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ABSTRACT
Wearable devices like smartwatches and smart wristbands
have gained substantial popularity in recent years. While
enabling a variety of computing applications, such devices
are not always convenient to interact with because of the
limited size of the touchscreen. A wide variety of approaches
have been considered to improve user experiences, ranging
from using customized RF sensors, to multiple sensors in
smartwatches. These solutions have limitations related to
the characteristics of their technology. We propose ViWatch
(Vibration Watch), which harnesses vibrations with an IMU
sensor on commodity smartwatches to enable fine-grained
finger interactions. We detect subtle finger vibrations from
noise and design a novel adversarial neural network to miti-
gate human body variations. ViWatch is able to recognize
finger typing and writing induced vibrations with accuracy,
even when users are in different states of motion or in noisy
environments.

CCS CONCEPTS
• Human-centered computing→ Text input.
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1 INTRODUCTION
Smart wearable devices, such as smartwatches, smart wrist-
bands, and smart glasses, refer to what can be directly worn
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Figure 1: Harness vibrations for finger tapping and
writing systems with commodity smartwatches.

on the body or integrated into clothes and accessories, of-
ten interacting with the cloud through software support.
With the miniaturization of computer chips, the improve-
ment of circuit adaptability, and the popularization of mobile
networks, wearable devices have become pervasive in the
industry and are promising computing platforms. With the
significant increase in the availability of smartwatches in
2012, more and more wearable devices were launched, grad-
ually forming an independent industry, and the speed of
development is amazing. Tractica predicts that the shipment
of wearable devices will rise from 118 million in 2016 to 430
million in 2022.

Although wearables have huge potential value and appli-
cation prospects, wearable devices are emerging as new prod-
ucts, and many new problems have arisen that affect their
large-scale use. Among them, poor user experience caused
by weak interactive functions has become one of the main
problems. For example, products such as smart wristbands
do not have touch screens, and small screens such as those
on smartwatches result in poor performance of traditional
touch sensing methods. This makes human-computer inter-
action applications extremely dependent on mobile phones
and computers. Therefore, an effective interaction scheme
will play a huge role in promoting the popularization of
smart wearable devices.

The core idea of the current human-computer interaction
approaches for wearable devices is to use various techni-
cal schemes to realize effective information input through
intelligent perception. In addition to traditional speech recog-
nition and image processing technologies, in recent years, re-
searchers have also used a series of technologies such as radio
frequency signals, acoustic signals, and inertial measurement
units (IMUs) to achieve human-computer interaction. These
solutions all have limitations related to the characteristics of
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their technology. For example, the performance of a scheme
based on radio frequency signals (RF) is greatly affected by
changes in the environment, and RF signals require a large
signal receiving and sending end units; Acoustic sensing re-
quires multiple pairs of microphones and speakers, and the
performance is strongly affected by the placement positions
and ambient noise. These problems make the application
scenarios significantly restricted.

We propose ViWatch (Vibration Watch), which harnesses
vibrations for fine-grained finger interactions using a sin-
gle Inertial Measurement Unit (IMU) sensor on commodity
smartwatches. On the one hand, we looked at the body areas
surrounding the smartwatch as a potential input surface,
specifically the skin on the back of the hand. Tapping on
different regions of the back of the hand generates unique
vibrations, and these regions (e.g., hand knuckles) can serve
as natural "buttons" for tapping interactions, as is shown
in Figure 1. On the other hand, we observe that the micro
finger movement causes vibrations: When users’ index fin-
gers write different numbers/letters, the finger will produce
different vibrations, which propagate through the hand to
the smartwatch. With a IMU in a commodity smartwatch,
we can recognize the user’s finger writing in the air through
vibrations, as is shown in Figure 1. The tapping and writing
input can be sent to many smart devices, such as smart-
glasses, smart TVs, and ubiquitous smart devices, through
wireless connections.

However, developing these fine-grained on-body interface
systems has several challenges. First, it is difficult to detect
subtle, fine-grained, and distinctive vibrations from noise,
such as human activities. Second, users write in the air con-
tinuously; therefore, segmenting a single number or a letter
for labeling and training is complicated. Third, different users
have different hand shapes, writing and tapping in various
fashions. To cope with these challenges, we first detect vi-
brations with severe signal processing methods [4–6]. Then,
inspired by the Recurrent Neural Aligner [2, 7], ViWatch
classifies continuous finger writing numbers and letters. Fur-
thermore, to make ViWatch work across different users, we
build a neural network with adequate regularization to mit-
igate overfitting on different training users [8]. Last, we
design a refinement and calibration scheme to improve the
performance during users’ daily usage with transfer learning
and adversarial learning.
We built the finger writing and tapping systems as stan-

dalone end-to-end systems using commercial smartwatches.
Our implementation achieves a real-time finger input with-
out noticeable latency. We also evaluated the real-time ver-
sion of ViWatch in real-world scenarios under various dis-
turbances, such as smartwatch types, wearing positions of
wristbands, tapping fingers, tapping strengths, writing fash-
ions, arm orientations, the user states, temporal stability,
and different environments. The accuracy shows that Vi-
Watch is usable under various disturbances (above 90% of

finger writing and above 95% of finger tapping). User expe-
rience studies show that ViWatch is accurate, robust, and
user-friendly under different representative applications. We
have posted two demo videos on YouTube: Finger writing
(https://youtu.be/aAEPv8KJ1Jk) and finger tapping (https:
//youtu.be/N5-ggvy2qfI).

Notably, existing IMU-based hand tracking systems can
only track coarse-grained handwriting since they require
the users to move their hand in a large motion so that the
smartwatch on the wrist could have enough movement for
distance calculation. In order to detect fine-grained finger
movement, existing systems required on-finger sensors, such
as customized rings and gloves. It is notable that commod-
ity devices are easily manufactured in large volumes and
have become affordable. Thus, a commodity smartwatch
to recognize fine-grained finger writing is more practical
and easily-accessed than customized devices. Some exist-
ing work on hand gesture classification, which leverages
an IMU in smartwatches for detecting input, only works
for static coarse-grained hand gestures, but not for contin-
uous fine-grained finger movements. ViWatch requires no
cumbersome instrumentation of the hands or fingers, and
works with a single IMU sensor in commodity wrist-worn
devices. Furthermore, ViWatch achieves continuous micro
finger movements. Additionally, our system works across
different users in different states of motion or in noisy envi-
ronments.

To summarize, our main contribution is: By detecting fin-
ger vibrations and modeling continuous vibrations through
large user studies, we build fine-grained finger vibration in-
terfaces using a commodity IMU sensor, thus providing a
new usable interaction capability for commodity wearable
devices with tiny/no touchscreens.

2 VIWATCH
2.1 Finger Activity Detection
Capturing finger activity induced vibrations on the hand is
challenging. First, an IMU sensor is designed to detect large
hand motions rather than weak vibrations. Also, the finger
activity induced vibration captured by an IMU sensor is eas-
ily affected by ordinary human activities, which corrupts the
vibration feature from finger activities. Furthermore, unlike
active vibrations from modulated signals, finger movement
vibrations are passive and unmodulated, and comprised of a
variety of frequencies which make the feature extraction and
patternmatchingmuchmore challenging. To cope with these
challenges, we first sum up vibration energy from six IMU
axes and use an energy-based double threshold to segment
the vibration signals, and then use a General Cross Correla-
tion (GCC)-based algorithm [9] to align the segments. Then,
ViWatch utilizes a 10Hz Butterworth filter to remove the
noise caused by body motion and designs activate gestures
to further prevent false positives from daily activities. Addi-
tionally, we extract fusion weighted features from both the
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time and frequency domains, based on proposed position-
sensitive points and position-relevant points [1].

2.2 Finger Activity Recognition
Although there are many machine learning algorithms, we
focus on solving two Challenges: First, finger writing signals
can be continuous; how do we label and train models for
continuous vibration signals. Second, how do we train a
deep learning model aiming for a good generalization ability
across many users with different variations.

To solve these challenges, we designed a novel Gated Re-
current Unit and connectionist temporal classification (GRU-
CTC) network and data augmentation scheme to allow users
to write numbers and letters in both discrete and continuous
fashion [3]. Then, we utilize the Siamese network for finger
tapping classification based on a CNN model with adequate
regularization to mitigate over-fitting on different training
users.

2.3 Refinement and Calibration
Although we have designed deep neural networks for fin-
ger writing and tapping on many users as described in the
previous section, these general models are only as good as
their training data. If the labeled training dataset fails to
cover a considerable diversity in the population, the models
trained on it may encounter generalization difficulties. In
this section, we demonstrate that the end user experience
may be further improved via user-specific adaptation of the
classification model. Inspired by online learning and domain
adaptation, we designed two calibration modes to continu-
ously improve the model by using the data generated from
the new user: Auto calibration mode and User intervention
mode. In the auto calibrationmode, we continuously improve
the model using the new user’s daily usage without them
noticing. However, these daily generated data have no labels.
Thus, we utilized an unsupervised domain adversarial neural
network (DANN) to match those human-based variations
(domains). Unfortunately, it is impractical for DANN to sepa-
rate hundreds of domains with cross-entropy loss because it
was designed for the two-domain adaptation problem. To ad-
dress this problem, we modified the DANN and optimized its
domain discriminator with Siamese contrastive training. In
the user intervention mode, we improve the mode by requir-
ing the new user to provide new labeled data to fine-tune the
model. Also, we implement a spell check to further improve
the input accuracy.

3 DEMONSTRATION
We will play two demo videos to demonstrate our system:
Finger writing (https://youtu.be/aAEPv8KJ1Jk) and finger
tapping (https://youtu.be/N5-ggvy2qfI). In the video of finger
writing, the video shows the screen of smart glasses, display-
ing the results of finger writing. The video first showswriting
numbers. Then it shows letter writing for movie searching

on smart glasses. In the video of finger tapping, we developed
several representative exemplar applications using ViWatch
as the input surface. For example, we switch slides and zoom
in or zoom out the screen. Also, we built remote controls for
smartglasses to switch menus, play videos, and adjust vol-
umes. By tapping on the hand coupled with the watch on the
wrist, we can play games on the TV or solely on the watch.
Furthermore, a simple tap on the skin provides a shortcut
to any app we need. We can also control the smartphone
camera remotely: tap our fingers to take a photo, snap to
take a video, and tap on the hand to switch different cameras.
We can also pick up or end a phone call without interacting
directly with the phone. This system does not require any
initial training process or calibration before the first usage,
and it is robust in real world deployment. Any user can wear
the smartwatch and immediately begin using the system
out of the box. As you can see in the video, ViWatch has
great performance with different arm orientations and works
whether users are standing, seated or lying down. Users can
use it with different tapping strengths. Users can use any
finger to tap on the skin and they don’t need to worry if the
smartwatch changes positions on the wrist. The versatility
of this system even allows users to use it while walking and
with a wet hand. This innovative system also works across
different types of smartwatches. Besides the demo videos,
we will demonstrate the system live and let the workshop
attendances experience the smartwatch systems.
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