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Abstract— Location information is of paramount importance 

for Wireless Sensor Networks (WSN). The accuracy of collected 
data can significantly be affected by an imprecise positioning of 
the event of interest. Despite the importance of location 
information, real system implementations, that do not use 
specialized hardware for localization purposes, have not been 
successful. In this paper, we propose a location estimation scheme 
that uses a probabilistic approach for estimating the location of a 
node in a sensor network. Our localization scheme makes use of 
additional knowledge of topology deployment. We assume a 
sensor network is deployed in a controlled manner, where the 
goal of the deployment is to form a grid topology. We evaluate 
our localization scheme through simulations, showing localization 
errors as low as 3% of radio range. We outperform similar 
localization schemes by obtaining 50% less error in localization, 
when compared to them. We also evaluate our localization 
solution and the DV-Hop scheme in a real system deployment, 
obtaining an average error in location of 79% of radio range, 
outperforming DV-Hop by approximately 40%. We analyze the 
significant differences in performance between simulations and 
the real system deployment and stress the importance of further 
evaluations of real implementations. The result is an effective and 
realistic protocol that works in an actual system, under certain 
assumptions, because it exploits deployment information. 
 
Keywords—wireless sensor network, location estimation, grid 

topology, probability.  

I. INTRODUCTION 
Recent advances in micro-electro-mechanical systems 

(MEMS) have triggered an enormous interest in wireless 
sensor networks (WSN). WSN are formed by large numbers of 
densely deployed nodes enabled with sensing and actuating 
capabilities.  

These nodes have very limited processing and memory 
capabilities, limited energy resources and are mass produced, 
to reduce costs. Several challenging problems exist today in 
wireless sensor networks. Among those is the problem of 
obtaining location information by sensor nodes not equipped 
with specialized hardware (GPS, ultra-sound, acoustic, laser 
radiation). Due to the mostly static nature of a WSN, obtaining 
the location information by each sensor node is believed to be 
a one time or rare event. Adding hardware to each sensor node, 

to assist in the localization, is a costly solution, and, so far, it 
has been ruled out from mote-based system deployments. 

The problem of localization in wireless sensor networks has 
been studied and evaluated mostly in simulators. Due to the 
severe hardware constraints imposed on wireless sensor nodes, 
real system implementations of the proposed simulated 
solutions have not produced encouraging results. Solutions that 
use the most tempting means of evaluating relative distances 
between sensor nodes – RF signal strength, have largely failed 
in practice, due to the unreliable nature and irregular pattern of 
the radio communication. We believe that solutions that are 
more robust to the randomness present in the radio 
communication require better calibration schemes together 
with localization schemes that are less sensitive to, sometimes, 
abnormal radio patterns. In this respect, to the best of our 
knowledge, we propose a first probabilistic algorithm for 
estimating location information in a sensor network. As a first 
step, we apply this solution to the case where the goal of 
topology deployment is a grid. This, in part, is fueled by our 
belief that a realistic deployment of a sensor network is not 
completely random, and an approximation to a uniform or 
even grid distribution can be expected. It is easy to envision 
methodologies for deployment of wireless sensor networks, 
from (un)manned aerial and terestrial vehicles,  where the field 
of deployment is covered by parallel deployment paths and the 
sensor nodes are deployed at periodic intervals. Even for less 
regular deployment patterns, a much denser grid topology 
could be a good approximation. For our first investigation of a 
probabilistic approach to location estimation in sensor 
networks, we focus on sensor nodes deployed in a controlled 
manner, with the goal of forming a grid topology.  

The main contributions of our paper are the following: we 
propose a localization scheme which is completely 
decentralized, it does not require special location or range 
finding infrastructure and the location accuracy is higher than 
comparable solutions. It accomplishes this by exploiting 
knowledge of the topology being targeted in the deployment. 
We also present experimental results of our scheme, obtained 
from a real implementation. Importantly, our scheme works in 
practice. We conclude our contributions by proposing further 



 
 

 

improvements to our solution, in order to tailor our approach 
to the realities imposed by real system deployments. 

The remainder of the paper is organized as follows. The 
second section presents related work, identifies the localization 
schemes that inspired our solution and presents the distinctive 
characteristics that differentiate our work from previous 
research. In the third section, the Probability Grid localization 
algorithm is described. The performance evaluation of the 
proposed scheme is presented in section four. In section five 
we describe a system implementation on MICA2 motes and 
present the experimental results. We conclude in section six 
with a summary of the main contributions of this paper and 
present ideas for future research. 
 

II. RELATED WORK 
Several localization systems and algorithms have been 

proposed in the past. They ranged from solutions dependent on 
hardware support and the presence of an infrastructure set-up, 
to range-free solutions, where signal strength, hop count to 
known landmarks or apriori knowledge about the density of 
nodes in the network were used. In this section we present 
some of the proposed solutions and compare them with our 
scheme, pointing out the distinctive characteristics of our 
solution. 

The Global Positioning System (GPS) [1] is well known 
today, widely used, both in military and civil applications. It 
has been developed over several decades and it relies on a 
constellation of satellites. Ranges to several satellites (by 
measuring the difference in the time of arrival of signals from 
different satellites) are used in a multilateration procedure to 
infer the position of the receiver. This localization scheme 
requires hardware that is both expensive and consumes 
significant power. Its use is limited to outdoor applications. 
Accuracy of a few meters is common in current commercial 
GPS devices, and even higher accuracy can be achieved in 
military applications. A practical and cost effective solution 
for localization in manually deployed sensor networks, 
solution that uses a GPS device attached to the deployer, is 
reported in [2]. The achieved localization error is on the order 
of 1 to 2 meters. 

The RADAR system [3] uses the Received Signal Strength 
Indicator (RSSI) for determining the distance to known 
landmarks. In an offline phase, a centralized repository 
(database) of signal strengths at various positions with respect 
to a set of landmarks, is built. During the online phase, the best 
fit of transmitter’s RSSI to the existing data in the repository, 
is used for obtaining a location. RADAR is capable of 
estimating the location of a mobile user to within a few meters. 

The Cricket [4] location-support system is an example of a 
location scheme that uses a combination of radio and acoustic 
signals to estimate the distance to known anchors. Cricket can 
achieve a location granularity of 1.2 meters x 1.2 meters. 

In comparison to the above mentioned localization scheme, 

our approach does not use ranging, i.e. it is range-free, does 
not require any infrastructure and it is completely 
decentralized. 

Due to the costs and the inherent difficulties that the above 
solutions encounter when they are applied to adhoc wireless 
sensor networks, a different approach has been proposed and 
evaluated in the past. This approach is called range-free and it 
attempts to obtain location information from the proximity to a 
set of known landmarks. Representative for this approach are 
the localization schemes described below. 

Bulusu et al. propose in [5] a localization scheme, called 
Centroid, in which each node localizes itself to the centroid of 
its proximate anchors. The advantages of this solution are its 
simplicity and ease of implementation. However, in this 
scheme, as well as in the next one, some nodes equipped with 
more powerful radios are assumed. In many real deployments 
of wireless sensor networks, it is difficult to envision the 
presence of sufficient and powerful enough anchors, to cover 
the entire network. 

Along the same principles as found in the Centroid 
localization scheme, He et al. propose APIT [6], a scheme in 
which each node decides its position based on the possibility 
of being inside or outside of a triangle formed by any three 
anchors heard by the node. This solution, as Bulusu’s, makes 
use of nodes with more powerful radios, and the difference 
between the RSSI received by the neighbors and itself to 
determine if a neighbor node is further or closer to all three 
anchors in each of the triangles. In a real deployment, 
calibration issues may arise, due to the significance placed on 
the RSSI value read by different sensor nodes. 

A localization scheme that is also range-free and does not 
use more powerful anchors is the Global Coordinate System 
[7], developed at MIT. It uses apriori knowledge of the node 
density in the network, to estimate the average hop distance. 
The location accuracy obtained ranges from 8-10% of radio 
range when a subset of landmarks are hand-placed, and to 20-
25% for the case in which the landmarks are randomly placed. 

The localization solution with which our solution resembles 
the most, is the DV-Hop scheme, by Niculescu et al. at Rutgers 
[8]. The DV-Hop scheme uses the hop count from known 
landmarks to the nodes in the network to infer the distance. 
The protocol contains two phases. In the first phase, each node 
listens for possible beacons from anchors, propagated through 
flooding, and records the shortest hop count to each of the 
anchors. If a smaller hop count to an anchor is observed by a 
node, it is broadcast to its neighbors. The second phase of the 
protocol consists of the propagation of a correction factor, 
which represents an estimation of the true distance of one hop, 
as perceived by each anchor. This phase is initiated by each 
anchor, when beacons from other anchors are received. 

An approach similar to the DV-family of localization 
schemes, but where special hardware is required, is AHLoS, 
proposed by Savides et al. [9]. AHLoS employs Time of 
Arrival (ToA) ranging techniques that require extensive 
hardware and solving relatively large nonlinear systems of 



 
 

 

equations. With its ultrasound hardware capabilities, 
positioning errors as small as 0.2 meters are reported. 

 

III. THE PROBABILITY GRID LOCALIZATION SCHEME  
In this section, we state the location estimation problem, our 

assumptions, and describe the algorithm for computing 
location information. 

We consider a wireless sensor network, consisting of sensor 
nodes and anchor nodes. The anchor nodes represent only a 
small percentage and are either equipped with GPS or can 
acquire their location information through other means. No 
other assumptions, in terms of hardware capabilities, are made 
regarding the anchor nodes. In particular, anchor nodes do not 
have any increased communication range compared to other 
nodes. The remaining sensor nodes are unaware of their 
location. We assume a controlled deployment of the sensor 
nodes in the field, where the nodes are deployed in a grid 
topology, and where the unit length of the grid is known to all 
the nodes in the network. Our localization problem is to 
identify the correct position in the grid for each sensor node. 
Hence, the localization error may arise from an incorrect 
positioning in the grid of a sensor node, due to message loss, 
collisions and incorrect estimation of the Euclidian distance for 
one hop. We leave for future research, the investigation of an 
approximate grid deployment scenario, where we allow small 
errors in the true positioning of nodes around the vertexes of a 
grid. This error can be perceived as a second order 
perturbation to the actual location of a sensor node. Once its 
magnitude is obtained (a very difficult problem to solve), it 
could simply be added to the actual localization error that is 
obtained in the case of an exact grid deployment. 

 

A. The Probability Grid Localization Algorithm 
Let the deployment of the sensor nodes be in a grid topology 

of dimensions M x N. Let S  be the set of all the nodes in the 
sensor network, and let A  be the set of all the anchors in the 
sensor network. Both sets, S and A, are sets of ordered pairs 
(i,j) representing the grid points where the nodes are located. 
For ASk −∈∀ , we define a hop-count vector kH , that 
represents the hop count from each of the anchors in the set A 
to the node ‘k’, as follows: 
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We represent the Probability Grid using an MxN matrix, as 

follows: 
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is the probability of sensor ‘k’ to be at the location (i, j). 

Then, k
ijf , an element of the Probability Grid matrix, can be 

expressed as follows: 
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where 

k
lh

ijp  is the probability of node ‘k’, positioned at (i, j), to 

be k
lh  hops from the l-th anchor. 

One can observe that 
k
lh

ijp is a discrete random variable that 

represents the number of hops for a particular Euclidian 
distance, in our case, between one anchor and the point of 
interest, i.e. (i, j). 

The main features that the distribution function needs to 
exhibit are: to have two parameters (for our case, the distance 
between the node and one anchor – call it λ and the number of 
hops existent between them – call it τ), to be narrow and 
skewed positively for small values of λ and become broader 
and relatively symmetric for larger values of λ.  These 
requirements follow our intuition that for smaller values of the 
parameter λ, the number of hops τ has a limited range of 
possible values with higher and higher values being less and 
less probable (positively skewed). As the distance between the 
anchor and the node (λ) increases the number of possibilities 
for the hop count (τ) increases and the distribution becomes 
bell-shaped, i.e. smaller and larger hop counts are equally 
probable. We have found through simulations that a Poisson 
distribution is a good approximation for our discrete random 
variable. The distribution is given by: 
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where τ =1, 2, ..... is the number of hops and λ is the distance, 
both between the anchor and the position being evaluated. 

After computing the Probability Grid matrix, each node 
chooses the position (i, j) in the grid for which the computed 
probability is maximum. Let imax and jmax be the positions in 



 
 

 

the grid for node ‘k’ for which 
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will compute its location to be: 
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A walk-through our localization algorithm and the 
description of the localization protocol are presented in the 
following section. 

 

B. The Localization Scheme 
Our localization protocol is similar to the DV-Hop scheme, 

but it improves upon it by exploiting deployment information. 
The anchors flood the network with packets containing their 
IDs, their location and a hop count, initially set to zero. This 
flooding is either a global flooding, if the network size is 
small, or controlled flooding, if the size of the network is large 
and through local flooding all nodes are expected to hear from 
at least three anchors. During the flooding period, sensor nodes 
keep track of the shortest distance (number of hops) to each of 
the anchors they heard from. Once an anchor node receives 
beacons from several other anchors, an estimation for the 
Euclidian distance of one hop is calculated. This estimation is 
called a correction factor, and it is propagated in a second 
phase, through a controlled flooding. The correction factor 
computed by an anchor positioned at (xi, yi) is given by the 
following equation [8]: 
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where τj is the number of hops between the current anchor, 
positioned at (xi, yi), and the anchor positioned at (xj, yj). 

The first correction factor received by a sensor node is used 
in the estimation of the location. Subsequent correction factors 
are ignored. In this way, the correction factor is received only 
by the sensor nodes in the vicinity of the anchor. 

Once a correction factor is received by a sensor node, the 
Probability Grid algorithm can be invoked. The information 
that is available at this time to each of the sensor nodes is the 
hop count to a set of anchors, the position of the anchors, the 
unit length of the grid and an estimate of the Euclidian 
distance of one radio hop. In our simulations we also assumed 
that the total size of the network was known. The dependency 
on this, however, can easily be removed. By using the position 
of at least three anchors and the unit length of the grid, a grid 
of an arbitrary size (i.e network size) can be constructed by 
each node. The size of the grid to be constructed can be 
parameterized, based on the density of anchors and nodes in 
the network. For higher densities of anchors in the network, 
smaller grid sizes are sufficient. Each sensor node evaluates 
the probability of being located at each of the grid points. For 

this, we first need to calculate λ as follows:  
 

factor correction
anchor andpoint  gridbetween  distance=λ  

 The computed λ represents the distance, in hop count units, 
between the evaluated grid point and one anchor. Using the 
value of λ, and the actual hop count k

lh , the probability 
k
lh

ijp  

is calculated, as in (3). It represents the probability of node ‘k’ 
to be located at position (i, j) and to be k

lh  hops from the l-th 
anchor.  

Once the individual 
k
lh

ijp factors are computed, the values of 
k

ijf , elements of the Probability Grid matrix, given by (2) can 

be obtained. The next step is to complete the evaluation of all 
the elements of matrix kF  as defined in (1). 

The final location estimation position for node ‘k’, is 
obtained by identifying the maximum among the elements of 
matrix kF . The indices imax and jmax denoting the maximum 
element, are then applied to (4) and the estimated location (xk, 
yk) for node ‘k’ is obtained. 

 

IV. PERFORMANCE EVALUATION 
In this section, we present our experimental results obtained 

through simulations using GloMoSim [10], a discrete-event 
simulator developed at UCLA. In our experiments we used the 
two-ray propagation pathloss model and IEEE 802.11 as the 
MAC layer protocol. Although the communication radius is 
circular and the links are symmetric, GloMoSim provides a 
fine-grained simulation, accounting for collisions, packet loss 
and energy consumption. The parameters of interest were: the 
ratio of anchors to the total number of nodes (anchors 
percentage), the size of the network (in number of hops), the 
density of nodes (this was varied by modifying the radio 
range) and the error in the location estimation of the anchors 
(anchor’s location information was assumed to be imperfect). 
In all our simulations, except when simulating sensor networks 
with different sizes, we used 100 nodes deployed in a 10x10 
grid topology on a square terrain with dimensions of 1000 
meters x 1000 meters. When we evaluated networks with 
different sizes we used 36 nodes positioned in a 6x6 grid, 64 
nodes positioned in a 8x8 grid and 100 nodes positioned in a 
10x10 grid topology. Each experimental point was obtained 
from 300 simulations of networks with different anchor 
positions, positioned randomly. This ensured that the 90% 
confidence intervals are within 10% of the means. From our 
simulations we eliminated the scenarios where, even with a 
random placement of anchors, the positioning of the anchors 
was approximately in a straight line. 

The most obvious metric to be used in estimating the 
effectiveness of a localization scheme is the localization error. 
We define the localization error by the following formula: 
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where, (xest, yest) is the estimated position of a node, located at 
(xi, yi). 

In our simulations we focused on identifying the effects of 
the aforementioned parameters, on the error in localization. 
Each of the following subsections details our experimental 
results when considering each of the parameters.  

Due to the similarity of our approach to the Rutger’s DV-
Hop localization scheme we chose DV-Hop as the comparison 
benchmark. Because the pure version of the DV-Hop scheme 
does not make use of the additional knowledge gained from 
knowing that the deployment is attempting to create a grid 
topology, we implemented an enhanced version, called Grid 
DV-Hop, which attempts to place each node in a position in a 
grid closest to the actual computed location. The location with 
coordinates (x’est, y’est) estimated by the Grid DV-Hop is given 
by: 

 
])[],([)','( estestestest yxyx =              (5) 

 
where (xest, yest) are the computed coordinates and the [.] is the 
nearest integer (in terms of grid units) function. 
 

A. Localization Error versus Anchors Percentage 
In this experiment we evaluate the effect that the number of 

anchors has on the location accuracy. Figure 1 depicts the 
effect on localization error when varying the percentage of 
anchors. The number of neighbors in this experiment was 8. 
Networks with similar densities have been used in the 
evaluation of the DV-Hop family of localization schemes [8].  

 

0

10

20

30

40

5 10 15
Anchors [%]

Lo
ca

tio
n 

Er
ro

r [
%

 R
]

DV-Hop

Grid DV-Hop

Probability Grid

 
Figure 1. Location error for different ratios of anchors to total number of 

nodes (anchors percentages) 
 

From Figure 1, it can be observed that the Probability Grid 
scheme outperforms the DV-Hop and Grid DV-Hop solutions, 
providing location errors that are smaller, on average, by 13% 
and 3% of radio range, respectively. When 15% of the nodes 
are anchors, the localization error for the Probability Grid is as 
low as 3%.  

It is interesting to note that the Probability Grid benefits 
more from an increased number of anchors, i.e. the error in 
localization decreases from about 23% to 3%, where the DV-
Hop’s error in localization decreases from 36% to 17%. 

The reason for the improvements obtained in the Probability 
Grid scenario is due to the value present in the additional 
knowledge of deployment. When compared with pure DV-
Hop, which does not assume a particular deployment topology, 
the differences are much larger than when using the Grid DV-
Hop scheme, which uses the knowledge about the topology of 
deployment. Even with the Grid DV-Hop, sometimes the error 
in positioning is large enough that the estimation performed in 
equation (5) does not position the sensor node in the correct 
vertex on the grid. 

 

B. Localization Error versus Network Size 
In this experiment, we evaluate the effect the size of the 

network (in hops) has on the location error. We simulated 
three network sizes: 6x6, 8x8 and 10x10 grids, where the 
nodes were 100 meters apart. The number of neighbors for 
these simulations is also 8, as in the previous one. The number 
of anchors were: 4, 7 and 10 for the 6x6, 8x8 and 10x10 
respectively, aiming for approximately 10% anchors for each 
scenario. The results of the simulations are shown in Figure 2: 
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Figure 2. Location error for different network sizes 

 
From our experiments, it can be observed that as the 

network size increases, the error in location estimation 
decreases for all three localization algorithms. The explanation 
is that the number of anchors used for estimating each position 
is increased, from 4 anchors, in the case of the 6x6 grid 
topology to 10 anchors in the case of 10x10 grid topology. All 
three localization schemes obtained improved localization 
accuracies, by approximately 10% of radio range. 
 

C. Localization Error versus Number of Neighbors 
In this experiment, we evaluate the effect the density of 

nodes has on the location error. The percentage of anchors was 
fixed to 15% for all scenarios. Figure 3 depicts the 
experimental results. It can be observed that for high densities, 



 
 

 

the error in localization increases. This is due to the fact that at 
higher densities, more sensor nodes are within one 
communication range and hence most likely they will have a 
similar hop count to multiple anchors, despite the fact that 
their positions differ. 
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Figure 3. Location error for different node densities (number of neighbors) 
  
We argue, however, that the increase in the location error 

can be reduced even in the presence of higher node densities, 
by a suitable reduction in the communication power, and 
implicitly in the communication range. This solution 
artificially reduces the density of nodes (per communication 
range) to values for which the hop count becomes a reasonable 
estimator of the distance between two points. The reduction of 
node density per communication range practically reduces the 
number of nodes that are within a specified number of hops 
from an anchor. Since the number of hops is the only metric to 
evaluate the distance between two points, then if a smaller the 
number of nodes (with different positions) have the same hop 
count with respect to an anchor, then a smaller average error is 
obtained. 

 

D. Localization Error versus Imprecision in Anchor 
Positioning 
In this experiment, we evaluated the effect that the error of 

the anchor’s location has on the accuracy of location obtained 
by the rest of the nodes present in the network. The results are 
depicted in Figure 4. In the experiment, 10% of the sensor 
nodes were anchors and the number of neighbors was 8. From 
Figure 4, it can be observed that anchor positioning errors of 
up to 30% maintain an error in location of approximately 10% 
for the Probability Grid. Radio ranges of the most recent 
MICA2 sensor nodes vary from 15-30 meters. This translates 
into tolerable errors in the anchor position, that vary within 5-
10 meters. 
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Figure 4. Location error for different anchor positioning errors 

 
The obtained error in location is due to the incorrect 

positioning of the nodes in the grid topology. One extension to 
our localization scheme, which would incur a minor increase 
in the overhead, is, through additional beaconing, to have each 
node broadcast its location, and the confidence in its 
computation (probability). Nodes that potentially would 
position to the same location, with less confidence, would have 
to choose the next most probable position in the grid. We leave 
this enhancement, for future work. 

 

V. SYSTEM IMPLEMENTATION AND EVALUATION  
In this section we describe an implementation and an 

evaluation of our localization scheme. We compare the 
performance of our solution to that of DV-Hop. The 
implementation was done on MICA2 motes [11] from 
Berkeley. MICA2 platform uses a low power microcontroller, 
8-bit Atmega128, and it has 128KB of program FLASH 
memory, 4KB of SRAM and 4MB external flash for data 
storage. Figure 5 shows a deployed MICA2 mote, in the field. 

 

 
 

Figure 5. MICA2 sensor node placed in the field 
 
The deployed system consisted of 25 motes, positioned in a 

5x5 grid, approximately 12 meters apart. Three anchors were 
used and they were positioned at the following coordinates (x, 
y), in meters: (12, 0), (36, 12) and (24, 48). Figure 6, depicts 
the field of deployment and the approximate positioning of the 
sensor nodes in the field, shown with white dots. The field was 
relatively flat, with short cut grass and no metallic structures in 
the vicinity. 
 
 



 
 

 

 
 

Figure 6. Field of deployment for the system 
 

The system was deployed and went through the two phases 
of the algorithm: global flooding of anchor information 
(location and the number of hops between the receiving node 
and the anchor) and the correction propagation. The data (hop 
count to known anchors, the correction factor, the parent 
towards each anchor) was stored in flash memory. During the 
actual deployment, the DV-Hop localization scheme was 
applied. We used the data stored in the flash, offline, to 
evaluate the performance of our proposed Probability Grid 
localization scheme and the enhanced DV-Hop scheme, called 
Grid DV-Hop. 

 

A. Radio Calibration 
Several studies [12] [16] [17] have emphasized in the past 

the irregular and asymmetric nature of the radio 
communication in the sensor networks, and the importance of 
the calibration. The success of any solution that does not use 
hardware specialized for localization, and which relies on 
radio communication for inferring relative distances among 
sensor nodes, depends heavily on how good approximation to 
a circle, the actual radio range is. In addition, similarity in 
radio communication ranges has to exist among all the sensor 
nodes. In order to achieve these with some approximation, we 
took a simplistic approach, that involved a manual calibration 
of the radio for all the sensor nodes used in our experiment. 
More sophisticated calibration techniques have been reported 
[13] and their evaluation in real system deployments is very 
important.  

It is important to note that we have not attempted to use the 
actual RSSI values for ranging. Our goal was to make the 
behavior of the radio more uniform, with some approximation, 
across sensor nodes. We did not use the RSSI values for 
ranging because it was shown in the past that the RSSI value 
does not constitute a reliable measure of distance between the 
transmitter and the receiver.  

The calibration process involved three distinct steps, 
described below: 

1) Receiver Calibration. In the first step, all sensor nodes 
were treated as receivers and calibrated against a single 
transmitter. We ensured that the RSSI for each node was in the 
same range (-70dBm to -90dBm) for a particular fixed 
distance. For sensor nodes for which the RSSI was 
significantly different from the common range, a bias factor 

(representing the difference between the actual reading and the 
average of the range) was computed and used subsequently in 
RSSI measurements (added or subtracted from the actual 
reading). In Figure 7 we show a typical RSSI for one MICA2 
mote, used in the experiment. Each point in the graph 
represents an average for 100 beacons, when the battery 
voltage was 2.9V. We have not observed drastic differences 
when battery voltage levels varied in the interval [2.85V, 
3.0V]. The experimental data was collected in the same field, 
and under the same conditions as in our localization 
experiments. For different MICA2 motes, the same pattern was 
observed, however the absolute values differed, hence the need 
for the bias correction. The bias factor is chosen such that at a 
distance of 15 meters, the RSSI value is -80dBm. This bias 
factor was stored in the flash memory and we observed, during 
experiments, that the radio characteristics remain 
approximately the same. 

 

 
Figure 7. Radio signal strength versus distance 

 
This first step of calibration ensured a relatively uniform 

behavior of the receivers.  
2) Transmitter Calibration. The second phase of the 

calibration procedure consisted in calibrating all sensor nodes 
as transmitters, against a unique receiver. This was achieved 
by adjusting the sending power such that similar RSSI levels 
were observed at the receiver. Sensor nodes for which the 
sending power, even adjusted, could not be made large enough 
for the required level, were not included in the set of 25 motes 
used in the experiment.  

3) Stable Hop Count Information Propagation. We have 
experimentally observed that it is possible that sometimes 
unusually long links were established in the network. Our 
observations are consistent with similar results reported in the 
literature [16]. In order to further decrease the influence that 
some of the longer radio links can have on the system, i.e. 
artificially obtaining very long one-hop links, we modified the 
mechanism by which the anchor information is flooded in the 
network. For this, each receiving node employed a two step 
process. In the first step, only packets with an RSSI within the 
interval [-90dBm, -70dBm] were processed. We have observed 
more reliable, one hop links occurring in the aforementioned 
interval. Packets with RSSI values not falling in this interval 
were discarded. In the second step, a receiving sensor node 



 
 

 

deferred the decision regarding the hop count towards an 
anchor, until sufficiently stable information was present. For 
this, each sensor node maintained a moving average estimator 
of the RSSI value, with a window size of 10, for each anchor 
and parent. A more complete analysis of various estimators of 
link reliability has been reported in [15]. Only after receiving 
at least 10 beacons and when the RSSI value for a particular 
parent was within 5% of the average, the hop count 
information was deemed reliable and it was further propagated 
in the network through flooding. Despite the overhead 
imposed by this reinforcement of hop count inference, we 
observed a quick convergence (approximately within 10 
minutes, of a network of 25 motes) to stable hop counts 
towards the anchors, for all nodes in the network. Considering 
that the need for localization is generally limited to once per 
lifetime of the sensor network, the overhead imposed by the 
additional beaconing (for reinforcement of hop count 
information) is tolerable. 

The main purpose for the aforementioned three phases of 
the calibration process was to enforce a limited communication 
range. This enforcement was necessary in order to prevent (as 
best as possible) abnormal patterns in radio communication, 
where unusually long links are established at the arrival of a 
packet with an extremely small signal strength at distances 
well beyond the regular radio communication range. 

All the calibration parameters, namely the bias coefficient, 
the upper and lower bound on the permissible RSSI values, as 
well as the sending power level, were stored in the flash for 
subsequent evaluations. We have observed an acceptable 
consistency of RSSI and transmit power levels during the time 
period we evaluated the system. This consistency does not 
imply that the RSSI value is accurate enough for ranging 
techniques. 

 

B. Real System Evaluation Results 
The experimental results are summarized in Figure 8. For 

clarity we omit the Grid DV-Hop from Figure 8, but 
summarize the average location errors for all three localization 
schemes in Figure 9. The average location error for the DV-
Hop scheme was 124% of the radio range, for the Grid DV-
Hop the location error was %117 of the radio range and for the 
Probability Grid scheme it was 79% of the radio range, where 
the radio range was approximately 15 meters. 

In addition to the sources of errors in location estimation, 
that are present in simulations, the irregular radio pattern poses 
additional challenges in real system deployments.  

In order to asses the performance of our proposed solution 
for localization, we simulated the same topology as the one 
used in the real implementation. The results are shown in 
Figure 9. It can be observed a major difference between the 
results produced in the simulator and the results obtained in the 
real system deployment. From simulations, the expected 
localization errors ranged from 15% to 50%, for the 
Probability Grid and the DV-Hop schemes, respectively. 

Experimental results positioned the error in location in the 
range 79% to 124%. Even with our manual calibration process, 
in which we attempted to have a relatively uniform radio 
communication pattern, across sensor nodes, there remain 
differences between the simulator and real world. Analyzing 
the experimental data, we identified some pathological sensor 
nodes, that despite our calibration procedures, have produced 
much longer links than expected. 
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Figure 8. Location error for different nodes in a real system implementation 
 
Our system evaluation showed that the Probability Grid 

location estimation scheme, outperforms DV-Hop related 
schemes in real deployments as well. A degradation in location 
estimation, of approximately 60% was observed in each of the 
investigated localization schemes.  
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Figure 9. Location error, for different localization schemes, obtained in a 

real system implementation and simulator. An aggregate view 
 

Our experimental results emphasize the importance of 
validation of localization schemes through real system 
implementations. Due to the hardware and cost constraints 
imposed on the existing wireless sensor nodes, simpler 
localization schemes need to rely only on the radio 
communication to infer proximity. However, through more 
robust calibration solutions and probabilistic localization 
algorithms, which are less sensitive to individual abnormal 
behavior, real implementations of localization procedures 
could produce more precise location estimation. Our proposed 
solution is a first step. 



 
 

 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we presented a localization scheme, called the 

Probability Grid, that can be used in WSN which have been 
deployed in a grid topology. Our scheme was inspired by a 
similar solution, called DV-Hop, from Rutgers [8], which uses 
hop count, from anchors to sensor nodes, as a measure of 
distance to known locations. The DV-Hop scheme is more 
general than our solution, since it does not use the knowledge 
about deployment topology. However, this generality does not 
help, since the errors are high in practical deployments. 
Probability Grid is more resistant than DV-Hop to situations 
when the hop count is not a very accurate measure of the 
distance between two points. This is due to the fact that in real 
deployments, the radio range is not circular. Previous research 
has shown the presence of long links, backward links or 
stragglers [16] and a significant deviation from a circular radio 
pattern [17]. Using a probabilistic approach, the Probability 
Grid considers the hop count for a particular distance to be a 
discrete random variable, that has a Poisson distribution. 

Our solution is completely distributed and does not require 
special infrastructure. It only requires, as similar solutions do, 
to have a small percentage of the nodes, called anchors, aware 
of their position. We plan to extend our work in the following 
directions: a) empirically obtain a real distribution of hop 
counts for different distances. In simulations and limited 
experimental verification, a Poisson distribution proved 
satisfactory, however, from an empirically obtained 
distribution, we expect higher accuracy in a real system 
deployment; b) each node, through beaconing, can acquire 
additional information about its neighbors positions. This can 
serve as a reinforcement of accuracy of its own location 
computation and eliminate cases where multiple nodes localize 
themselves to the same position in the grid; c) employ local 
flooding from anchors to the adjacent nodes. We observed that 
the contribution made to the precision in position, made by 
anchors further away is much smaller than the contribution 
made by the anchors closer to the node; d) investigate the 
possibility of regionally centralizing the hop count 
information, in an attempt to better compute the optimal 
positioning of nodes in the grid, in order to decrease the total 
degree of uncertainty/entropy. A recent, entropy based 
approach for target localization is proposed by Wang et al. 
[18]. Their entropy-based sensor selection heuristic objective 
is to reduce the entropy of the target location distribution. 
Similarly, we plan on using the centralized approach in order 
to reduce the entropy of the sensor location distribution. 
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