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Abstract—Chronic kidney disease (CKD) is a major public
health concern with rising prevalence. In this study we consider
24 predictive parameters and create a machine learning classifier
to detect CKD. We evaluate our approach on a dataset of 400
individuals, where 250 of them have CKD. Using our approach we
achieve a detection accuracy of 0.993 according to the F1-measure
with 0.1084 root mean square error. This is a 56% reduction of
mean square error compared to the state of the art (i.e., the
CKD-EPI equation: a glomerular filtration rate estimator). We
also perform feature selection to determine the most relevant
attributes for detecting CKD and rank them according to their
predictability. We identify new predictive attributes which have
not been used by any previous GFR estimator equations. Finally,
we perform a cost-accuracy tradeoff analysis to identify a new
CKD detection approach with high accuracy and low cost.

Index Terms—Chronic kidney disease, machine learning, fea-
ture selection.

I. INTRODUCTION

Chronic kidney disease is a worldwide public health prob-
lem with an increasing incidence, prevalence, and high cost.
Approximately 2.5-11.2% of the adult population across Eu-
rope, Asia, North America, and Australia are reported to have
chronic kidney disease [1], where in the USA alone it has
affected more than 27 million individuals [2]. According to
The National Kidney Foundation about 59% of all American
are at risk of developing kidney disease in their lifetime [3].

The increase of CKD is partially explained by the increasing
prevalence of diabetes mellitus and hypertension which are the
leading risk factors for CKD. CKD promotes hypertension and
dyslipidemia, which, in turn, can contribute to the progression
of renal failure.

Recent studies suggest that some of these adverse outcomes
can be prevented or delayed by early detection and treatment
[4]. Awareness of CKD among patients is gradually increasing,
but still low. According to the 2003-2004 National Health and
Nutrition Examination Survey, less than 5 percent of patients
with stage 1 or 2 CKD and less than 10 percent with stage 3
reported having been diagnosed with CKD; only 45 percent
of patients with stage 4 were aware of their condition [5].

Since there is a relatively small number of practicing
nephrologists, nephrologists cannot exclusively manage all
patients with CKD. The burden of CKD management thus
falls largely on primary care providers (PCPs). A recent study

[6] has shown that awareness of CKD by all types of PCPs
is unacceptably low and knowledge of CKD management
is particularly poor among family practitioners, especially
among those with more than 10 years in clinical practice and
who spend more than 50% of their time practicing clinical
medicine. Hence an accurate, convenient, and automated CKD
detection method is important for clinical practice.

In this paper we develop an automated machine leaning
solution to detect CKD and explore 24 parameters related to
kidney disease. The dataset used for evaluation consists of
400 individuals and suffers from noisy and missing data. We
need a robust classifier that can deal with these issues. Hence,
we evaluate solutions with three different classifiers: k-nearest
neighbour, random forest and neural nets.

The main contributions of this paper are:

• Our solution, using a random forest classifier and 24 at-
tributes, achieves a detection accuracy of 0.993 according
to the F1-measure with a 0.1084 root mean square error.
We show that this accuracy is significantly higher than
current accepted GFR estimator equations; about 60%
and 56% RMSE reduction compared to the Modification
of Diet in Renal Disease (MDRD) equation [7] and
the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation [8].

• Using a wrapper method from machine learning we
identify a set of 12 attributes (down from 24 attributes)
which detect CKD with high accuracy. Also, using the
LASSO regularization method we rank the attributes
according to their predictive capability in detecting CKD
and further reduce the predictive attributes set to 10.
By adding red blood cells, pus cell clumps, hemoglobin,
diabetes mellitus, coronary artery disease, pedal edema,
anemia as attributes with currently used serum creatinine
and albumin, we achieve a 57% reduction in root mean
square error compared to the state of the art solutions.

• We identify a highly accurate and cost effective CKD
detection classifier considering only 5 attributes: spe-
cific gravity, albumin, diabetes mellitus, hypertension and
hemoglobin as features. Using this classifier we have
achieved 0.98 F1-measure and 0.11 RMSE with a total
of $45.05 cost for patient tests.



II. RELATED WORK

Chronic kidney disease (CKD) is defined by the presence
of structural or functional abnormalities of the kidney with or
without an accompanying reduction in glomerular filtration
rate (GFR). Persons with CKD may have one or more of
the following: pathologic abnormalities, markers of kidney
damage (i.e., imaging abnormalities and abnormalities in
serum or urine, including proteinuria and abnormal urinary
sediment), or GFR less than 60 mL per minute per 1.73m2

for at least three months. Glomerular filtration rate (GFR)
is one of the commonly used indexes for early detection of
CKD. A five-stage classification system for the disorder has
been established by the US National Kidney Foundation’s
Kidney Disease Outcomes Quality Initiative and adopted inter-
nationally by the Kidney Disease: Improving Global Outcomes
(KDIGO) initiative to guide identification of cases and facil-
itate management [9], [10], [11], where glomerular filtration
rate (GFR) is the estimator for CKD. Estimation of GFR varies
by age, sex, and body size. GFR is approximately 120 to 130
mL per minute per 1.73 m2 in young adults, and decreases
by an average of 1 mL per minute per 1.73 m2 per year after
30 years of age [12]. A GFR less than 60 mL per minute per
1.73 m2 represents a loss of at least one-half of normal kidney
function; below this level, there is an increased prevalence of
CKD complications.

Earlier studies focused on plasma creatinine (Pcr) and cre-
atinine clearance as markers of GFR, but Pcr usually does not
increase until GFR has decreased by 50% or more, and many
patients with normal Pcr levels frequently have lower GFR
[13]. Creatinine clearance is also used to estimate the GFR.
But, it overestimates true GFR [14] since creatinine is filtered
and secreted by the proximal tubules. Generation of creatinine
is determined by muscle mass and diet, whereas tubular
secretion could be decreased by the use of medications such as
trimethoprim and cimetidine (Tagamet). The serum creatinine
level is an insensitive marker of GFR early in the course of
CKD. A 33% decrease in GFR may raise the creatinine level
from 0.8 to only 1.2 mgperdL(70.72 to 106.08molperL). If
the prior creatinine level is not known, this decrease in GFR
may go unrecognized. When estimated GFR is suspected to be
inaccurate, for example, in patients with severe malnutrition
or paraplegia-a 24-hour urine collection should be performed
to evaluate creatinine clearance.

Currently, there are three equations commonly used to
estimate GFR on the basis of creatinine concentration in serum
and demographic features: the Cockcroft-Gault equation [15],
the Modification of Diet in Renal Disease (MDRD) equation,
[7] and the more accurate Chronic Kidney Disease Epidemiol-
ogy Collaboration (CKD-EPI) [8] formula. Equations 1 and 2
show the MDRD and CKD-EPI equations expressed as single
equations where Scr is serum creatinine in mg/dL and α, k
are constant values depending on the gender of the patient.

GFR = 175× (Scr)
−1.154 × (Age)−0.203

× (0.742iffemale)× (1.212ifAfricanAmerican)
(1)

Equation Attributes
Cronic Kidney Disease Age, sex, race,

Epidemiology Collaboration serum creatinine level
Cockcroft-Gault Age, weight,

sex, serum creatinine level
Modification of Age, sex, race
Diet in Renal and serum urea, nitrogen,

Disease albumin, creatinine level
TABLE I

EQUATIONS AND ATTRIBUTES FOR GFR ESTIMATION

GFR = 141×min(Scr/k, 1)
α ×max(Scr/k, 1)−1.209

× 0.993Age × 1.018[iffemale]× 1.159[ifblack]
(2)

Table I shows the parameters used by these equations
to estimate GFR. The Cockcroft-Gault equation uses age,
weight, sex, and serum creatinine level for GFR estimation.
MDRD and CKD-EPI equations do not require weight or
height variables because the results are reported normalized
to accepted average adult surface area.

The Cockcroft-Gault equation systematically overestimates
GFR. The MDRD is reasonably accurate in patients with CKD,
but it may misidentify persons with normal kidney function as
having CKD. The MDRD can also be affected by fluctuations
in creatinine production and fluid balance; it gives falsely
elevated estimated GFRs in malnourished and overhydrated
patients and falsely decreased GFRs due to increased serum
creatinine levels in patients taking trimethoprim and cimetidine
[16]. Also, its accuracy varies among ethnic groups [17].
Estimation accuracy of GFR using the MDRD equation study
has achieved up to a root mean square error of 0.274 [8]. On
the other hand, the CKD-EPI formula can estimate GFR with
root mean square error of 0.250 [8], hence shows better per-
formance particularly at high rates, and could overcome some
of these limitations. Both the MDRD and CKD-EPI equations
are based on serum creatinine. Despite modest reduction in
bias with the CKD-EPI equation, estimates remain imprecise,
with some people showing large differences between the
measured and estimated GFR. Like all other creatinine-based
estimation equations, they suffer from physiologic limitations
of creatinine as a filtration marker [18].

Research presented in [19] has considered 5 attributes:
blood pressure, serum creatinine, packed cell volume, hyper-
tension, and anemia to calculate the L-factor and clustered
CKD and non-CKD patients based on the L-factor value. Ac-
cording to their evaluation CKD cannot be detected based on
their L-factor classifiers. Other works [20], [21] have evaluated
machine learning algorithms such as back propagation neural
networks, radial basis functions, random forests and SVMs
and achieved up to 85.3% accuracy on identifying CKD. Also,
[22] performs feature selection techniques such as information
gain, gain ratio, or attribute evaluation and fusion based feature
selection to identify relevant features, but their evaluation has
not presented the relevant selected features. Moreover, this
work presented classification accuracy of naive bayes, random
forest, J48 classifier and logistic regression classifier without



Attribute Data type
Age age in years

Blood Pressure mm/Hg
Specific Gravity Nominal

Albumin nominal(1-5)
Sugar nominal (1-5)

Red Blood Cells normal,abnormal
Pus Cell normal,abnormal

Pus Cell clumps present,notpresent
Bacteria present,notpresent

Blood Glucose Random mgs/dl
Blood Urea mgs/dl

Serum Creatinine mgs/dl
Sodium mEq/L

Potassium mEq/L
Hemoglobin gms

Packed Cell Volume nominal
White Blood Cell Count cells/cumm
Red Blood Cell Count millions/cmm

Hypertension yes, no
Diabetes Mellitus yes, no

Coronary Artery Disease yes, no
Appetite good,poor

Pedal Edema yes,no
Anemia yes,no

TABLE II
ATTRIBUTE INFORMATION

mentioning which attributes were used as features for these
classifiers.

Hence, the goals of our study are to comprehensively
explore parameters which are related to kidney disease and to
introduce a cost effective machine learning approach to detect
early CKD instead of the GFR estimation equations.

III. DATA SET AND ATTRIBUTES

Our research uses a publicly available dataset [23]: Early
stage of Chronic Kidney Disease. This dataset includes 400
patients with 24 attributes collected from each of these pa-
tients; 250 of them have CKD. The ages of these patients vary
from 2 to 90 with mean of 51.48 and a standard daviation of
17.17. Most of the 24 collected attributes shown in Table II
have not been used by previous state of art approaches for
CKD detection, e.g., most approaches use only age, serum
creatinine, albumin, and urea.

These attributes along with their relation with kidney dis-
eases are described below:
• Serum creatinine is a waste product that comes from

muscle activity. When kidneys are working well they
remove creatinine from the blood. As kidney function
slows, blood levels of creatinine rise. According to the
studies [7] [8], serum creatinine, age, serum urea, and
specific gravity are the most used predictive parameters
for CKD detection.

• Studies have shown graded relations between increased
albuminuria (the presence of albumin in the urine) and
kidney outcomes in diverse study populations [24]. Also,
data from the general U.S. population indicate that al-
buminuria is the most typical marker of CKD in young
adults [25].

• High blood pressure can damage blood vessels in the
kidneys, reducing their ability to work properly. When
the force of blood flow is high, blood vessels stretch so
blood flows more easily. Eventually, this stretching scars
and weakens blood vessels throughout the body, including
those in the kidneys. If the kidneys’ blood vessels are
damaged, they may stop removing wastes and extra fluid
from the body. Extra fluid in the blood vessels may then
raise blood pressure even more, creating a dangerous
cycle [26].

• CKD is an independent risk factor for coronary artery
disease (CAD). It is the leading cause of morbidity and
mortality in patients with CKD [27].

• Study [28] shows that 70% of those with an elevated
serum creatinine had hypertension. Hence, high blood
pressure, CAD and hypertension are good predictive
attributes for CKD.

• Anemia is a condition in which the body has fewer red
blood cells than normal. Red blood cells carry oxygen
to tissues and organs throughout the body and enable
them to use energy from food. With anemia red blood
cells carry less oxygen to tissues and organs, particularly
the heart and brain. Anemia commonly occurs in people
with CKD having permanent or partial loss of kidney
function. Anemia might begin to develop in the early
stages of CKD, when someone has 20 to 50 percent of
normal kidney function [29]. Anemia is a predictive factor
for early renal disease. Hemoglobin, red blood cell count,
packed cell volume in the patients blood are used to detect
early stage of anemia.

• According to National Kidney Foundation [30] about a
third of people with diabetes may get CKD. The filtering
units of the kidney are filled with tiny blood vessels.
If a person has diabetes, high sugar levels in the blood
can cause these vessels to become narrow and clogged.
Without enough blood, the kidneys become damaged
and albumin passes through these filters and ends up in
the urine where it should not be. Diabetes causes nerve
damage which make patient unable to detect if his or her
bladder is full. The pressure from a full bladder can cause
damage to the kidney. Blood glucose is used to screen for
diabetes. Hence, diabetes, blood glucose and albumin in
urine are good indicators for CKD.

• Though sodium and potassium are essential for the hu-
man body, a person with CKD cannot eliminate excess
sodium, potassium and fluid from his body. Eventually
sodium, potassium, and fluid buildup in tissues and blood-
stream. High sodium increases blood pressure [31]. High
potassium in the blood is called hyperkalemia, which may
occur in people with advanced CKD. Some of the effects
of high potassium are nausea, weakness, numbness and
slow pulse. Both sodium and potassium are predictor
attributes for CKD.

• Edema is the medical term for swelling. Edema results
whenever small blood vessels become ‘leaky’ and release
fluid into nearby tissues. The extra fluid accumulates,



causing the tissue to swell. A kidney condition called
nephrotic syndrome can result in severe pedal edema.

• In the developing world, infectious diseases are also im-
portant causes of kidney failure [32] , including infections
due to bacteria (tuberculosis in India and the Middle East,
streptococcal infection in Africa), viruses (HIV and hep-
atitis B and C in Africa), and parasites (schistosomiasis
in Africa and Latin America, leishmaniasis in Africa and
Asia, and malaria in Africa). Pus cells in urine indicates
infection in the kidney.

IV. CLASSIFICATION TASK

The task of classifying data is to decide class membership
Y of an unknown data item X based on a data set D =
(x1, y1), ...(xn, yn) of data items xi with known class mem-
berships yi. In binary class classification problems the class
labels y are either 0 or 1. The xi are usually m-dimensional
vectors, the components of which are called covariates and
independent variables or input variables. The relationship
between x and y is described by a probability distribution
P (x, y); where the data set D contains independent samples
from P . From statistical decision theory, it is well known that
the optimal class membership decision is to choose the class
label y that maximizes the posterior distribution P (y|x). In
this research we explore the following 3 different classification
algorithms to predict optimal class membership (CKD or not
CKD). In this section, as background, we briefly describe and
compare these classifiers and discuss their applicability for our
dataset.

A. K-Nearest Neighbours

The k-nearest neighbour algorithm [33] uses the data di-
rectly for classification without building a model first. As
such, no details of model construction need to be considered,
and the only adjustable parameter in the model is k, the
number of nearest neighbours to include in the estimate of
class membership: the value of P (y|x) is calculated simply as
the ratio of members of class y among the k-nearest neighbors
of x. By varying k, the model can be made more or less
flexible. The advantage of the k-nearest neighbours classifier
is, it is robust to noisy training data and effective with large
training datasets. The major drawback lies in the calculation of
the case neighborhood: for this, one needs to define a metric
that measures the distance between data items. In most cases
it is done by trial and error.

B. Random Forest

The random forest [34] is an ensemble approach that can
also be thought of as a form of nearest neighbour predictor.
Ensembles [35] are a divide-and-conquer approach used to
improve performance. The main principle behind ensemble
methods is that a group of ‘weak learners’ can come together
to form a ‘strong learner’. The random forest starts with a
standard machine learning technique called a ‘decision tree’
which, in ensemble terms, corresponds to our weak learner.
The decision tree algorithm repeatedly splits the data set

according to a criterion that maximizes the separation of the
data, resulting in a tree-like structure. In this algorithm an input
is entered at the top and as it traverses down the tree the data
gets bucketed into smaller and smaller sets. The random forest
takes this notion to the next level by combining trees with the
notion of an ensemble. Thus, in ensemble terms, the trees are
weak learners and the random forest is a strong learner. The
advantages of a random forest classifier are that its’ runtimes
are quite fast, and that it is able to deal with unbalanced and
missing data. Weaknesses of this algorithm are that when used
for regression it cannot predict beyond the range in the training
data, and it may over-fit data sets that are particularly noisy.

C. Neural Network

A neural network [36] is a powerful computational data
model that is able to capture and represent complex in-
put/output relationships. The motivation for the development
of neural network technology stemmed from the desire to
develop an artificial system that could perform ‘intelligent’
tasks similar to those performed by the human brain. This
model differs from the two algorithms above in the sense that
it provides a functional form f and parameter vector α to
express P (y|x) as P (y|x) = f(x, α). The parameters α are
determined based on the data set D, usually by maximum-
likelihood estimation. The true power and advantage of neural
networks lie in their ability to represent both linear and non-
linear relationships and in their ability to learn these relation-
ships directly from the data being modeled. Traditional linear
models are simply inadequate when it comes to modeling
data that contains non-linear characteristics. The most common
neural network model is the multilayer perceptron (MLP). This
type of neural network is known as a supervised network
because it requires a desired output in order to learn. The
goal of this type of network is to create a model that correctly
maps the input to the output using historical data so that the
model can then be used to produce the output when the desired
output is unknown.

D. Applicability for the Dataset

Our considered dataset [23] with 24 attributes suffers from
missing and noisy value. Hence, we need a robust and fast
non-linear classifier which can handle both noisy and missing
attribute values. All three classifiers in this study create a
non-linear decision boundary which is necessary for complex
applications like this one. The k-nearest neighbours classifier
has the advantage of performing with a small training set and
it can adopt new training data at runtime. It has a disadvantage
that it is difficult to find an optimal value of k that produces
the best performance for a training set with a finite number
of training samples. Specially value of k may change with
inclusion of new training data. On the other hand, the training
of a neural network typically requires a large amount of data
in the training set. Both random forest and neural network
classifiers have faster speeds of classification compared to k-
nearest neighbours. Both k-nearest neighbours and random
forest have good adaptivity with missing and noisy data,



though they may over-fit particularly on noisy datasets. Feature
reduction techniques are used to reduce over-fitting for these
classifiers. Although, neural networks are fairly resistant to
noise, they are not adaptive to missing data. In these cases,
missing values are replaced with pseudo values or instances
with missing data are ignored in evaluation.

Since, we want to have a robust and fast classifier which
can also handle noisy and missing data, we have evaluated all
three of these classifiers on our dataset with both feature reduc-
tion (section V-A) and missing value handling approaches to
determine the best classification algorithm for this application.

V. ATTRIBUTE SELECTION TASK

Attribute selection is the automatic selection of attributes
in data that are most relevant to the predictive modeling
problem. It is different from dimensionality reduction. Both
methods seek to reduce the number of attributes in the dataset,
but a dimensionality reduction method does so by creating
new combinations of attributes, where as attribute selection
methods include and exclude attributes present in the data
without changing them. Attribute selection methods are used
to identify and remove unneeded, irrelevant and redundant
attributes from data that do not contribute to the accuracy of
a predictive model or may in fact decrease the accuracy of
the model. There are two general classes of attribute selection
approaches: the wrapper and embedded approaches. We have
evaluated one algorithm from each of these classes on our
dataset to determine the most relevant attributes for CKD
detection and remove the irrelevant features for cost reduction
of the detection approach.

A. Wrapper Approach

This paper performs the wrapper approach to identify the
best subset of the 24 attributes, which can be used as features
to detect CKD with high accuracy. In the wrapper approach
the attribute subset selection is done using the induction
algorithm as a black box (i.e. no knowledge of the algorithm
is needed, just the interface). The feature subset selection
algorithm conducts a search for a good subset using the
induction algorithm itself as part of the evaluation function.
The accuracy of the induced classifiers is estimated using
accuracy estimation techniques. Hence, it is a state space
search problem. The wrapper approach conducts a search in
the space of possible parameters. In this research we have used
‘best first search’ as search method due to its robustness. The
idea is to select the most promising set we have generated so
far that has not already been expanded. Best first search usually
terminates upon reaching the goal. Since it is an optimization
problem, the search can be stopped at any point and the best
solution found so far can be returned. In practice a stale search
method is used, where search is terminated if no improved set
is found in the last k expansions. An improved node is defined
as a node with an accuracy estimation at least ε higher than
the best one found so far. In the following experiments, k is
five and epsilon is 0.1%.

B. Embedded Approach

This paper performs the embedded approach to identify and
rank the attributes with higher predictability of CKD detection
and eliminate unneeded, irrelevant and redundant attributes
from consideration. Embedded approaches learn which fea-
tures best contribute to the accuracy of the detection model
during model creation. The most common type of embedded
feature selection approaches are regularization methods. Regu-
larization refers to the process of adding additional constraints
to a problem that bias the model toward lower complexity. In
this research we have used LASSO (Least Absolute Shrinkage
and Selection Operator) which is a modified form of least
squares regression that penalizes model complexity via a
regularization parameter. It achieves better prediction accuracy
by shrinkage with ridge regression, but at the same time, it
gives a sparse solution, which means that some coefficients are
exactly 0. Hence, LASSO is thought to achieve the shrinkage
and variable selection simultaneously. LASSO minimizes the
residual sum of squares subject to the sum of the absolute
value of the coefficients being less than a constant. LASSO
not only helps to improve the prediction accuracy when
dealing with multicolinearity data, but also carries several nice
properties such as interpretability and numerical stability. It is
a simple non linear dimensionality reduction technique which
has efficient solution via coordinate descent with order O(np)
where, n is the number of instances in the dataset and p is
number of attributes. Also, one of the major advantages of
using LASSO for attribute selection is that correlations in
predictor attributes are not problematic for LASSO [37].

LASSO regularization cannot handle categorical attributes,
which are present in our dataset. Hence, we have converted
each categorical attribute to k− 1 dummy attributes, where k
is the number of categories present in that variable. We have
performed group LASSO regularization [38], where all the
dummy attributes created from one categorical attribute are
grouped for attribute reduction.

VI. EVALUATION

The evaluation is divided into four sets. In subsection VI-A
we present the results of the evaluation on the dataset [23]
for detecting CKD using all 24 features with three different
classifiers: k-nearest neighbours, random forest, and neural
networks. Since, previous state of the art works [8] have
used the root mean square error (RMSE) to estimate detection
accuracy, this paper considers accuracy, F1-measure, and the
root mean square error (RMSE) as performance metrics to
compare the classifiers. All the evaluations were done using
10-fold cross validation with 20% of the data as test data.

Since it is not always practical to use 24 features, using the
wrapper approach we find the best subset of these 24 attributes
that provide excellent accuracy and report these results in
subsection VI-B. In section VI-C we rank and identify the
attributes with predictability of CKD using LASSO regular-
ization. Finally, in section VI-D we perform a cost analysis to
identify a attribute set to detect CKD with high accuracy at a
low cost.



Fig. 1. Detection performance of classifiers with and without replacing
missing values.

A. Predicting CKD with 24 Attributes

To run the classifiers on the dataset we must first address
missing values. We have evaluated two approaches to handle
these missing values: replacing all missing values for nominal
and numeric attributes in our dataset with the modes and
means or medians from the training data. For the k-nearest
neighbours approach, we have used the IBk algorithm con-
sidering 2 nearest neighbours. IBk′s distance computation
method assigns maximum distance when there is a missing
value encountered in one of the instances. In our random forest
algorithm we have used C4.5 [39] trees. In C4.5 the missing
values are not replaced in the dataset. Instead, an impurity
function computed takes into account the missing values by
penalizing the impurity score with the ratio of missing values.
On test set the evaluation in a node which has a test with
missing values, the prediction is built for each child node and
aggregated later (by weighting). The neural network algorithm
ignores the missing values during classifier training. Figure 1
(A), (B) shows detection performance of classifiers with and
without replacing missing values. In this evaluation we have
considered all 24 features as input for the classifier.

Figure 1 shows that, detection accuracy for the k-nearest
neighbours approach (IBk algorithm) decreases significantly
during training the classifier with missing attribute values.
In the training phase, IBk penalizes instances with missing
attribute values, which biases the classifier. Both the neural
network and random forest algorithm perform better when
trained with missing attribute values. The random forest algo-
rithms’ (C4.5 tree) impurity function computation adopts the
missing values better compared to neural networks ignoring
the missing value strategy. Hence, we achieved a highest

Attributes of the
best predictive subset

Specific Gravity
Albumin

Red Blood Cells
Pus Cell clumps
Serum Creatinine

Sodium
Hemoglobin

Diabetes Mellitus
Coronary Artery Disease

Appetite
Pedal Edema

Anemia
TABLE III

ATTRIBUTES OF THE BEST PREDICTIVE SUBSET USING WRAPPER
APPROACH

detection accuracy of 0.993 according to the F1-measure with
a 0.1084 root mean square error (RMSE) using the random
forest classifier with 100 C4.5 trees trained with missing
attribute values. This is a 56% RMSE reduction compared
to the state of the art solution (the CKD-EPI formula).

B. Best Subset of Attributes

We use the wrapper approach to identify the best subset
of the 24 attributes, that can detect CKD with high accuracy.
In this approach we have used random forest as induction
algorithm and the ‘best first search’ as the search method and
‘stale search’ after 5 node expansions. Table III shows the best
predictive subset of the 24 attributes selected by the wrapper
approach.

Using a random forest classifier with these 12 predictive
attributes as input we achieve a .99 F1-measure, 99% preci-
sion and 0.107 root mean square error (RMSE). Using this
approach we have achieved 57% and 61% RMSE reduction
compared to the CKD-EPI and MDRD formulas for GFR
estimation, respectively. Given the high accuracy achieved,
these results imply that only these 12 features are necessary.

Compared to previous approaches shown in Table I, instead
of sex, age and weight, we see that specific gravity works
as a good predictive attribute. All of the previous equations
have considered ‘serum creatinine’ in their equations, addi-
tionally MDRD has considered urea, nitrogen and albumin.
Our analysis has also identified serum creatinine and albumin
as predictive attributes for CKD. Additionally red blood cells,
hemoglobin, diabetes, coronary artery diseases, sodium, pus
cell clumps and pedal edema are identified as good predictive
attributes for CKD which were not considered in any of the
previous approaches.

C. Assessing Impact of Each Feature

LASSO penalizes regression models with L1 norms that
have sparse solutions: many of their estimated coefficients
are zero. Higher coefficients values indicate higher predictive
capability for a feature and if the value is zero, we eliminate
that attribute. Figure 3 shows the importance of attributes.
Using the random forest classier with these 10 predictive
attributes as input we achieve a 0.99 F1-measure and a 0.111



Attribute
Pearson’s
correlation

Hemoglobin 0.729
Packed Cell Volume 0.69

Red Blood Cell Count 0.591
Hypertension 0.5904

Diabetes Mellitus 0.5591
Albumin 0.477

Blood Glucose Random 0.4014
Appetite 0.3933
Pus Cell 0.3752

Pedal Edema 0.372
Specific Gravity 0.372

Blood Urea 0.35
Sodium 0.343
Anemia 0.3254
Sugar 0.3

Serum Creatinine 0.2941
Blood Pressure 0.2906

Red Blood Cells 0.2826
Pus Cell clumps 0.2653

Coronary Artery Disease 0.2361
Age 0.2254

White Blood Cell Count 0.2053
Bacteria 0.1869

Potassium 0.0769
TABLE IV

PEARSON’S CORRELATION BETWEEN ATTRIBUTES AND THE CLASS

root mean square error (RMSE) which is 56% and 60% RMSE
reduction compared to the CKD-EPI and MDRD formulas for
GFR estimation, respectively.

One limitation of L1-based sparse models is that faced
with a group of very correlated features they do not select
all of those features; which limits their ability to achieve
optimal accuracy. Table IV shows the Pearson’s correlation
between the attributes and CKD, where higher value means
high correlation. LASSO regularization selects most of the
highly correlated attributes except blood glucose random, pus
cell, blood urea and pedal Edema. Blood glucose random and
diabetes mellitus have Pearson’s correlation of 0.526; pus cell
has 0.542 and 0.548 Pearson’s correlation with hemoglobin
and red blood cell count respectively; blood urea has 0.62 and
0.58 Pearson’s correlation with hemoglobin and red blood cell
count respectively; pedal edema has 0.455, 0.454, 0.43 and
0.42 Pearson’s correlation with red blood cell count, packed
cell volume, albumin and hemoglobin. Since, blood glucose
random, pus cell, blood urea and pedal Edema have high corre-
lation with attributes which have higher correlation with CKD
compare to them, LASSO regularization has not included these
attributes to predict CKD. Compared to previous approaches
shown in Table I, diabetes mellitus, hypertension, hemoglobin,
red blood cell count are good predictive attributes for CKD
which were not considered in any of the previous approaches.

D. Cost analysis

This section presents a cost-accuracy trade-off analysis
considering the 24 attributes used detect CKD. Table V shows
the test names and approximate lowest test costs [40]–[49]
for the 24 attributes. Figure 2 list these attributes on the x-
axis in order of predictive power. The y-axis displays the

Attribute
Name of
the test

Lowest Cost
(USD)

Blood Pressure
Blood

Pressure Test Free
Specific Gravity Free

Albumin
Serum Albumin

Test 25

Sugar
Fasting Blood

Sugar Test 20

Red Blood Cells
RBC Count,

CBC Test 39
Pus Cell Urinalysis 30

Pus Cell clumps Urinalysis 30
Bacteria Blood Culture 50

Blood Glucose Random
Random Blood
Glucose Test 20

Blood Urea
Blood Urea

Nitrogen Test 11.85

Serum Creatinine
Serum Creatinine

Test 14

Sodium
Serum Sodium Test

or Sodium Urine Test 3.2

Potassium
Potassium

lab test 49
Hemoglobin HGB1 1.65

Packed Cell Volume Hematocrit Test 1.62

White Blood Cell Count
Complete Blood

Count Test 30

Red Blood Cell Count
Complete Blood

Count Test 30
Hypertension Free

Diabetes Mellitus Diabetes Assessment 18.4
Coronary Artery Disease Electrocardiogram 50

Appetite Free
Pedal Edema Free

Anemia Anemia Assessment 27.64
TABLE V

TESTS AND TEST COSTS OF ALL ATTRIBUTES

RMSE as we incrementally add attributes. The curve is labeled
with the cumulative cost in dollars of using these attributes.
For example, according to figure 2 using all 24 attributes
to detect CKD will cost $451.36 and the accuracy is 0.107
RMSE; using the top 20 predictive attributes (i.e., all the
tests up to and including blood urea) has a cost of $294.72.
Importantly, considering only the top 5 predictive attributes:
specific gravity, albumin, diabetes mellitus, hypertension and
hemoglobin as features for our classifier, we achieve .98 F1-
measure and 0.11 RMSE (essentially the same accuracy with
all the attributes), but with only a $45.05 cost. This is a very
important result because patients need only be subjected to a
few tests at very low cost.

VII. CONCLUSION

We have introduced a novel approach to detect CKD using
machine learning techniques. We have performed an evaluation
on a dataset of 400 patients, 250 among them have early stage
of CKD. This dataset contains some noisy and missing values.
Hence, we need a classification algorithm with the capability
of handling missing and noisy values. We evaluated three
classifiers: k-nearest neighbours, random forest, and neural
networks to find a good solution for this application. To reduce
over-fitting as well as to identify the most important predictive
attributes for CKD, we have performed feature reduction using



Fig. 2. Change of RMSE and cost of CKD detection with increase of predictive attributes used for classifier

Fig. 3. Importance of attributes using lasso.

two methods: the wrapper method and LASSO regularization.
Through our evaluation we find that, the random forest algo-
rithm with a reduced attribute set of 12 members can detect
CKD with highest accuracy of .998 using the F1-measure and
with a 0.107 root mean square error, which is a 57% RMSE
reduction compared to the state of the art solutions. Through
our evaluation we find hemoglobin which is an indicator of
anemia, diabetes mellitus, specific gravity, hypertension etc.
along with previously explored serum creatinine, and albumin
are highly predictive attributes for CKD. Also, through cost
analysis considering all 24 attributes we identify a cost effec-
tive highly accurate detection classifier using only 5 attributes:
specific gravity, albumin, diabetes mellitus, hypertension and
hemoglobin. Importantly, results of this study introduce new
factors to be used by classifiers for more accurately detecting
CKD than the state of art using formulas.
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