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Abstract—Medications often impose temporal constraints on
everyday patient activity. Violations of such medical temporal
constraints (MTCs) lead to a lack of treatment adherence,
in addition to poor health outcomes and increased healthcare
expenses. These MTCs are found in drug usage guidelines
(DUGs) in both patient education materials and clinical texts.
Computationally representing MTCs in DUGs will advance
patient-centric healthcare applications by helping to define safe
patient activity patterns. We define a novel taxonomy of MTCs
found in DUGs and develop a novel context-free grammar (CFG)
to computationally represent MTCs from unstructured DUGs.
Additionally, we release three new datasets with a combined total
of N = 836 DUGs labeled with normalized MTCs. We develop
an in-context learning (ICL) solution for automatically extracting
and normalizing MTCs found in DUGs, achieving an average F1
score of 0.62 across all datasets. Finally, we rigorously investigate
ICL model performance against a baseline model, across datasets
and MTC types, and through in-depth error analysis.

Index Terms—health, natural language processing, information
extraction, medication information extraction, temporal informa-
tion extraction, health nlp application

I. INTRODUCTION

According to the CDC, over 48% of the US population uses
at least one prescription medicine, and 24% take three or more
[3]. However, only four out of every five new prescriptions
are filled, and half of those are administered inappropriately
[18]. Non-adherence includes incorrectly taking medication
concerning a prescription’s suggested time, dosage, frequency,
or duration. Non-adherence also includes the mistiming of
medication intake with respect to other activities when med-
ication efficacy is temporally dependent on those activities,
e.g. eating, exercising, or sleeping [12], [13], [15], [18]. We
refer to any temporal constraints associated with medications
as medical temporal constraints (MTCs). Non-adherence to
MTCs is linked to higher hospital admission rates, increased
morbidity, higher healthcare expenses, poor health outcomes,
and even death [5], [9], [10], [12], [15]. The effect of violating

MTCs can range from minor discomfort to emergency room
visits [21].

MTCs are found in drug usage guidelines (DUGs), or
medication guidelines. These textual guidelines appear in both
formal patient education materials (e.g., drug labels or public
health websites [1], [2]), as well as in clinical texts (e.g.,
prescriptions and after-visit summaries recorded in electronic
health records (EHRs) [4]). The variety of MTC sources calls
for a generalizable approach to extract and normalize MTCs
from such heterogeneous sources.

Although MTCs are critical for medical safety and treatment
adherence, to our knowledge, there is no existing solution to
formulate and model patient-centric MTCs. This requires (i)
creating a flexible and robust computational representation of
MTCs, (ii) a dataset of natural language descriptions of MTCs
annotated with their computational representations, and (iii) a
generalizable solution for mapping descriptions of MTCs to
their corresponding computational representations. Addressing
these challenges can enhance intelligent systems that improve
medication adherence and patient safety [15], [24], [26], [27]
or text-based solutions to recommend safe, personalized health
information [22], [23].

We formulate and model MTCs for treatment adherence
and health safety, in addition to benchmarking the task of
extracting MTCs from DUGs. Specifically, (i) we develop a
novel taxonomy of potential MTCs and a novel context-free
grammar (CFG) based model to represent MTCs from unstruc-
tured DUGs computationally. Next, (ii) the taxonomy and CFG
are used to label MTCs in three datasets of free-format textual
DUGs from heterogeneous sources. Finally, (iii) we define and
benchmark the MTC extraction and normalization task using
state-of-the-art in-context learning (ICL) strategies, achieving
an average F1 score of 0.62 across all datasets. Recent work
has demonstrated the generalizability of ICL for extracting
health information in the few-shot setting [6], [11], [30]. ICL
utilizes a large language model (LLM) to perform a task by



conditioning on a few input-output examples. We also compare
ICL to a rule-based baseline model, explore several prompting
techniques for ICL, and conduct a thorough error analysis to
determine the scope of ICL for this new, safety-critical medical
NLP task.

II. MEDICAL TEMPORAL CONSTRAINTS (MTCS)

Modeling MTCs in DUGs is challenging for the following
reasons. MTCs vary in terms of temporal precision; some
MTCs are definitive, while some are imprecise. Many MTCs
constrain a single activity, the medication intake activity (e.g.,
taking a medication at n hour intervals). However, MTCs
can also form dependencies between multiple activities (e.g.,
taking a medication m hours before eating). Based on our
review of DUGs from heterogeneous sources [1], [2], [4], [25],
we formulate the following novel taxonomy of MTCs.

A. Taxonomy of MTCs

MTCs can be either definitive or imprecise. Definitive
MTCs can be further categorized into three classes: de-
pendency, frequency, and interval. Imprecise MTCs can be
categorized into four classes: dependency, time dependency,
consistency, and time-of-day.

1) Definitive dependency constraints capture temporal de-
pendencies between taking medication and other regular
activities. For example, from the DUG for the drug
Protonix: “If you are taking the granules, take your dose
30 minutes before a meal.”

2) Frequency constraints capture the temporal constraints
regarding the suggested frequency of a medication ad-
ministration, i.e., how many times a medication should
be taken in a specific interval. For example, from the
DUG for the drug Wellbutrin: “Take this medication by
mouth, with or without food, usually three times daily.”

3) Interval constraints capture the temporal constraints
regarding the suggested interval between consecutive
medication administrations. For example, again from the
DUG for the drug Wellbutrin: “It is important to take
your doses at least 6 hours apart or as directed by your
doctor to decrease your risk of having a seizure.”

4) Imprecise dependency constraints capture inexact tem-
poral dependencies between taking medication and other
regular activities. For example, from the DUG for the
drug Singulair: “Do not take a dose before exercise if
you are already taking this medication daily for asthma
or allergies. Doing so may increase the risk of side
effects.”

5) Time dependency constraints capture inexact temporal
dependencies between taking medication and a specific
time of day. For example, from the DUG for the medi-
cation Prednisone: “If you are prescribed only one dose
per day, take it in the morning before 9 AM.”

6) Consistency constraints capture the requirement to take
medication consistently at a given time interval. For
example, from the DUG for the medication Zocor:
“Remember to take it at the same time each day.”

7) Time-of-day constraints capture the requirement to take
a medication at a certain time of a day. Take, for
example, the DUG for the medication Prednisone: “If
you are prescribed only one dose per day, take it in the
morning.”

A DUG may contain multiple MTCs for a single medica-
tion. For instance, consider the following statement from the
DUG of the drug Starlix: “Take this medication by mouth
1-30 minutes before each main meal, usually 3 times
daily, or as directed by your doctor.” Here the text has
both a definitive dependency constraint (MTC type 1) and a
frequency constraint (MTC type 2).

B. A Context-free Grammar for Modeling MTCs

A formal grammar is “context-free” if its production rules
can be applied regardless of the context of a nonterminal.
The taxonomy of the MTCs mentioned above motivates us
to develop a context-free grammar (CFG) to model these
definitive and imprecise MTCs. A CFG is a suitable solution
to model MTCs as the production rule can be applied to any
relevant dataset regardless of the context of the nonterminal,
i.e., different types of MTCs. Our novel grammar developed
and integrated in this work contains the following set of
terminals.

• natural number, n: 1 | 2 | 3...
• activity, act: sleeping | eating | taking medication | ...
• prepositions of temporal dependency, dp: before | after
• prepositions of interval dependency, ip: within | for | apart
• prepositions of occurrence, p: at | in
• unit of time slots, u: hour | minute | day | week
• time stamp, t: the same time | 9 am | 10.30 pm | ...
• time of the day, d: morning | evening | noon

Using these terminals, MTCs can be expressed using the
following nonterminals.

1) Definitive dependency constraint: V1: n.u.dp.act (e.g.,
30 minutes before eating)

2) Frequency constraint: V2: n times in a u (e.g., three
times a day)

3) Interval constraint: V3: n.u.ip (e.g., 6 hours apart)
4) Imprecise dependency constraint: V4: dp.act (e.g., be-

fore meal)
5) Imprecise time dependency constraint: V5: dp.t (e.g.,

before 9 AM)
6) Consistency constraint: V6: p.t each u (e.g., at the same

time each day or at 9 am each day)
7) Time-of-day constraint: V7: p.d (e.g., in morning)

The proposed CFG can also be used to model compound
MTCs. For instance, taking a medication 2 hours before eating
(V1), 3 times a day (V2), and 4 hours apart (V3) can be
expressed as: Vi: V1.V2.V3. This grammar can also be extended
to model negated MTCs. For instance, “do not take this
medication before exercise” can be modeled as, ¬ V4, where
V4: dp.act.



C. The MTC Extraction Task

We define the task of MTC extraction as an information
extraction text-to-structure task, in which a DUG is taken as
input and a list of MTCs conforming to the proposed CFG
is given as output. Using a CFG for MTC outputs blends
readability and parsability. Consider this statement from the
DUG for the drug Pantoprazole, which is used to treat stomach
ulcers: “If you are also taking Sucralfate, take Pantoprazole
at least 30 minutes before Sucralfate.” The MTC contained
in this statement is a definitive dependency constraint (MTC
type 1), which under the CFG is labeled “30 minute before
taking Sucralfate.” This label is easy to understand while also
conforming to the proposed CFG, i.e. n = 30 u = minute
dp = before act = taking Sucralfate. Because it conforms to
the CFG, the label enables potential downstream systems to
model the semantics of the MTC.

MTCs contained in free-format DUGs may not always
conform to the CFG exactly. Consider the statements “take
this medication at least 1 hour before any meals” and “be
sure to wait at least 1 hour after taking this medication before
eating.” Both statements contain the definitive dependency
constraint “1 hour before eating” (MTC type 1) however nei-
ther statement directly conforms to the CFG. This highlights
that grammar-based decoding alone cannot accomplish the task
of extracting and normalizing MTCs from these materials.
Hence, we examine other methods for extracting MTCs.

D. In-Context Learning for MTC Extraction

Guided by recent breakthroughs in clinical information
extraction using LLMs [6], [11], [30], we explore using ICL
to benchmark the MTC extraction task. ICL is a recently-
introduced paradigm in few-shot sequence-to-sequence text
modeling in which an LLM is asked to perform a task after
being given a prompt and several examples [6]. We choose to
use GPT-3 [8] in our MTC extraction experiments because
it is effective in extracting both structured scientific infor-
mation [11] and medication information, such as dosage and
frequency [6], using ICL strategies. Additionally, the number
of DUGs across our three datasets is relatively small (< 1000).
Lehman et al. show that for size-constrained datasets, ICL with
GPT-3 outperforms task-specific models on various clinical
tasks [17]. We design two prompts for extracting MTCs from
free-format textual DUG data using ICL, and a third model
which utilizes customized/specialized prompts for each MTC
type.

Simple prompt: This is a simple prompt for extracting all
listed MTCs to serve as an ICL baseline.

Guided prompt: The second is a much longer prompt,
featuring elements of the labeling guide given to human an-
notators for annotating the FDA dataset. This prompt includes
the rules of the CFG, including lists of both the terminals and
the nonterminals. It also includes a list of potential activities.
This is referred to as the guided prompt.

Specialized prompt: We also develop prompts for extract-
ing each of the MTC types separately. Each of the prompts
contains a basic description of the MTC, as well as a heuristic

for formatting the MTC correctly. This approach is referred to
as the specialized model.

Figure 1. Overview of the In-Context Learning Text-to-Structure System

In addition to each prompt, 20 DUGs are strategically
selected from the datasets and passed as few-shot examples, as
in [6]. Specifically, these 20 DUGs are selected from all three
datasets such that we have a representative sample distribution
for each MTC type, i.e., simple and difficult normalization
examples, empty and non-empty examples, and examples of
single and multiple extracted MTCs. The same 20 examples
are used when testing ICL for MTC extraction across all
datasets. These examples are removed from the datasets when
testing to ensure no data leakage occurs. LLM output is passed
through a simple post-processing module which attempts to
align the outputs with the CFG. An overview of the ICL
system is shown in Fig. 1.

III. DATA

MTCs in DUGs can originate from doctors’ suggestions,
patient education materials, or guidelines for prescription
medications. We utilize three datasets in this work: the FDA
dataset, the Medscape dataset, and the EHR dataset [1], [2],
[4]. The first two datasets are derived from patient education
materials for prescription medications, while the latter is
sourced from prescriptions in EHRs. We use a variety of data
sources to demonstrate that our MTC formalization generalizes
across DUG domains. The three datasets contain a total of
N = 836 DUGs with labeled MTCs. The labeled datasets
are made publicly available to enable future research in MTC
extraction1. Examples from each dataset are presented, along
with their labeled MTCs, in Table I.

A. FDA Dataset

The openFDA database contains drug product labels for
both prescription and over-the-counter drugs submitted to the
U.S. Food and Drug Administration (FDA), with text fields
such as indications for use, adverse reactions, etc [2]. In this
work we utilize the dosage and administration text field, which
contains “information about the drug product’s dosage and
administration recommendations, including starting dose, dose

1https://zenodo.org/record/7712934#.ZAnurj3MJD9



Table I
EXAMPLES OF MEDICAL TEMPORAL CONSTRAINTS (MTCS) IN DRUG USAGE GUIDELINES FROM THE FDA, MEDSCAPE, AND EHR DATASETS

Dataset Drug Usage Guideline Medical Temporal Constraints (Type)

FDA The recommended starting dosage of donepezil hydrochloride tablets is
5 mg administered once per day in the evening, just prior to retiring. in evening (7), 1 times day (2), before sleep (4)

FDA 1-10 drops under the tongue, 3 times a day or as directed by a health
professional. Consult a physician for use in children under 12 years of age. 3 times day (2)

Medscape To help you remember, use it at the same time each day. same time each day (6)
Medscape Do not lie down for at least 10 minutes after you have taken this drug. not 10 minute before sleep (1)

EHR I will initiate the sodium bicarbonate 650 mg three tablets t.i.d. 3 times day (2)
EHR She was finally put on Effexor 25 mg two tablets h.s. before sleep (4)

range, titration regimens, and any other clinically significant
information that affects dosing recommendations” [2]. To
obtain the FDA dataset, a random sample of 600 drug labels
was taken from this database. For each of the 600 drug prod-
ucts sampled, the dosage and administration instructions were
annotated for MTCs by two annotators. Using Krippendorff’s
alpha coefficient for nominal data, a common measure of
inter-annotator agreement for multi-label annotations [16], this
annotation resulted in an agreement of 0.74, indicating good
agreement. Of the 600 dosage and administration instructions,
371 contained MTCs as defined by our CFG. We refer to these
drug product dosage and administration instructions as DUGs,
and we refer to these 371 labeled DUGs as the FDA dataset.

B. Medscape Dataset

The Medscape dataset is sourced from 35 real prescriptions
of patients with multiple chronic diseases [4], which combined
include 83 unique medications. These medications treat several
chronic diseases, including but not limited to diabetes mellitus
(type I and type II), bipolar affective disorder, depression,
hypertension, hypotension, chronic pain, morbid obesity, os-
teoarthritis, and obstructive sleep apnea. For each of these
medications, one or more corresponding DUGs are extracted
from a DUG corpus, Medscape [1], [25]. From there, the MTC
annotation in the DUG was a three-step process. First, three
annotators annotated each sentence in each DUG for whether
that sentence contained an MTC or other medical constraints,
with 99.4% agreement among all annotators as described in
[25]. Second, using a rule base, common temporal phrases
were automatically assigned to these DUGs. Finally, a single
annotator normalized these automatically extracted phrases to
conform to the CFG. It was feasible to assign these MTCs
semi-automatically because of recurring lexical patterns of
MTCs in the DUG corpus. This process resulted in 121 DUGs,
each annotated with one or more normalized MTCs.

C. EHR Dataset

The EHR dataset was extracted automatically from MTSam-
ples, a site containing a large collection of publicly-available,
de-identified medical reports submitted by clinics in various
medical fields, such as Gastroenterology and Pediatrics [4].
These reports are submitted by many different clinicians,
ensuring heterogeneity among extracted DUGs in the EHR
dataset. The automatic extraction process involved searching
each EHR sample for abbreviated forms of common MTCs.

Healthcare professionals use medical abbreviations when writ-
ing prescriptions and medical records, some of which directly
correspond to MTCs. For example, in this DUG taken from
the EHR dataset “the patient has a history of lupus, currently
on Plaquenil 200-mg b.i.d.”, the abbreviation “b.i.d.” (Latin
“bis in die”) means twice a day. This abbreviation maps to
the frequency constraint MTC “two times a day” (MTC type
2). While there are many abbreviations in EHRs, we select 8
that map directly to MTCs. These are listed below with their
matching MTCs.

1) b.i.d.: 2 times day (MTC type 2)
2) q.d.: 1 times day (MTC type 2)
3) q.h.: 1 times hour (MTC type 2)
4) q.i.d.: 4 times day (MTC type 2)
5) t.i.d.: 3 times day (MTC type 2)
6) h.s.: before sleep (MTC type 4)
7) p.c.: after eating (MTC type 4)
8) a.c.: before eating (MTC type 4)

We automatically search through all the EHRs on MTSamples
and extract single-sentence statements of appropriate length
which include these abbreviations. Using this method, we
extract 344 medical report statements and automatically assign
MTC labels.

D. Data Characterization

There are 836 labeled DUGs across the three datasets; 371
from the FDA dataset, 121 from the Medscape dataset, and
344 from the EHR dataset. Combined these 836 DUGs contain
1,051 MTCs.

The use of three datasets from different sources supports the
generalizability of our novel MTC taxonomy. This taxonomy
can be used to identify MTCs on both the patient and provider
sides since the FDA and Medscape datasets are patient-facing
while the EHR dataset is clinician-facing. Statements in the
FDA and Medscape datasets typically use the 2nd person
perspective when discussing the patient, e.g. “to help you
remember, use it at the same time each day.” Statements about
patients in the EHR dataset, however, are expressed in 3rd
person, e.g. “she was finally put on Effexor 25 mg two tablets
h.s.”

While each dataset contains several MTC types, the dis-
tribution of MTC types differs across datasets, as seen in
Fig. 2. For instance, MTC type 6 is the most common MTC
in the Medscape dataset, while it does not appear in the



FDA dataset. Additionally, the EHR dataset contains almost
exclusively frequency MTCs (type 2); 96.51% of MTCs in
this dataset are type 2, while the rest are type 4 MTCs.
Such idiosyncrasies occur as DUGs from different sources
vary with underlying medical conditions and corresponding
medications/drugs. This suggests that the CFG is appropriate
for multiple types of DUGs. However, MTC-type distributions
may vary across DUG domains. While we explore MTCs in
drug product dosage and administration labels, prescription
drug labels, and de-identified medical records, MTCs may
occur in other DUGs such as those found on health education
websites, doctor recommendations, and elsewhere.

Figure 2. Distribution of MTC types across the EHR, FDA, and Medscape
datasets. Along the y-axis, there are the 7 different MTC types, and the height
of each bar represents the percentage of the given dataset made up of that
MTC type.

The ability to computationally represent MTCs is vital
for downstream tasks. Hence, MTC labels provided by the
annotators conform to the proposed CFG and can be repre-
sented symbolically. As an example of a downstream task
that utilizes MTC extraction, consider the task of discovering
whether a chronic disease patient has violated an MTC of one
of their prescription medications. Based on activity patterns
recognized by a human activity recognition system, a system
could use MTCs extracted from the patient’s prescription
medication label to determine whether the patient has violated
an MTC, which may lead to poor health outcomes.

IV. EXPERIMENTAL SETUP

A. Classification Metrics

As described in Section II-C, the MTC extraction task is
an information extraction text-to-structure task. We choose
this task structure to ensure generalizability since there are
many possible MTCs according to the proposed CFG and
many possible sources of MTCs. For simplicity, however, we
evaluate the MTC extraction task as a multiclass multilabel

classification task, with each unique extracted MTC treated
as a label for a given DUG statement. We consider the
union of the MTCs present in the FDA, Medscape, and EHR
datasets as the label space, and include an “undefined” label
for predicted MTCs that either do not conform to the CFG
or do not match any MTCs in the label space. Doing so
allows us to use standard multilabel classification evaluation
metrics to measure model performance in the MTC extraction
task. Unless stated otherwise, we henceforth report the macro
average of precision, recall, and F1 [20].

B. Validity

In addition to standard classification evaluation metrics, we
experiment using a simple heuristic for determining whether
an extracted MTC is valid. We define a valid MTC as
one which conforms to our proposed CFG, making it able
to be represented computationally and thus more useful in
downstream tasks. While all invalid extracted MTCs will be
incorrect classifications, some incorrectly extracted MTCs will
still be valid, indicating that the LLM is learning to format
output according to the CFG. Hence, we report the percentage
of extracted MTCs that are valid.

C. Label Specifics

In the specialized model, since not every DUG contains
an MTC of each type, some will have an empty label. We
simply insert the label “NONE” for these guidelines to allow
the LLM to give a non-empty response. Since there is a large
prevalence of empty labels, when investigating the specialized
model specifically, we report both the positive class metrics
(i.e. macro average metrics across guidelines when excluding
guidelines with empty labels) and the macro average metrics
across all DUGs.

We note that MTC Type 5 only occurs once across the three
datasets, as seen in Fig. 2, and is consequently omitted from
experimental results. Although MTC type 5 is discarded from
further evaluation, our proposed solutions can be extended to
MTC type 5 when there is relevant data.

V. EXPERIMENTAL RESULTS

We thoroughly examine the scope of ICL for MTC extrac-
tion. First, we compare the simple, guided, and specialized
ICL prompting strategies for the MTC extraction task. Next
we compare ICL performance against a rule-based MTC type
classification model. We then further evaluate the specialized
ICL model responses, first by dataset and then by MTC
type. Finally, we explore the effectiveness of the ICL model
responses to extract valid structures from text in the MTC
extraction task.

A. Prompting Strategies Comparison

Macro average results on the MTC extraction task for the
simple and guided prompts, along with the specialized model,
are displayed in Table II. While the simple and guided prompts
produce poor results overall, the specialized model is able
to competently extract MTCs with an F1 score of 0.59. We



hypothesize that extracting MTCs of each type separately, as in
the specialized model, allows the LLM to contextualize each
MTC type more quickly with fewer examples.

Table II
MTC EXTRACTION RESULTS. WE REPORT MACRO AVERAGE

CLASSIFICATION METRICS RECALL, PRECISION, AND F1 SCORE.

Model Recall Precision F1
Simple 0.12 0.14 0.12
Guided 0.15 0.21 0.17
Specialized 0.57 0.70 0.59

B. Rule-based Baseline Comparison

To demonstrate the generalizability of the specialized ICL
model, we develop a simple rule-based MTC type classifica-
tion model using common phrases in the Medscape dataset
as guidance. As extracting specific MTCs using a simple set
of search rules would be difficult, we instead attempt only to
identify which MTC types (1-7) occur in a given DUG. We use
only the Medscape dataset when developing the rule base, as it
has the greatest variety of MTCs, then use the same rule base
to identify MTC types across all three datasets. We see in Table
III that even when only attempting to identify MTC types in
a DUG, a much simpler task than MTC extraction, a rule
base developed for the Medscape dataset fails to generalize
to either the FDA dataset or the EHR dataset. In comparison,
the specialized model generalizes across all 3 datasets in the
MTC extraction task. This demonstrates the generalizability
of using ICL for the MTC extraction task.

Table III
COMPARISON OF RULE-BASED MODEL AND specialized MODEL BY
DATASET. THE RULE-BASED MODEL PREDICTS WHICH MTC TYPES

OCCUR IN EACH DRUG USAGE GUIDELINE, WHEREAS THE specialized
MODEL IS USED FOR THE MTC EXTRACTION TASK. WE REPORT MACRO

AVERAGE F1 ACROSS EACH DATASET FOR BOTH TASKS.

Model
Medscape
Dataset F1

FDA
Dataset F1

EHR
Dataset F1

Rule-Based Model 0.63 0.43 0.01
Specialized 0.59 0.61 0.65

C. Specialized ICL Results By Dataset

In Table IV we see the results of the specialized model
across each of the three datasets2. The specialized model per-
forms the best across the EHR dataset, with a macro average
F1 score of 0.65. The EHR dataset presents possibly the easiest
of the three MTC extraction tasks because all labeled MTCs
are mapped one-to-one with medical abbreviations, and there
are only two MTC types present in the dataset.

2As explained in Section III-D, only one imprecise time-of-day dependency
MTC (type 5) occurs across the EHR, FDA, and Medscape datasets. Hence,
we do not attempt to extract this MTC type.

Table IV
Specialized MODEL RESULTS BY DATASET. FOR EXAMPLE, THE

Specialized MODEL IS ABLE TO EXTRACT INTERVAL MTCS IN THE
MEDSCAPE AND FDA DATASETS WITH MACRO F1 SCORES OF 0.50 AND
0.70, RESPECTIVELY, WHEREAS NO INTERVAL MTCS ARE LABELED IN

THE EHR DATASET.

MTC Type
Medscape
Dataset F1

FDA
Dataset F1

EHR
Dataset F1

Definitive
Dependency (1) 0.65 0.80 –

Frequency (2) 0.63 0.57 0.79
Interval (3) 0.50 0.70 –
Imprecise

Dependency (4) 0.45 0.38 0.38

Consistency (6) 0.63 – –
Time-of-Day (7) 0.53 0.50 –

Overall 0.59 0.61 0.65

D. Specialized ICL Results By MTC Type

In Table V we see the results of the specialized model by
MTC type2. While the model is able to accurately extract
MTCs of most types, it performs best on interval constraints
(MTC type 3) with a positive class macro average F1 score
of 0.72. The most difficult MTC type for the model to extract
is the consistency MTC (type 6), with a positive class macro
average F1 score of 0.33. We see that the specialized model
frequently hallucinates consistency MTCs and discusses other
potential sources of error in Section VI.

Table V
Specialized MODEL RESULTS BY MTC TYPE. WE REPORT MACRO

AVERAGE METRICS FOR BOTH THE POSITIVE CLASS AND OVERALL. WE
REPORT BOTH THE POSITIVE CLASS F1 SCORE (I.E. MACRO AVERAGE
METRICS ACROSS GUIDELINES WHEN EXCLUDING GUIDELINES WITH

EMPTY LABELS) SINCE THERE IS A LARGE PREVALENCE OF EMPTY
LABELS.

MTC
Type

Positive
Recall

Positive
Precision

Positive
F1 Recall Precision F1

1 0.67 0.65 0.65 0.67 0.70 0.67
2 0.64 0.57 0.60 0.65 0.66 0.64
3 0.71 0.74 0.72 0.64 0.81 0.68
4 0.46 0.46 0.42 0.36 0.49 0.38
6 0.33 0.32 0.33 0.61 0.65 0.63
7 0.49 0.50 0.49 0.37 0.66 0.43

E. Validity

Finally, we explore the ability of the ICL models to produce
parsable outputs. We see in Table VI that the specialized model
is far more competent at producing parsable output which
conforms to the CFG with minimal post-processing, with a
0.99 proportion of valid outputs compared to 0.29 and 0.37
in the simple and guided models, respectively.

VI. ERROR ANALYSIS

To investigate model strengths and weaknesses, we sample
60 errors made by the specialized model, 10 of each MTC
type. A single human annotator then categorizes each model
error, providing one possible reason for each failed MTC



Table VI
VALIDITY OF EXTRACTED MTCS BY MODEL TYPE

Model Validity
Simple 0.29
Guided 0.37
Specialized 0.99

extraction. The three most frequent error categories in this
sample are hallucinations, semantic overlap, and nonvalidity.
The sample distribution of these error categorizations across
MTC types is provided in Table VII. Examples of each of
these common error types are given in Table VIII. We now
describe each of the three common error types.

Table VII
Specialized MODEL ERROR COUNTS BY MTC TYPE. FOR EXAMPLE, OF

THE 10 LABELED CONSISTENCY MTC (TYPE 6) EXTRACTION ERRORS, 7
ARE HALLUCINATIONS. THE OTHER 3 HAVE UNDETERMINED ERROR

SOURCES.

MTC Type Hallucination
Semantic
Overlap Nonvalidity Other

Definitive
Dependency (1) 3 2 1 4

Frequency (2) 0 0 4 6
Interval (3) 5 1 3 1
Imprecise

Dependency (4) 4 4 0 2

Consistency (6) 7 0 0 3
Time-of-Day (7) 7 2 1 0

The most common error type is hallucination, an error
common in LLMs such as GPT-3 [14]. This occurs when
the model outputs an MTC or a list of MTCs that are valid,
but not found in the text sample. 43% of all labeled model
errors are due to hallucinations. A common cause of halluci-
nation occurs in activity selection. Definitive and imprecise
dependency constraints (types 1 and 4, respectively) occur
when the medication intake activity is temporally dependent
on another patient’s activity. Human annotators were instructed
to normalize activities when labeling MTCs. For example,
phrases like “before bedtime” and “before sleeping” were
both normalized to “before sleep.” The specialized model
occasionally either hallucinates an activity, fails to normalize
an activity or both. Hallucinations were especially common
in consistency (type 6) and time-of-day (type 7) MTCs,
accounting for 70% of these errors in the categorized sample.
An example of a consistency (type 6) MTC hallucination
is given in the second row of Table VIII. Hallucinations
seem to be a primary reason for poor model performance
when extracting consistency MTCs (type 6) specifically, as
the positive class macro average F1 was quite low (0.33) but
overall performance was much higher (0.63 macro average
F1). Reducing hallucinations in LLMs is an active area of
research that could lead to better results on the MTC extraction
task [28].

Another common error is nonvalidity, in which LLM model

output is unable to be parsed according to the CFG, after
minimal post-processing. Take the first DUG in Table VIII,
from the Medscape dataset. While the specialized model
output “2 times day OR 3 times day” is not semantically
incorrect, the inclusion of the “OR” makes this output nonvalid
according to the CFG. Nonvalidity was the primary error type
of 15% of the categorized model errors.

The final common error type among the labeled sample
errors is semantic overlap. Under the proposed CFG, certain
MTCs can be accurately represented by different MTC types.
Consider, for example, the last DUG in Table VIII, from
the FDA dataset. While the direction to take the medication
“at morning and at noon” could potentially imply the “12
hours apart” interval constraint, as extracted by the specialized
model, this was instead labeled as the two semantically-
related time-of-day MTCs “in the morning” and “at noon”.
Semantically-overlapping errors primarily occurred in 15% of
the categorized sample errors.

VII. RELATED WORKS

A. Medical Information Extraction Tasks and Context-Free
Grammars

While our work is the first to formalize the MTC extraction
task, the broader field of medical information extraction is a
vibrant area of research. Most related to the MTC extraction
task, much prior work has been done in modeling and extract-
ing temporal and medication information in medical and health
texts. A common task is extracting temporal relations between
clinical events, such as problems and treatments, in discharge
summaries [7], [29]. Another is identifying medication infor-
mation such as drug names, strengths, and routes in electronic
medical records [32], [33]. MTC extraction is related yet novel
that is more patient-centric in that it focuses on extracting
temporal constraints placed on health-related activities found
in DUGs.

Our work additionally focuses on modeling extracted MTCs
using context-free grammar. The modeling of temporal phe-
nomena in medical text using CFGs has been leveraged by Hao
et al. [19], who introduce a model to leverage CFG to extract
temporal expressions in clinical texts. In a similar work, Viani
et al. utilize a CFG to parse mental health records and extract
the duration of untreated psychosis [31]. Our work is the first
to use a CFG to define and extract MTCs in DUGs, and we
are the first to experiment with ICL for this task.

B. In-Context Learning for Medical Information Extraction

Agrawal, Hegselmann, Lang, Kim, and Sontag have shown
that LLMs are able to extract clinical information from the
medical text in both the few-shot and zero-shot settings [6].
Specifically, they show that given inputs of clinical discharge
summaries or medical abstracts, along with guided prompts,
GPT-3 [8] is able to competently perform many medical infor-
mation extraction tasks such as clinical sense disambiguation,
biomedical evidence extraction, and medication extraction. We
experiment with similar strategies to benchmark the MTC ex-
traction and normalization task. Related works that utilize ICL



Table VIII
EXAMPLES OF IN-CONTEXT LEARNING ERRORS. THE SECOND ERROR, FOR EXAMPLE, IS A HALLUCINATION OF THE CONSISTENCY MTC “SAME TIME

EACH DAY” (TYPE 6) GIVEN BY THE specialized MODEL WHEN ATTEMPTING TO EXTRACT CONSISTENCY MTCS.

Drug Usage Guideline MTCs (Type Expected) Model Output Error Type
Take this medication by mouth as directed
by your doctor, usually 2 or 3 times daily. 3 times day (2) 2 times day OR 3 times day Nonvalidity

One tablet daily or as directed by a physician. NONE (6) same time each day Hallucination
Your doctor may direct you to take it in the

morning and at noon. NONE (3) 12 hour apart Semantic Overlap

for structured scientific information extraction include [11],
which extracts entities and entity relationships from scientific
documents into JSON format, and [30], which formulates the
task of extracting social determinants of health from clinical
narratives.

VIII. CONCLUSION

In this work, we have developed a novel taxonomy of
potential MTCs and a novel CFG based model to compu-
tationally represent MTCs found in unstructured DUGs. We
present and release three new datasets containing N = 836
DUGs with labeled normalized MTCs. Finally, guided by
recent work in ICL for medical information extraction, we
develop and explore an ICL solution for the MTC extraction
task, achieving an average F1 score of 0.62 across all datasets.
Patient-in-the-loop systems that utilize MTC extraction will
have computational representations of patient constraints to
guide patient activity, promote medication adherence, and lead
to better health outcomes. The taxonomy and CFG of MTCs,
dataset of extracted MTCs, and ICL exploration presented in
this work will advance patient-centric healthcare applications
for treatment adherence.
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