D����� �:�:���:� � o �@��� ����� � ��� �:�:���
3 � �D� �D�t�-� ���u� �D�
���u� ���D�t�u� �:�:���:� � o �P�u� ����� � �u� �:�:���

TABLE II
RESULT TABLE

Range Tuple Function
1 � ������� ���
� ���/�D�/�?�D� �:�1�v�D� �:��� �/��� o ���D� �:��� � ��� ���
2 � ��� ���D����� �/� ���
�D�/���:�r� �:�D�v�1� ���r� �
��� o �����u� ����� � �D� �
�
3 � ��� �D���D� �
� ���
�1�
���
�1� �:�1�-�-��� �
�r� �
�
� o �P�
�1� �:��� � �/�D� ���
4 � ��� �D���D� �
� ���
�1�
�?�:�1� �:�1�-�/�D� �
�r� �
�
� o ���:�1� �:��� � �
�1� ���
5 � �D� �D�t�-� ���
�1�
�?���D� �:�1�Z�
��� ���r� �
�
� o �����D� �:��� � ���D� �:�

revokes its prior decision and rolls back to its last version. The same
rule applies to more than two nodes as well. One node also needs
to roll back if its packet is lost in transmission. Therefore, we use
an acknowledgement based MAC layer. If one node cannot receive
the acknowledgements from all neighbors, it should either revoke its
prior decision, if it receives a parallel adjustment from one of its
neighbors during the time, or resend its decision to all its neighbors.
Observe the fact that communication range in sensor networks is
typically much larger than sensing range. Therefore, we expect that
the sensing neighbors are typically located sufficiently nearby, and
connected via relatively reliable links to the current node.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Wakeup Time of Node O

O
pt

im
al

ity
 C

ur
ve

 fo
r N

od
e

O

Minimal Value (0.385,4.4166)

Fig. 5. Aggregated Optimality Curve for Node O

4) Algorithm Analysis: Cost Analysis We now consider the
computational cost and requirements on storage of the algorithm. We
consider storage requirements first. For each sampling point covered
by F neighbors, the maximal number of segments is F � 8 (there is
F � 8 because we treat the first region and the last region in Figure 3
as different functions). Therefore, for a node with ` neighbors, the
number of segments for the aggregated function is at most ` � 8 , due
to the fact that points in the same partition share the same segments.
Once we have aggregated a segment function, the storage it occupies
can be freed, therefore, at most ` � 8 entries are needed in the
global result table, which is not memory intensive. Second, as far as
computation cost goes, the overall cost is proportional to the product
of grid resolution and the number of neighbors, ` . We can easily
control the former factor to reduce overall cost to an acceptable value.
Our experiments on MICA2 nodes show that comparable computation

load can be well afforded.
On the Convergence of the Algorithm We now show that the

overall optimization process terminates in a finite number of steps.
First, note that each adjustment of the wakeup time by one node in
Stage 2 decreases the average detection delay within the sensing range
of this node, but does not affect the average detection delay outside its
sensing range. Hence, the average detection delay for the area also
decreases with individual node adjustment. Also note that, in our
design, we have avoided non-serializable adjustments of neighboring
nodes. Therefore, the whole process exhibits a contractive property.
Since the initial average detection delay for the whole area must
be finite, and since the algorithm makes adjustments only if they
decrease the average detection delay (in some node’s sensing range)
by some minimum finite amount, the algorithm must terminate after
a finite number of adjustments. Note that during the process, it is
possible that the adjustment of one node’s schedule may propagate
to its neighbors, however, such propagation will only decrease the
overall detection delay, which obviously will terminate after a finite
number of steps.

To estimate the convergence time of the algorithm in area, � ,
suppose each node has a sensing range, � , and communication range,� A�� . For each adjustment of one node in Stage 2, the average
detection delay decreases by at least > in the sensing area of this node.
Thus, each adjustment decreases the average detection delay for the
whole area by at least �¡ o¢�£ > . Remember that the average detection
delay is upper-bounded by approximately ��� ��' and lower-bounded
by approximately ��� ��' % . The maximum number of adjustments is
therefore bounded by the difference between the two bounds divided
by the adjustment per step, which yields ¤D¥\ � 8L6a8 �

% � ¢
 &¡ o�¦ . Now

assume that nodes outside each other’s communication range (and
hence outside each other’s sensing range) can perform adjustments
in parallel. There are roughly

¢
 ¨§ o such nodes. Hence, the number

of rounds of adjustment is roughly ¤D¥\ � 8L6f8 �
% � § o¡ o ¦ , which takes

¤ ¥\ � 8�6S8 �
% � § o¡ o ¦ � 4 time units to complete. This estimate, of course,

is a quite relaxed bound: each adjustment may decrease the average
detection delay within one node’s sensing area well beyond the lower
bound > . In practice, our simulations show that the system always
converges within twenty rounds.

B. End-to-End Delay Optimization

Next, we propose an optimization for end-to-end delivery delay.
Observe that at low duty cycles, the fraction of nodes that are awake
at any given time do not necessarily form a connected network.
Delivering sensed events to the base-station requires synchroniza-
tion of waking times between communication neighbors along the
path. We consider networks where the communication range is
relatively large compared to the sensing range. Hence, after first-
level scheduling (which determines the minimum number of nodes
needed for full sensory coverage), the resulting primary nodes have
many neighbors within their communication range. The problem,
of course, is that after the ensuing second-level scheduling, not all
neighbors will be awake at the same time. From the perspective
of minimizing event delivery time to a base-station, it is desired to
synchronize duty cycles of nodes into a streamlined sequence to pipe
the data efficiently. This idea is not unlike the common practice of
synchronizing traffic lights to turn green (wake up) just in time for
the arrival of vehicles (packets) from previous intersections (hops).
Observe that it is enough for each node to synchronize its duty cycle
with only one neighbor within its communication range that is closer
to the basestation. Consequently, synchronized routes are formed to
expedite data delivery from any node.

An example of this type of coordination is shown in Figure 6.
As shown in this example, packets delivered from node � to © have
minimum delay. We call this technique streamlined wakeup. In the
following, we propose an optimization of delivery delay based on the
streamlined wakeup technique. We focus on the most common case
where each sensor reports to only one base-station (although different
parts of the network might report to different local base-stations). Our
algorithm works as follows:

t

Ton

Packet Delivery 0->9
Delay = 9t

Ton+Td Scheduling Cycle

1

0

9

8

7

6

5

4

3

2

Node 0 has
new packet

Node 9 recevies
packet

t

Waking
Schedule

One-hop
Delivery
Delay

Fig. 6. Scheduling Example for Node Pipe

1) After first-level scheduling is complete, the base-station floods
the network with a message containing a hop count that is
incremented at each hop (interest propagation). Each node
keeps track of the lowest hop-count received and maintains that
number as its hop count from the base-station. Since the base-
station is assumed to be always up, nodes one hop from the
base-station (i.e., its direct neighbors) set a pipe flag indicating
that they have a valid streamlined path to the destination. Any
node that sets this flag communicates this fact to its neighbors.

2) Nodes run the detection delay minimization algorithm de-
scribed earlier to compute their wakeup times. In Stage 3 of
this algorithm, instead of actually implementing the duty cycle,
they execute the step below.

3) Any node whose neighbors with shorter hop counts to the base-
station have set their pipe flag, finds the one such neighbor with
the closest wakeup time to its own. The node then overlaps
its wakeup interval with that neighbor’s, effectively appending
itself to an established streamlined data pipe that is closest to
its ideal wakeup time. Observe that the number of such pipes
that may be established in the network is of the order of the
number of the immediate communication neighbors of the base-
station. The larger is this number, the lower (on average) is the
adjustment needed to a node’s wakeup time to join a pipe. For
example, a base-station with a sensitive enough antenna to hear
all sensors will enable each node to be its own data pipe with
no additional synchronization or adjustment needed. Having
joined a pipe, a node sets its pipe flag and communicates this
fact along with its new wakeup time.

4) Any node that has set its pipe flag and communicated this
information now enters the duty-cycling phase in according
with its updated wakeup schedule.

The above algorithm ensures that a synchronization wave prop-

agates outwards from the base-station. When the wave reaches the
outer perimeter of the network, all nodes will have routes to the
base-station with appropriately overlapped wakeup times. All nodes
will have entered the duty-cycle mode. The initialization is thus
complete. If the communication range is large enough, it is easy to
find neighbors with close wakeup times to your own. The algorithm
therefore does not have much impact on the optimality of average
detection delay in networks with a large communication range, as
will be demonstrated in the next section.

IV. EVALUATION

In this section, we verify the theoretical results and optimizations
given in the previous section via extensive simulations.

A. Simulation Setup

We simulate a two-level scheduling framework. By default, the
area is 8r�&��ª £ 8r�&�Dª . Each node has a sensing range of 8r��ª .
Initially more than enough nodes are deployed to guarantee sensing
coverage. The first level scheduling is then applied where as many
nodes as possible are put to sleep without compromising overall
sensing coverage. The remaining nodes form the basis for evaluating
the protocols designed in this paper, where different approaches are
compared.

In practice, we deploy g&�&� nodes, followed by a first-level
scheduling protocol to turn off redundant nodes. An average of ~�W
nodes remain awake, so we generate ten scenarios with ~DW nodes
remaining as the basis for second level scheduling evaluation. Each
of these deployment scenarios guarantees full sensing coverage and
no node is redundant. We simulated a simple MAC layer with packet
acknowledgement. In the simulations, packet loss and retransmissions
appear to have very limited effect on the overall performance, since
we can adjust the pace of schedule readjustment sufficiently to
accommodate packet retransmissions.

B. Detection Delay Optimization

In this section, we focus on the optimization of average detection
delay. For each scenario, we compare the optimized and random
energy saving schedules to the theoretical lower bound and the upper
bound (the case of a synchronized schedule). The results are shown
in Figure 7. The horizontal axis varies the ratio of the sleep interval
to the waking interval, ��� � � ��� , on a logarithmic scale, over two
orders of magnitude. The vertical axis shows the normalized average
detection delay over ���
� .

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 D
et

ec
tio

n
D

el
ay

Log10(Td/Ton)

Synchronized
Random

Optimized
Lowerbound

Fig. 7. Average Detection Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
ov

er
ag

e
R

at
io

Log10(Td/Ton)

Theoretically Optimal
Optimized

Random
Synchronized

Fig. 8. Rotating Coverage Ratio

 0

 15

 30

 45

 60

 75

 90

 105

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
xp

ec
te

d
Li

fe
tim

e
E

xt
en

si
on

Log10(Td/Ton)

Fig. 9. Expected Lifetime Extension

Notice that the theoretical lower bound to which we compare
the results is over optimistic. No scheduling approach can achieve
this bound because different nodes in an irregular network generally
cannot achieve perfectly equal wakeup time spacing simultaneously.
Thus, optimizing the average detection delay for one point usually
leads to sub-optimal scheduling for neighboring points. While no
algorithm can achieve the optimistic lower bound, we observe that
ours demonstrates considerable performance enhancement compared
with both random and synchronized sleep scheduling.

For example, from Figure 7, when � ��� � ��� � 8r� (or«p¬D­ � ��� � �����<�O�®8), the theoretical average detection delay lower
bound is ' U W , our algorithm achieves g3U ' , random sleep scheduling
achieves g�U y , while synchronized sleep scheduling is as high as V U V .
More generally, our protocol can reduce the gap between random
scheduling and the optimal bound in terms of average detection delay
by g��¨¯ to V �¨¯ , and has a absolute average detection delay reduction
over random scheduling up to 8 V ¯ .

We also evaluate the notion of coverage ratio defined as the
percentage of covered area in time and space. For the purposes of
this experiment, covered area refers to area in the range of at least
one sensor that is awake at the time. Since each node is awake
during ����� , the aggregation of such coverage intervals reflects a
measure of vigilance of the network. The results are presented in
Figure 8. As shown, as the duty cycle decreases (by increasing

 0

 10

 20

 30

 40

 50

2 2.58 3.5 4.98 7.3 11 16.8 26.1 40.8 64 101

A
ve

ra
ge

 D
et

ec
tio

n
D

el
ay

Expected Lifetime Extension

Synchronized
Random

Optimized
Lowerbound

Fig. 10. The Lifetime vs. Delay Trade-off

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

D
et

ec
tio

n
P

ro
ba

bi
lit

y

Duration of Event(time units)

Theoretically Optimal
Optimized

Random
Lowerbound(Syncronized)

Fig. 11. Event Detection Probability

��� � � �
�), the coverage ratio of random scheduling and optimized
scheduling converges quickly to the optimal. This is expected because
both random scheduling and optimized scheduling are not likely to
overlap the wakeup periods of neighboring nodes. Since the coverage
ratio is only relevant to the aggregated waking period, these two sleep
scheduling policies eventually lead to the same (optimal) ratio.

Another important factor is the expected extension in lifetime.
Figure 9 plots the relationship between the ratio � ��� � �
� and the
expected lifetime extension of the sensor network in multiples of its
original lifetime (the one when all primary nodes are always on).

Combining Figure 9 with Figure 7, we quantify the trade-off
relationship between the expected lifetime extension and the corre-
sponding increase in the average detection delay achieved by different
sleep scheduling algorithms. This trade-off is expressed in Figure 10.
As observed, our optimization algorithm clearly outperforms both
synchronized and random scheduling in the sense of achieving a
longer lifetime for the same average detection delay, or achieving
a lower average detection delay for the same lifetime. This figure
clearly demonstrates the advantage of our approach from an applica-
tion’s perspective.

At last, we present the performance of different sleep scheduling
policies in detecting temporary events. If events persist for a short
time duration, sleep scheduling has a profound impact on their
probability of detection. Figure 11 plots the relationship between

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2.5 3 3.5 4 4.5 5

Pe
rc

en
ta

ge
 o

f I
nc

re
as

e
in

 A
ve

ra
ge

 D
et

ec
tio

n
D

el
ay

Communication/Sensing Ratio

Td/Ton=5
Td/Ton=25
Td/Ton=50

Fig. 12. Effect of Pipe Synchronization for Multihop Delivery

detection probability and event lifetime. The horizontal axis plots
the event duration normalized to ���
� , where ���
� is assumed to be
8 time unit. In this experiment, �±°7� V �1� �
� . It is shown that our
optimized sleep scheduling algorithm performs considerably better
than both synchronized and random scheduling in terms of improving
the probability of short event detection. This result is due to the more
even spread of wakeup times under our approach.

C. End-to-end Surveillance Delivery Latency

Figure 12 characterizes the impact of optimizing packet delivery
latency on average detection delay. The main factor that characterizes
that impact is the ratio between the communication and sensing
radius. Since nodes on each path to the base-station must be synchro-
nized, their synchronization increases the average detection delay.
However, as the ratio between communication range and sensing
ranges increases, the number of primary nodes within one’s com-
munication range increases, which makes it easier to find a neighbor
to synchronize with. The negative effect of such synchronization on
average detection delay is thus reduced.

At last, we want to emphasize that while our algorithm is locally
optimal, it has left a gap between itself and the theoretical global
optimal. More global coordination of sleep schedules may improve
performance further. We believe, however, that it would be difficult
to beat this performance with other localized algorithms.

V. RELATED WORK

Minimizing energy consumption has been a central topic in many
papers in recent years. Effective techniques have been proposed to put
nodes to sleep while maintaining full coverage at a specified degree
of redundancy [5], [6], [7], [8]. These solutions can be conveniently
integrated as first level scheduling algorithms in our framework.

Research on partial coverage based protocols has received less
attention. Among the first publications are [2] and [1], which study
the problem of tracking moving targets. Our work differs in that (i)
we focus on stationary event detection, and (ii) we aim at finding
a localized algorithm that approaches the minimum average delay
bound.

In studying the impact of partial sensing coverage, we inevitably
face the problem of connectivity. The work of [9] proposes remote
radio triggered hardware, which extracts energy from specific radio
signals without using an internal energy source, to provide wakeup
signals. This service can be used in our framework to forcefully
wake up additional nodes to form a connected network when an

event of interest is detected. Since we focus on rare (but important)
events, wasting energy when an event occurs is permissible. A similar
hardware is reported in [10], where a low-power VLSI wake-up
detector is designed in an acoustic surveillance sensor network.

Also relevant to our analysis for delivery latency is [11], which
addresses this issue through an extension of first passage percola-
tion theory for completely uncoordinated scheduling. Similarly, [12]
addresses this issue through a Markov model based approach, where
distribution of the data delivery delay is analytically determined. [13]
uses a slotted approach for communication scheduling, where nodes
determine their wakeup times based on their relative positions in the
aggregation tree. Our work is different from these efforts primarily
in our streamlined wakeup scheduling, as discussed in Section III-B,
where the delivery latency is considerably lower.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have outlined, studied and evaluated the problem
of minimizing surveillance delay subject to energy constraints. We
consider this delay to be composed of detection delay and delivery
delay, and propose optimizations for both. The final outcome is
a flexible framework in which application designers can trade-off
energy versus latency of event detection. We focus on detection
of rare events, where the network is normally silent, except when
events occur. This is in contrast to data collection networks that
continuously stream periodic data to a collection center. The study
reported in this paper is a first step towards more general models
that optimize performance in the presence of communication as well.
A general study of optimizing detection delay for moving targets is
another worthy extension. We expect to address these issues in future
publications.

ACKNOWLEDGEMENTS

The work reported in this paper was supported in part by the
National Science Foundation under grants EHS-0208769 and ITR
EIA-0205327.

REFERENCES

[1] S. Ren, Q. Li, H.N.Wang, X. Chen, and X. Zhang, “Probabilistic
coverage for object tracking in sensor networks,” in Mobicom 2004
Poster Session, 2004.

[2] C. Gui and P. Mohapatra, “Power conservation and quality of surveil-
lance in target tracking sensor networks,” in ACM Mobicom, 2004.

[3] M.Maroti, B.Kusy, G.Simon, and A.Ledeczi, “The flooding time syn-
chronization protocol,” in ACM Sensys, 2004.

[4] “Xsm website http://cast.cse.ohio-state.edu/exscal/.”
[5] X. W. et al., “Integrated coverage and connectivity configuration in

wireless sensor networks,” in ACM SenSys, 2003.
[6] T. Yan, T. He, and J. A. Stankovic, “Differentiated surveillance for sensor

networks,” in ACM SenSys, 2003.
[7] D. Tian and N.D.Georganas, “A node scheduling scheme for energy

conservation in large wireless sensor networks,” in Wireless Communi-
cations and Mobile Computing Journal, 2003.

[8] T.He, S.Krishnamurthy, J.A.Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, G. Zhou, J. Hui, and B. Krogh, “Vigilnet:an
integrated sensor network system for energy-efficient surveillance,” in
In submission to ACM Transaction on Sensor Networks, 2004.

[9] L. Gu and J. Stankovic, “Radio-triggered wake-up capability for sensor
networks,” in IEEE RTAS, 2004.

[10] D. Goldberg, A.Andreou, P.Julian, P.Pouliquen, L.Riddle, and
R.Rosasco, “A wake-up detector for an acoustic surveillance sensor
network: Algorithm and vlsi implementation,” in IEEE IPSN, 2004.

[11] O. Dousse, P. Mannersalo, and P. Thiran, “Latency of wireless sensor
networks with uncoordinated power saving mechanisms,” in MobiHoc,
2004.

[12] C.F.Chiasserini and M.Garetto, “Modeling the performance of wireless
sensor networks,” in IEEE Infocom, 2004.

[13] “Tinydb project http://telegraph.cs.berkeley.edu/tinydb/.”

