
1

Bundle: A Group Based Programming Abstraction
for Cyber Physical Systems

Pascal A. Vicaire, Enamul Hoque,Member, IEEE,Zhiheng Xie, John A. Stankovic,Fellow, IEEE

(Invited Paper)

Abstract—This paper describes a novel group based program-
ming abstraction called a ‘Bundle’ for cyber physical systems
(CPS). Similar to other programming abstractions, a Bundle
creates logical collections of sensing devices. However, previous
abstractions were focused on wireless sensor networks (WSN) and
did not address key aspects of CPS. Bundles elevate the program-
ming domain from a single WSN to complex systems of systems
by allowing the programming of applications involving multiple
CPSs that are controlled by different administrative domains
and support mobility both within and across CPSs. Bundles can
seamlessly group not only sensors, but also actuators which con-
stitute an important part of CPS. They enable programming in a
multi-user environment with fine grained access right control and
conflict resolution mechanism. Bundles support heterogeneous
devices, such as motes, PDAs, laptops and actuators according to
the applications’ requirements. They allow different applications
to simultaneously use the same sensors and actuators. Bundles
facilitate feedback control mechanisms by dynamic membership
update and requirements reconfiguration based on feedback from
the current members. The Bundle abstraction is implemented in
Java which ensures ease and conciseness of programming. We
present the design and implementation details of Bundles as well
as a performance evaluation using 32 applications written with
Bundles. This set includes across-network applications that have
sophisticated sensing and actuation logic, mobile nodes that are
heterogeneous, and feedback control mechanisms. Each of these
applications is programmed in less than 60 lines of code.

Index Terms—Programming, software, networks, actuators,
transducers.

I. I NTRODUCTION

In the future, cyber physical systems (CPS) will become
widespread, include heterogeneous sensing and actuation de-
vices, support intra and inter network mobility, permit multiple
applications to execute simultaneously, and be accessibleand
controllable via the Internet. Ubiquitously deployed wireless
sensor networks (WSNs) enhanced with actuators will create
a new CPS infrastructure, and along with body networks and
sensor-based cell phones will create a situation with many
interacting systems of systems. For this vision to become
commonplace new abstractions are required that support ease
of programming, grouping sensors and actuators of different
kinds from different networks and administrative domains,
and dynamically managing these groups in the presence of
mobility and feedback control.

To better illustrate these requirements, we consider the fol-
lowing scenario. John and Mary are two neighbors who have

Manuscript received October 24, 2010; revised May 3, 2011; accepted
August 2, 2011.

Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

separate WSNs set up in their houses for activity monitoring.
They also run a collaborative surveillance application that
notifies both of them if an intruder tries to steal something
from any of the two houses in their absence. The notification
is done by ringing sounders that are worn in their bodies. Some
important features to consider for this application are: 1)The
application spans multiple systems and uses heterogeneous
devices. 2) It groups sensors from both houses and actuators
on their bodies. 3) It supports both intra and inter network
mobility. Because they move from room to room when in
house and also go out for work. 4) The application only
notifies them if they are not in the house and someone tries
to steal something. So the actuation of sounders depends on
feedback from the sensors.

Existing group based abstractions employ a distributed ar-
chitecture in order to ensure energy and bandwidth efficiency.
They group the nodes based on geographic location or radio
connectivity ([26], [25]) or some higher-level, application-
defined notion of proximity ([19], [12]). But there are certain
limitations in using them for CPS. They have been designed
mainly for applications that run in a single network. They can-
not group sensors from different networks or sensors having
inter-network mobility. New applications need to reprogram
the sensors manually. Besides, writing applications with them
is not straightforward. Also, they do not provide fine grained
access right control and conflict resolution mechanism thatare
essential for multi-user environments. Moreover, none of them
supports grouping of actuators. A Bundle extends the previous
group based abstractions by addressing these limitations.

The main contributions of this paper are: a) a new group
based abstraction called a Bundle which is an extension to
existing group abstractions, but with important capabilities for
across system programming, mobility, automatic dynamic up-
dates, fine grained access right control and conflict resolution
mechanism, and support for actuators; and b) an evaluation
with 32 single and multi network applications to illustrate
the ease and conciseness of programming with Bundles, its
effectiveness of supporting mobility, its acceptable energy
overhead and effectiveness in actuator configuration.

The paper is organized as follows. Section II describes
related work and compares Bundles with other similar abstrac-
tions. Section III explains the Bundle abstraction in detail.
Section IV describes its implementation details. Section V
presents evaluation results. Section VI lists the notable lim-
itations of our system. We conclude in Section VII.

2

II. RELATED WORK

Existing group based abstractions have several shortcomings
that limit their applicability in cyber physical systems. The
Bundle has been designed to overcome these shortcomings.
Table I summarizes some of the important differences between
Bundles and other similar abstractions.

Hood [26] is a neighborhood programming abstraction that
allows a given node to share data with a subset of nodes
around it, specified using parameters such as the physical
distance or number of wireless hops. Hood cannot group nodes
that belong to different networks or that use heterogeneous
communication platforms. If a mobile group member moves
to another network, then it no longer belongs to that group.
Additionally, all nodes must share the same code, actuatorsare
not supported, group specification is fixed at compile time, and
each instance of a Hood requires specific code compiled and
deployed on the targeted nodes.

An Abstract Region [25] is an abstraction similar to a
Hood: it allows the definition of a group of nodes according
to geographic location or radio connectivity, and permits the
sharing and reduction of neighborhood data. Abstract Regions
provide tuning parameters to obtain various levels of energy
consumption, bandwidth consumption, and accuracy. But, each
definition of a region requires a dedicated implementation,
therefore each region is somehow separated from others and
cannot be combined. Like Hood, Abstract Regions also cannot
group sensors from different networks, actuators, heteroge-
neous or mobile devices. If we need to write new applications,
motes need to be reprogrammed.

Logical neighborhood ([19], [4]) is a higher level abstraction
that replaces the physical neighborhood provided by wireless
broadcast with a higher-level, application defined notion of
proximity. It has support for heterogeneous nodes, but het-
erogeneity means different communication costs for different
nodes. It does not support actuators or devices with a het-
erogeneous communication platform. Logical neighborhoods
cannot cross multiple networks. With logical neighborhoods,
we cannot write new applications using existing devices with-
out reprogramming them. Also they do not support mobility.

Scopes ([12], [13]) is another abstraction that is used to
structure a WSN in groups and sub-groups. Scopes use a
declarative language to specify properties that have to be
fulfilled by a node participating in a scope. As properties,
static and dynamic values are supported just like in Bundles,
but it needs more resources on a single node to fulfill its
tasks. Scopes support multiple concurrent tasks that have to
be installed over-the-air on the nodes. Scopes do not support
actuators and spanning over different networks as supported
by Bundles, however heterogeneous nodes in the WSN are
possible. Mobility of nodes from one network to another is
also not supported.

sChat [23] is a group communication service that allows
groups of mobile entities to communicate over a WSN. Each
group has a leader that needs to keep track of all the members’
locations. A central registry keeps track of all the groups and
their leaders. But this design does not support across-network
applications and we need to reprogram the devices for new

Abstraction Bundle Hood Abstract Logical Scope
Region Neighbors

Language Used
to Write

New Applications Java nesC nesC SPIDEY C
Sensors can be

Reprogrammed for
New Applications

Dynamically Yes No No No No
Concurrent
Applications
Using Same

Devices Supported Yes No No No Yes
Span Multiple

Networks Yes No No No No
Heterogeneous

Devices Supported Yes No No Partially Yes
Inter Network

Mobility Supported Yes No No No No
Actuator Supported Yes No No No No
Centralized Group

Management Yes No No No No

TABLE I
COMPARISON OFBUNDLE WITH OTHER ABSTRACTIONS

applications. It does not have support for actuators.
A different way of grouping nodes in WSNs is the Generic

Role Assignment Scheme [22]. A predefined set of roles is
distributed to all the nodes, which must decide at runtime
which of these roles they currently comply with. A node
choosing a specific role may cause other nodes to reevaluate
their role membership, leading to toggling role memberships
and messaging overhead. Compared to Bundles it is not
possible to steer the role membership. Also the use of new
applications/roles is not possible without reprogrammingall
nodes.

Spatial Views [21] and Spatial Programming [2] have only
been implemented on powerful PDAs and not on resource
constrained sensor nodes. Spatial Views create a group of
nodes defined in terms of location and service interfaces, and
make it possible to iterate over the members of this group.
Heterogeneity, actuators, multiple networks or mobility of
nodes are not addressed in this approach. Spatial Programming
provides an abstraction similar to spatial views. Applications
use a mobile agent approach which is executed in a modified
JavaVM. Mobility is an important paradigm, but as with
Spatial Views, heterogeneity or multiple networks are not
supported.

Envirosuite [16] allows the creation of virtual objects that
correspond to real phenomena such as a car or an abnormally
high magnetic field. Each virtual object is instantiated on a
single node, or on a group of nodes that are geographically
close and sense the same phenomena. Each instance of a
virtual object is associated with a unique identifier; Envirosuite
manages issues related to the maintenance of per object
unique identifiers as the real phenomena moves or as two
phenomena collide. TinyGALS [3] is another programming
model for event-driven embedded systems. Software com-
ponents are composed locally through synchronous method
calls to form modules, and asynchronous message passing is
used between modules to separate the flow of control. This
programming model is structured such that all asynchronous
message passing code and module triggering mechanisms can

3

be automatically generated from a high-level specification.
Realizing the difficulties of programming wireless sensor

networks, the research community investigated novel ap-
proaches. One of these approaches is macro-programming,
which allows programming at a higher level of abstraction: the
goal is to focus on writing central programs that specify high
level network behavior rather than implementing code from
the point of view of each node. Regiment [20] is a functional
macro-programming language for wireless sensor networks.It
provides a region stream abstraction that applies folding and
mapping operations to a spatially distributed time collection of
node states, thereby creating data streams from programmer-
specified spatial regions. The language is side effect free:it
cannot update states that are local to the nodes and, as a
consequence, is problematic for programming actuators. Reg-
iment poses numerous implementation challenges and only a
very small subset of the language is implemented for resource
constrained nodes.

Semantic Streams [27] is a logical macro-programming
approach to wireless sensor network programming. It takes
a high level query and given a particular topology of nodes
with specific services, it automatically composes sensors and
inference units (using a variant of the standard backward
chaining algorithm) so as to respond appropriately. It sup-
ports heterogeneity and automatically optimizes simultaneous
queries from multiple users by streaming sensors only once,
even if multiple queries require their data. Semantic Streams
assumes a fixed topology. All operators specifying how to
obtain a needed output from a given input must be contained
in a library: a query will be successful if and only if a chain of
operators can be found that generates the desired output from
sensor inputs.

Abstract task graph [1] is a macroprogramming model
that builds upon the core concepts of data driven computing
and incorporates novel extensions for distributed sense-and-
respond applications. The types of information processing
functionalities in the system are modeled as a set of abstract
tasks with well-defined input/output interfaces. Macrolab[11]
is another macroprogramming framework that offers a vector
programming abstraction similar to Matlab for Cyber Physical
Systems (CPS). In this framework, all application-specific
logic are contained in a macroprogram; the user writes a
single macroprogram for the entire CPS and the framework
automatically decomposes it into to a set of microprograms
that are loaded onto each node. MacroLab decomposes a
macroprogram in the way that is most efficient for a particular
deployment. Another macro-programming approach is Kairos
[8] that provides three programming constructs: one for read-
ing and writing variables at a node, one for iterating through
the one hop neighbors of a node, and one for addressing
arbitrary nodes. Once a program is written using Kairos python
extension, Kairos generates binaries for single nodes.

III. D ESIGN

In this section we describe the underlying architecture of
Bundles, the main design principles of the Bundle abstraction,
how Bundles work, their access right control and conflict
resolution mechanism and their semantics.

Fig. 1. Physicalnet Architecture.

A. Architecture

The Bundle abstraction is implemented on top of Physical-
net [24], a middleware for wireless sensor networks based ona
lightweight service oriented architecture. Detailed description
and evaluation of Physcialnet are provided in [24]. Here, we
briefly outline the implementation of Physicalnet only at the
level of details required to understand the implementation
support for Bundles.

There are 4 tiers in Physicalnet as Figure 1 shows.
1) Service Provider Tier: A provider node can be running

TinyOS or Java and may include several services. For example,
a service can be the temperature sensor of a MICAz node,
a light actuator, or the display screen of a PC. This layer
also contains localization anchor nodes. A provider registers
its services to one and only one negotiator, and executes the
commands issued by this negotiator.

2) Gateway Tier: A gateway collects the control or data
messages from the service providers and forwards them to
the negotiators. Similarly, it forwards commands in the other
direction. The communication between the gateways and the
service providers is through multi-hop wireless protocols(e.g.
collection and dissemination protocols), while the communi-
cation between the gateways and the negotiators is through
TCP/IP. The gateway tier could consist of either Java nodes
or more powerful PCs. There has to be at least one gateway
per network.

3) Negotiator Tier: A negotiator is a repository of services,
a database of service states and application requirements.A
negotiator contains all the services that register on it andare
available at that time. Applications can discover and operate
on those services through the negotiator. A negotiator allows
multiple applications to access the same service concurrently.
It is important to note that negotiators are not tied to a
particular WSN, and that they can manage nodes located in
multiple WSNs. Each administrative domain consists of one
negotiator, all the service providers registered to the negotiator
and a set of users.

4) Application Tier: It contains applications that peri-
odically generate and cancel requirements for remote sen-

4

sors and actuators by reevaluating the membership of their
Bundles. Multiple applications can simultaneously accessthe
same negotiator and a single application can involve multiple
negotiators.

The main advantage of this 4-tier architecture is that the
resource constrained sensor nodes have minimal functionality
and most of the complexity of the applications is pushed
outside the WSN onto remote and more powerful computers
(similar to Tenet [7], Essentia [9], and Atlas [14]). The gate-
way tier ensures that heterogeneous devices can be grouped
together as long as it can communicate with them using their
communication protocol. They are more powerful than sensor
nodes, so they are placed in a different tier. The negotiator
tier communicates with different gateways and vice versa.
Devices that move from one network to another, only need
to communicate to the gateway of a network and the gateway
communicates with the appropriate negotiator which may be
in any part of the world. So having a different negotiator tier
enables us to group devices from different networks and alsoto
support inter network mobility. Having a different application
tier ensures that applications can connect to the negotiators
from anywhere in the world and use the services provided
by them. Note that, for a particular WSN, the gateway needs
to be physically at the same place as the providers. But the
negotiator and application tiers can be anywhere and they can
be separate from each other as well.

B. Design Principles

To understand the design principle of the Bundle abstrac-
tion, we must first understand the paradigm of Physicalnet (see
Figure 2). The goal of Physicalnet is to facilitate programming
and organizing cyber physical systems in a multi-user and
multi-network environment. The key features of Physicalnet
are: 1) Enabling heterogeneity through lightweight Service
Oriented Architecture (SOA). Various devices, such as sensor
motes, actuators, smart phones and laptops, are registered
as services in a center place so that users can access them
through uniform APIs. 2) Differentiating the concepts of
physical networks and administrative domains: one administra-
tive domain can span multiple networks, and one application
can involve resources from multiple administrative domains.
In Figure 2, the cloudshape marking represents physical
networks, while the colors represent different administrative
domains. Administrative Domain 2 has members in both South
America and Europe, and the laptop in Australia, it runs
some application involve administrative domains in Asia and
in Africa. 3) Supporting fine grained access right control
and conflict resolution mechanism so that device owners can
share their devices. If applications concurrently using the same
devices have conflicting requirements, Physicalnet can resolve
it through the conflict resolution module without terminating
the applications.

As the essential programming abstraction of Physicalnet
paradigm, Bundle is designed to efficiently support the above
features and keep the resource constrained devices minimally
engaged in group management. This is why we choose a
centralized approach for designing the implementation support

Fig. 2. Physicalnet Paradigm

of the Bundle abstraction. All the existing similar abstractions
use distributed group management. Distributed design helps
in reducing message transmission between nodes and the base
station. It also facilitates network aggregation. But there are
also some problems using a distributed scheme described as
follows:

1) In cyber physical systems, it is necessary to allow the
formation of dynamic sets of services provided by heteroge-
neous devices. Membership in a group is specified by arbi-
trary predicates which can involve any number of application
variables. If the application variables vary over time, then the
membership changes accordingly. For instance, a first group
can be created to compute and update the average temperature
in a building, and then a second group can be created to refer
to all the ventilators that are in a room where a greater than
average temperature is detected. In this case, when the average
temperature changes, the selected set of ventilators changes.

Implementing such an arbitrary abstraction in a completely
distributed fashion so that power consumption and latency are
optimal is extremely challenging. A distributed frameworkhas
to upload binary code, bytecodes, or scripts to the resource
constrained nodes. It would have to move code around when
nodes move, making sure that each piece of code is transferred
reliably. It would have to provide specific routing mechanisms
allowing nodes to talk to one another even if they are located
in different networks.

2) Memory and communication costs directly depend on
number of groups a node is part of. This is because, the
nodes need to store membership information and states in
memory and also need to communicate this information to
group members. This limits the number of groups a node may
join.

3) Different sensors use different communication platforms.
So it is impossible for all of them to communicate with each
other directly and maintain a group. We need some powerful
devices that can communicate using different protocols and
thus facilitate group management. So the sensors will com-
municate with each other via these powerful devices.

4) It is non-trivial and costly to support multi-user access

5

public interface Bundle<T extends Service>
 extends BundleParent, Iterable<T>{

 boolean rule(T t);
 void foreach(T t);

 boolean contains(T t);
 int index(T t);
 int size();
}

Fig. 3. Bundle API

right control and conflict resolution. Firstly, each node needs
to store all users access rights. Thus memory consumption
directly depends on the number of users and rights. Secondly,
for each request message, nodes need to validate whether it
has the corresponding right, and if there is a conflict, nodes
need to resolve it, which is a very costly process.

To solve these problems, we believe some centralized
component is necessary in the architecture. The Bundle pro-
gramming abstraction is supported in a centralized manner.
Rather than decomposing code and shipping it to remote,
unreliable, and resource constrained nodes, the Bundle brings
the state of remote services, as well as the remote sensor
streams to the application process. In a way, a Bundle works
as a complement to the existing group based abstractions.
Current implementation of Bundles is purely centralized, but
it can be extended to include various distributed computing
benefits. For example, a Bundle supports predicate pushdown
(an efficient query processing technique for data collection
in sensor networks as described in ([18], [17]), because only
members of a Bundle send data to the base station, others send
control packets only.

C. The Bundle Abstraction

The Bundle programming abstraction includes two parts:
the definition of a group of sensors and actuators and the
specification of what these devices should do. The Bundle
abstraction allows the definition of a group to be arbitrarily
complex, which means the definition of the Bundle member-
ships can involve any number of operators and application
variables including, but not restricted to, constants, locations,
sensor/actuator states, sensor streams, application parameters,
user input, and numerical results computed by other Bundles.
For instance, a Bundle can contain all the nodes that are
temperature sensors, that are in the living room, that have
more than half their energy remaining, that sense a temperature
either greater than the average temperature in the room plus
ten Fahrenheit degrees, or greater than a threshold that can
be dynamically changed by the user. The second part is
specification of what the members of a group should do
which can depend on arbitrary operations involving complex
functions that can execute only on powerful computers that
can involve any application variables, including the Bundle
member itself. For instance a Bundle of temperature sensors
can be configured to be sensing at a rate specified by the user,
and a Bundle can be configured so that the LEDs on a given
node indicate the current intensity of noise sensed by the node.

Figure 3 shows the Bundle API. A Bundle is a generic set of

public class SamplingOneSensorPerRoom extends Application{

 public SamplingOneSensorPerRoom(){
 this.add(new Negotiator(HOST,PORT,USER,PASSWORD));
 this.execute(1000/*milliseconds*/);

 // For each room...
 for(final Zone z:this.getZones().getByType("Room")){

 // Creates the bundle of all the temperature sensors in that room.
 final Bundle<Temp> temps=new Bundle<Temp>(Temp.class,this){
 public boolean rule(Temp t){

 return z.contains(t);
 }
 public void foreach(Temp t){
 return;
 }
 };

 // Creates a bundle with a single temperature sensor in that room.
 // Temperature sensed by those sensors is displayed periodically.
 new Bundle<Temp>(Temp.class,temps){
 public boolean rule(Temp t){
 if(temps.index(t)==0){
 return true;
 }
 else{
 return false;
 }
 }
 public void foreach(Temp t){
 t.period.set(1000l/*milliseconds*/);
 t.sense.set(true);
 t.sense.whenNewSample(new Task<Long>(){
 public void run(Long l){
 System.out.println(z.getName()+": "+l);
 }
 });
 }
 };
 }
 }
}

Fig. 4. TheSamplingOneSensorPerRoomApplication Written using Bundles

sensors and actuators of type specified using the parameterized
type T. By specifying T, programmers can for instance create
a Bundle of temperature sensors, light actuators or cameras. A
Bundle implements the typeBundleParent, which means that
a given Bundle can be used as a superset to define a Bundle
containing a subset of its members. A Bundle implements the
type Iterable so that the practical Java operatorfor can be
used to iterate over the members. The programmer overrides
the rule (T t) method to define the conditions of membership
of a Bundle. The programmer overrides theforeachmethod to
specify the state in which the members of the Bundle should
be.

An important feature of the Bundle abstraction is its dy-
namic aspect. The Bundle membership is updated periodi-
cally so as to respect the membership specification. Figure
4 shows an example applicationSamplingOneSensorPerRoom
that reports the temperature in each room using a single sensor
per room. First, The application connects to the negotiatorof
temperature sensors. Then, the application sets the periodof
updating Bundle membership to1 second (by the this.execute()
method) i.e., in every1 second, the application updates the
list of group members of the Bundle, and also notifies the
negotiator that the application is still alive and its requirements
should be satisfied. For each room, first, the application creates
the Bundle of all the temperature sensors in that room. Then,
it creates for each room a second Bundle that contains a
single temperature sensor. This sensor is configured to sense
the temperature every second and the temperature samples are
displayed on the standard output along with the name of the

6

room.
Because of the periodic update of the membership, sensors

that start satisfying membership rules (has to be a temperature
sensor and has to be in a particular room) during application
execution join the first Bundle for that room, and sensors
that stop satisfying membership rules (leave the room) during
application execution leave the first Bundle for that room. Note
that if a temperature sensor, that leaves the first Bundle of a
room, is that Bundle’s first member, then the second Bundle
for that room gets a new temperature sensor and that sensor is
configured accordingly. If a node leaves a room, then as soon
as it enters another room, it is connected to the negotiator
through the new gateway and joins the first Bundle for that
room. Now based on availability of other temperature sensors
in that room, it may become a member of the second Bundle
for that room.

D. Access Right Control and Conflict Resolution

In the future, cyber physical systems will be deployed in
multi-user environments. While device owners are willing
to share their resources, they also expect to protect them.
Therefore, access right control mechanism is necessary in such
open environments.

Physicalnet supports user-based access right control at the
granularity of state and event level and provides conflict
resolution mechanisms. This means the effects of a Bundle
are limited by this mechanism, and the requirements can only
be fulfilled when the user has enough rights and priority.
Assume a user specifies a Bundle which requires turning on
all the lights in a building. The results may be that only
half of the lights are turned on. This is because the user
may not haveWRITE permission on some lights, or another
super user who has higher priority requires some of the lights
to be off, or some other user who has the same priority
requires some of the lights to be off and the conflict resolution
mechanism on those lights has the rule of first come first serve.
In the implementation, the access right control is fulfilled
by the Negotiator. When Bundle requirements of different
applications arrive at the Negotiator, the Negotiator combines
them into a table, then uses the access right table and conflict
resolution modules to deduce the final desired requirement for
each service, and finally sends these desired requirements to
each service and returns the results to each Bundle.

Another key feature of a Bundle is that it enables dynamic
access right specification. For example, an application may
specify that no one can open the air conditioned vents in
rooms where the windows are open. This can be implemented
through two Bundles for each room: one is a collection of all
the open windows in that room; the other is a collection of
air conditioned vents in that rooms if there are one or more
windows open, and the action is to specifyNO ACCESSper-
mission for all users. Because a Bundle periodically evaluates
its membership and recomputes the requirements, it supports
highly dynamic behaviors. Thus the features of dynamic access
right specification are easily achieved.

E. Semantics

With the support of the Physicalnet middleware, the Bundle
abstraction is able to create groups based on arbitrarily com-
plex rules. Such rules can satisfy various application seman-
tics. As an example, the rules can be based on node Id, network
Id, domain Id, location or identity-centered. Take a simple
application which aims to calculate the average temperature of
a room. The interesting point is that such a simple application
can have different meanings depending on different rules:
1) Node Id based. If a Bundle is created based on node Id such
as nodes A and B, then the application semantics means that
we intend to compute the average temperature of the rooms
that Node A and Node B currently reside in. If they are in the
same room, then the temperature is for that room; if they are in
separate room, then the result is the average of the temperature
of both rooms; if Node A and B are moved from the original
room to another room, the result is for the new room instead
of the old one. 2) Location based. If the Bundle is created
based on a specific room, then the application semantics means
computing the average temperature for that room. Therefore,
if nodes A and B are in that room, the Bundle will use them
to peform the computation; but if nodes A and B are removed
from that room, then the Bundle dynamically discards them
from the group. 3) Identity-centered. If the Bundle is created
based on the rule of including all the nodes which are in
the same room as a particular user with the specific identity,
then the application semantics means tracking the user and
computing the average temperature around him. So as the user
moves, regardless of the node Id and room Id, the application
always computes the average temperature of the room the user
is currently in.

The discussion above is only about application logic level
(AL) semantics, not the resource allocation level semantics
(RA level). The resource allocation level semantics answers
the question of what we should do if the application’s re-
quirements cannot be fully satisfied? Primarily, Physicalnet
adopts a best effort semantics for RA. This means that if the
application requests 10 temperature sensors, but currently only
7 of them are available (perhaps because other applications
with higher priority require different settings on the sensors),
then the application just proceeds with these 7 nodes. While
this best effort RA is acceptable for many applications, the
problem is that some applications have strict requirements. For
example, if an application needs to measure the noise in rooms
of a house to detect the occupancy, and if there are 5 rooms,
but only sensors from 4 rooms are available, then we cannot
completely satisfy all the requirements of this application. In
other words, if we use best effort RA to satisfy this application,
then the result is meaningless and these (not enough) allocated
resources are wasted.

To support various application semantics, we differentiate
three RA level semantics: best effort, strict, and conditional.
Best effort means returning whatever resources are available;
strict means returning all the resources requested by the
Bundle or none; and conditional means if the the number
of the resources returned by the Bundle is more than some
threshold, then proceed, otherwise discard all resources and

7

return failure. Note that when different semantic requirements
from different applications arrive at a negotiator, the negotiator
takes into consideration all the requirements and applications’
priority, and outputs a resource allocation decision whichtries
to achieve the maximum resource utilization ratio without
violating application priorities. The implementation andthe
evaluation of the resource allocation algorithm is outsidethe
scope of this paper.

IV. I MPLEMENTATION

We now detail how the Bundle programming abstraction
is implemented. First we describe how Bundles are managed
in the application tier, then we explain the synchronization
mechanism between the negotiators and the providers, which
is followed by a discussion of how actuators are controlled,
and finally we describe implementation of a visualization tool
for Bundles that uses Google Earth.

A. Application Tier

Periodically, the application process, running on a remote
PC, connects to the set of negotiators specified in the appli-
cation code. Each negotiator has a global address of the form
negotiator IP address+ TCP port. From each negotiator,
the application acquires the list of providers (e.g., motes,
cameras, cell phones), the list of services for each provider
(e.g., temperature, light and accelerometer sensor valuesfor
a mote), and the list of states (e.g., on/off status of a light
actuator, sensing interval) for each service. The application
downloads all service states when it first connects to a given
negotiator. Then, it only downloads the differences from
previous download.

Once all service data is downloaded, the previous ap-
plication requirements for each state are transferred to a
variable namedpreviousRequirement. Then, the membership
of all Bundles is recomputed by applying the overloaded
rule method. After that, the new application requirements are
computed by applying the overloadedforeachmethod to all
the services that are member of the Bundle, and stored in
a variable namednewRequirement. Finally, newRequirement
is uploaded to the negotiator for each state wherenewRe-
quirementis not equal topreviousRequirement. The cycle of
download, re-computation, and upload repeats itself according
to a configurable period.

Bundles can span multiple networks and administrative
domains. An application can connect to several negotiators
and each Bundle is a subset of all the services from all
the negotiators. Each negotiator manages a set of providers
pertaining to one or more users. Note that, multiple applica-
tions can use the same service provider and have conflicting
requirements (e.g., one application may want the light to be
on and other to be off). In that case Physicalnet uses conflict
resolution mechanisms. The providers are free to move from
one remote WSN to another. Whichever WSN it is currently
in, the remote service provider always keeps the same global
identifier of the formnegotiator IP address + negotiator TCP
port + local identifier, which allows the gateway of the current
WSN to communicate with the appropriate negotiator and thus
applications can uniquely identify a provider at any time.

B. Synchronization

The goal of the synchronization process is for the provider
to forward its location and its data samples to the negotiator,
and for the negotiator to reconfigure the state of the provider.
The service provider periodically sends a control message to
its gateway using a multi-hop wireless collection protocol. By
default the provider sends one control message everyp max

seconds. However, when a provider generates sensing samples,
the period is decreased so as to forward these samples to the
negotiator as fast as possible. Nevertheless, the period with
which control messages are sent is not allowed to be smaller
thanp min. The control message contains the global identifier
of the provider, the last timestamp received from the negotiator
(or 0 if no timestamp was received), the longitude and latitude
of the provider, and a data section containing provider specific
data samples.

When the gateway receives a control message, it reads the
global identifier of the provider and infers the address of its
negotiator. The gateway then stores the control message in a
buffer dedicated to the inferred negotiator. Periodically(the
period is configurable), the gateway forwards all the messages
contained in the buffers to the appropriate negotiator using
TCP/IP. When the negotiator receives a batch of messages,
for each message, it queries its database to check whether
the provider is registered. If the provider is registered, the
negotiator updates the address of the gateway, and the location
of the provider in the database. The negotiator then extracts the
sensor samples from the data portion of the control message.
Once the sensing samples are extracted from the control
messages, they are stored in the database so that they can
be later forwarded to the requesting applications.

To maintain synchronization, the negotiator reads the times-
tamp field of the control message, compares it with the
timestamps stored in the database and thus infers whether
the provider is up to date or not. If the provider is not up
to date, the negotiator creates a configuration message that
will configure the remote provider according to the latest
application needs and send it to the appropriate gateway. This
configuration message contains the global ID of the targeted
provider, a new timestamp and configuration information for
the provider. The gateway forwards the configuration messages
to the appropriate provider using a multi-hop wireless routing
protocol. Upon reception of a configuration message, the
provider stores the new value for the timestamp, modifies the
state of its actuators according to the negotiator desires,and
initiates tasks as required by the modified values of its states.

C. Controlling the Actuators

In CPS, we often deal with unreliable actuators. This may
cause major drawbacks if programmers remotely call (by
Remote Procedure Call (RPC) or Remote Method Invocation
(RMI) mechanism) these actuators to change their states.
Consider an application that turns a light on and then desires to
turn it off. Assume that when the application sends an RMI in-
vocation to turn the light off, the actuator is unreachable.This
may occur because of a temporary obstacle that significantly
affects the wireless communication around it. So, the RMI call

8

will fail and return an exception. As a consequence, a light
actuator remains on even though it should be off. This problem
is even more difficult to solve if the application controls the
state of a large number of actuators. Another problem can
arise from abnormal termination of an application due to a
bug. This ungraceful termination may leave an actuator in a
dirty state. Also, multiple applications may try to use the same
actuators with conflicting requirements. (e.g., one application
may need a light to be off, while the other may need it to be
on).

To resolve such problems, Bundles use the concept of
state for each actuator. Manipulating actuators using states is
very different from manipulating it using RMI. Consider the
example of turning a light on. An RMI call directly connects
the application to the remote light actuator and turns it on.
By contrast, in our design, the application only generates a
requirement for the light to be on and sends it to the negotiator
by RMI. The negotiator of the light actuator then tries to
fulfil this requirement by turning the remote light actuator
on. If from the actuator’s next periodic update, the negotiator
finds that the requirement is not yet fulfilled, then it retries
until being successful. It is also possible to specify a timeout
interval from the application level so that the negotiator only
retries until that interval.

Note that the state of the actuator does not change in
the negotiator until the requirement is actually fulfilled.The
negotiator stores this requirement as long as the application
does not cancel it (or terminate). Also, the negotiator may
store several such requirements and decide, according to rules
specified by the node owner, which requirement should be
satisfied. The programmers can check at any time whether their
requirements are being satisfied or not and take appropriate
action. Furthermore, to solve the problem of abnormal appli-
cation termination, an application that specifies requirements
to a negotiator also has to periodically send ‘alive’ messages
to the negotiator. When the application aborts, the negotiator
notices the death of the application (by using a timer that keeps
track of when was the last ‘alive’ message received from that
application) and automatically cancels all of its requirements.
Then either the state of the actuator returns to its default value
or the requirements of other applications are satisfied.

Consider the same application that turns a light on and then
desires to turn it off. Now, if the light actuator is unreachable
when the application desires to turn it off, the negotiator
reattempts to turn the light off until it succeeds. Suppose,a
programmer uses a Bundle to specify that all the light actuators
in a room should be turned on. When a new light joins the
Bundle, the Bundle sets the requirement for the state of the
light to be turned on. When a light leaves the Bundle, the
requirement for the state of the light is set to be null.

D. Visualization Tool

To support programming with Bundles various tools have
been implemented. This includes utilities such as a database
administration tool, an access rights control configuration
tool, and a diagnosis tool. The most attractive tool is the
visualization tool which uses Google Earth as its interfaceto

Fig. 5. Visualization in Google Earth

display device locations and service states. As Figure 5 shows,
the visualization tool renders the location (longitude, latitude
and altitude) of the devices, and shows which building and
in which rooms the devices currently reside. When you place
the mouse arrow onto the device icon, detailed information,
such as device ID, the category of the device, the owner of
the device, and how many services it includes, are displayed.
When you click the device icon, it shows all the services it
includes (see the icons at the top of Figure 5), and the detail
information, such as ID, category, access rights, current state
values, and current sensing values, will be displayed if you
further click on those service icons.

To implement this tool, the application first needs to createa
Bundle including the interested services. Then the Negotiator
periodically collects the corresponding information suchas the
location, the state, and the event values. After retrievingthis
information from the Negotiator, the application periodically
generates a KML file and feeds it into Google Earth to render
these images. Therefore, all the states you see in Google Earth
are in real time. If you move a device from one room to another
room, you can see the change in Google Earth.

This visualization tool has several benefits: first, before you
create the Bundles for your application, it is convenient to
check the availability of interesting services through Google
Earth (e.g., how many sensors exist and do I have the access
rights?); Second, it can be used as a debug tool. You can check
the actual values, desired values and the application’s required
value of a service state through Google Earth in order to figure
out whether the current problem is caused by device itself, the
network, or the application’s priority.

9

Fig. 7. TheFireAlarm Application

V. EVALUATION

In this section, we provide an evaluation of our key research
contributions. We evaluate the conciseness and mobility sup-
port of 32 applications coded using the Bundle programming
abstraction. Then we evaluate the energy consumption of
Bundles. We also evaluate delay in actuator configuration.

A. Conciseness and Mobility

To show programming conciseness and a wide variety
of applications, many of which involve mobile nodes, we
implemented 32 applications. They are summarized in Fig-
ure 6. They include environmental monitoring applications
(e.g., AcousticDetector, AverageHumidity and FloodWarn-
ing), tracking applications (e.g., SpyBug, LowEnergyAlert),
control automation applications (e.g., Illuminator, Tracker,
TempRegulator, AutoLocks and OnlyWhen), and monitoring
and alarm applications (e.g., PhotoAlarm, ParkingSpacefinder,
FireAlarm, NeighborhoodWatch and AntiThiefTags). Each of
them is programmed in less than 60 lines of code.

Now we provide description and Java code for 2 of the
above applications. The first application,FireAlarm, is chosen
for its simplicity. The second application,NeighborhoodWatch,
is a more complex application involving multiple sensing

modalities. Both of these applications contain actuators which
are controlled based on feedback from the sensors.

1) The FireAlarm Application:Figure 7 shows theFire-
Alarm application. FireAlarm computes the average tempera-
ture in each room described (in terms of longitude and latitude)
in the negotiators it connects to. If the average temperature in
a room exceeds a specified threshold, all the sounders of that
room must ring.

Some interesting features of this application are that: a) If
sensor nodes change rooms, their temperature samples auto-
matically start contributing to the temperature average ofthe
new room. b) All the temperature sensors that are indoors
are automatically found and the programmer does not need
to know their global identifers. c) During a fire alarm, if a
sounder enters a room where a fire is detected, it automatically
starts ringing. Conversely, if a sounder is removed from a room
where a fire is detected, it automatically stops ringing. d) The
application uses all the services that have the temperature
sensor API and the sounder API: the implementing platform is
transparent to the programmer and can be a Java sensor node
or a TinyOS sensor node. e) If during application execution,a
new sensor node is turned on, it automatically starts sampling
the temperature. f) If during application execution, the user
gains access rights to a new sensor, it automatically starts
sampling the temperature.

These two last features are very important for cyber physical
systems that must run for a long time (months, years) in
networks where sensors and actuators can be moved, removed,
and/or added. Using Bundles, nodes automatically adapt to
application requirements over time.

In the FireAlarm code of Figure 7, we first create the
FireAlarm application class by inheriting from the Application
class. We connect to two negotiators by specifying the IP
hostname, TCP port, user name, and passwords for these
negotiators. The FireAlarm application uses the nodes of those
two negotiators, which are the nodes located in two different
areas. We then obtain the set of zones (each zone represents
a room) stored in those negotiators. For each room, we create
the set of all temperature sensor nodes contained in that room
by overriding the rule method. We specify that these sensors
must sense the temperature every one second by overriding the
foreach method. For each room, we then define the Bundle of
all the sounders in that room if the average temperature in that
room is higher than a specified threshold. Note that this Bundle
does not contain any elements if the average temperature does
not exceed the specified threshold. We then specify that the
sounders that are part of the Bundle must be turned on. Finally,
we call the execute method of the Application superclass
to set the period with which the Bundle membership will
be reevaluated, and with which the application requirements
will be recomputed and uploaded to the negotiators. Some
interesting features of this code are that:

a) the TempBundle class that defines the averaging opera-
tion can be reused in any application to compute over time
the average temperature over an arbitrary set of nodes with
dynamic membership. b) We can easily add new negotiators
to run the FireAlarm application over more buildings. c) If
TEMPERATURE THRESHOLD is a variable, the mem-

10

Application Name Application Description NLC
(1) TempSensorCensus
(2) TempSampler
(M)

These applications find (1) all temperature sensors or (2) a particular temperature sensor of a remote network. (1) 12
(2) 10

SpyBug
(M C)

This application tracks the location of a li st of tags and records it 20

LowEnergyAlert
(M C)

This application makes sensor nodes that lack energy ring when a staff member (who wears an identifying tag)
responsible for changing batteries wanders within 50 meters.

22

AcousticDetector
(M)

This application stores the location of all the acoustic sensors of a network, as well as the amount of noise they sense. 18

Ill uminator
(A)

This application turns on all the lights of a remote network. 9

OneSensorPerRoom
(C)

For each room of a building, this application shows the name of the room and the temperature sensed by a single
temperature sensor in that room.

22

(1) AverageTemp
(2) AverageHumidity
(3) AverageNoise
(M C H)

Compute and show average (1) temperature or (2) humidity or (3) noise in a remote network. For the second case, it
sends an alert to the user if there are less than 10 sensors available for computing the average. For the last case it uses
two types of sensors having dif ferent interfaces manipulated seamlessly by a reusable adapter.

(1) 13
(2) 14
(3) 18

BimodalOccupancy
(M)

This application checks whether a remote hangar is occupied. By default it uses motion sensors but if the number of
motion sensors available is less than a specif ied number, it uses acoustic sensors instead.

32

(1) RoomTemp1
(2) RoomTemp2
(3) RoomTemp3
(M C)

These applications show the temperature sensed by the nodes contained in the room where a specif ied tag is placed.
The displayed temperatures are always (1) the ones in the same room as the tag or (2) the ones in that particular room
or (3) the ones that were initially in that room. In all these cases the tag and the sensors can be mobile and new sensors
can be added in the system.

(1) 18
(2) 19
(3) 20

ConsiderateSensing
(M)

This application shows the temperature sensed in a remote area using only nodes that have suff icient energy reserves. 22

FloodWarning
(H)

This application monitor water levels and displays alerts on nearby road message boards in case of a flood. 24

(1) OnlyWhenInRoom
(2) OnlyWhenEnergy
(3) OnlyWhenIdle
(4) OnlyWhenAtHome
(5) OnlyWhenDark
(6) OnlyWhenNoTV
(7) OnlyWhenWClose
(M U H)

These applications can dynamically change reading rights (1) to the acoustic sensors so that they can be accessed only
when in a conference room, (2) to the temperature sensors so that they can be sampled only when there is enough
energy left, (3) to the accelerometers of a set of laptops so that they can only be read when idle, or (4) writing rights of
the light actuators so that they can be modif ied only by users at home, or (5) only when the average light intensity is
less than a threshold, or (6) can resolve conflicts between radio and TV so that radios within 200 meters of a TV can be
turned on only if the TV is off , or (7) between air conditioners and open windows so that air conditi oner vents can be
opened only when window is closed.

(1) 17
(2) 19
(3) 17
(4) 17
(5) 19
(6) 16
(7) 16

(1) PhotoAlarm
(2) FireAlarm
(M A)

This application turns on (1) all the sounders in a room if the average light intensity or (2) temperature in that room
exceeds corresponding threshold.

(1) 21
(2) 21

ParkingSpaceFinder
 (A)

This application finds a free parking space in a parking lot, and reserves that space. 20

RoomOccupancy
(M)

This application uses acoustic sensors to infer whether remote rooms are occupied. A room is considered occupied if at
least two acoustic sensors have been triggered in the last 10 minutes.

31

Tracker
(M U H A)

This application turns on television sets, music players, and lights wherever the user of a tag goes near, it also resolves
possible conflicts.

30

NeighborWatch
(M U C H A)

A set of neighbors contribute to a neighborhood watch and wear tags. If not tags are in a given house, all the
accelerometers, and light sensor in that house are turned on. A buzzer on all the tags is turned on to alert all the
neighbors in case accelerators are moved or light intensity changes are detected.

56

AntiThiefTags
(M H A)

In each room of a building, this application records the position of tagged objects when it starts. If any object is moved,
all the alarms in that room are raised until the object is returned to its place.

26

AutoLocks
(A)

This application automaticall y opens locks when any authorized users is within 1 meter of the lock and closes them
when no authorized user is within one meter of the lock.

17

TempRegulator
(A H)

This application automaticall y configures an air conditioned unit according to the current average temperature of a
building. Also, it closes and open vents according to the average temperature in each room.

33

Fig. 6. Examples of Applications Written Using Bundles with Corresponding Number of Lines of Code (NLC). The meaning of the tags are defined as
follows: M–mobility aware, A–includes actuators, C–acrossnetwork programming, U–multiple users, and H–heterogeneous devices.

bership of the Bundle of sounders is computed using the
latest value of the variable, not the value at the time of the
Bundle definition. As a consequence, we could easily create a
graphical interface allowing users to dynamically change the
temperature threshold.

2) The NeighborhoodWatch:Figure 8 shows theNeigh-
borhoodWatchapplication. This application has been chosen
to demonstrate multimodal sensing.NeighborhoodWatchis
a collaborative surveillance application that alerts a setof
neighbors if an intruder is detected in one of their houses.
In our implementation, we consider two neighbors (Mary and
John) that wear MICAzs equipped with sounders. We refer to
those MICAZs as the security tags. If there are no security
tags in one of the houses, all the accelerators in that house are
turned on. If any of those accelerators triggers, the sounders of
Mary and John ring for ten minutes so that they are informed
that an intrusion may be in progress. Accelerators can be

triggered when an intruder tries to steal a television on which
it is placed. Also, if there are no security tags in one of the
houses, all the light sensors are turned on. If a difference in
measured light intensity is detected while Mary and John are
away, the sounder of Mary and John ring so that they are
informed of the intrusion.

In the NeighborhoodWatchcode shown in Figure 8, we
first connect to two negotiators contained in the house of
Mary and John. We create references to the sounders of the
security tags of Mary and John. For each building, we create
the Bundle of all the accelerometers that are in that building,
if neither Mary nor John sounders are in that building. This
Bundle does not contain any member if the sounder of
either Mary or John is in the building. The accelerometers
that are members of the Bundle are turned on and marked
as triggered if their acceleration levels exceed a specified
threshold. For each building, we create the Bundle of all the

11

Fig. 8. TheNeighborhoodWatchApplication

photometric sensors in that building, if neither Mary nor John
sounders are in that building. This Bundle does not contain
any member if the sounder of either Mary or John is in
the building. The photometric sensors are turned on and the
samples are recorded. Periodically, we check the number of
accelerometers that have been triggered within the last minute
and the number of photometric sensors that have detected light
anomalies. If either number is greater than 1, the sounders of
Mary and John are triggered. One interesting feature of the
NeighborhoodWatch application is that it is easy to extend it
to many neighbors and many houses.

Lack of space precludes full descriptions of all 32 appli-
cations, but from these 32 examples we see that Bundles can
concisely specify the logic of a variety of applications. These
applications are proof to our previous claim that Bundles
can: 1) group heterogeneous types of sensors and actuators;
2) handle both intra and inter network mobility; 3) support

public class ParkingSpaceFinder extends Application{

 private Bundle<ParkingSpace> spaces;
 public ParkingSpaceFinder(){
 this.add(new Negotiator(HOST,PORT,USER,PASSWORD));
 this.execute(100/*milliseconds*/);

 // Creates the bundle of sensors that detect whether parking
 // spaces are free or occupied. This sensors also have a
 // state that indicates whether their space is reserved.
 spaces=new Bundle<ParkingSpace>(ParkingSpace.class,this){
 public boolean rule(ParkingSpace p){return true;}
 public void foreach(ParkingSpace p){
 p.period.set(1000l/*milliseconds*/);
 p.senseOccupied.set(true);
 }
 };
 }

 // Get the location of the closest parking space
 // according to current location.
 synchronized public ParkingSpace getParking(Gps location){
 List<ParkingSpace> spacesCopy=spaces.copy();
 if(spacesCopy.size()==0) return null;
 ParkingSpace closest=spacesCopy.get(0);
 for(ParkingSpace p:spacesCopy){

if(p.senseOccupied.getLastSample()==false &&
p.reserved.get()==false && location.distance(closest.gps()) >
location.distance(p.gps())){

 closest=p;
 }
 }
 closest.reserved.set(true);
 return closest;
 }
}

Fig. 9. TheParkingSpaceFinderApplication

applications that group sensors and actuators from multiple
remote WSNs; 4) support multiple users and multiple appli-
cations to use the same sensors and actuators concurrently
(because many of these applications are using the same devices
and they can run concurrently).

To further illustrate ease and conciseness of programming
with Bundles, we compare the code of a very simple appli-
cation, ParkingSpaceFinderusing nesC [6] and our design.
The nesC code can be found in [15] and our code is shown
in Figure 9. The nesC code has 42 lines of code and our
code has 20 lines of code. The nesC code needs to imple-
ment explicit mechanisms to prevent one car to be reserved
multiple times for the same user, and to make sure that the
chosen parking space is the closest one. By contrast, Bundles
relay all the necessary data in a central process which can
easily check the nodes and reserve one within a synchronized
method, thereby resolving the consistency issues that make
the coding of application that execute in a distributed manner
more difficult. As applications become more complex, the
percentage improvement in code size between Bundles and
nesC will grow.

B. Energy Conservation

While there are many benefits for Bundles, by using a
centralized architecture, Bundles are expected to consume
more energy than using the traditional distributed approach. To
quantify the energy performance of Bundles, using simulation
we compare the energy consumption of a target tracking
application by using a distributed Vigilnet [10] design anda

12

Node Radio Processor Sensor Total
state state state state power

Initialization receive active off 49.449mW
SentrySleep off sleep off 42µW

NonSentrySleep LPL sleep off 450µW
AwakeComm receive active off 49.449mW

AwakeCommSensing receive active on 71.45mW
AwakeSensing receive active on 70.01mW

TABLE II
POWER CONSUMPTION ACCORDING TO NODE STATE. THIS TABLE

DESCRIBES THE VARIOUS SLEEP STATES AND ACTIVE STATES OF THE

SENSOR NODES. WE OBTAINED THE POWER CONSUMPTION VALUES BY

EMPIRICALLY MEASURING THE POWER CONSUMPTION OFXSM NODES.

Fig. 10. Average Detection Probability for Sentry Selection with Duty Cycle
Scheduling

centralized Bundle design. In addition to being distributed,
Vigilnet allows in-network data aggregation and node-to-
node communication, which is used to optimize the energy
conservation. By contrast, Bundles use a centralized solution,
in which in-network data aggregation and node-to-node com-
munication are not allowed.

The goal is to compare the lifetime of the entire network
which is defined as the number of days for which the detection
probability of target, which is defined as the percentage of
successful detections among all targets that enter the network
area during one day, remains greater than 90%. The simulator
is based on XSM platform [5] and its empirical power con-
sumption model (shown in Table II). We suppose that a mote
dies when it has used 85% of its available energy and the
sensing range of sensors is 10 meters. This simulator randomly
distributes 10,000 nodes within a square of edge 1000 meters.
In this simulator, a target enters and exits the network areaat
random points on the edges of the network. The trajectory of
the target is a straight line with a constant speed. There is at
most one target within the sensor field at any point in time.

In our simulator, both designs use the TinyOS collection tree
protocol. We assume that there is one base station (gateway)
for every 100 nodes. Nodes self-organize into a collection
tree rooted at their closest base station in terms of number
of communication hops. The base stations are connected
through TCP-IP to a central computer (which acts as both
the negotiator tier and application tier) to report detections.
The simulator assumes that Vigilnet uses a flooding protocolto

Fig. 11. Average Delay for Reconfiguring the State of Remote Actuators

reconfigure the nodes. A distributed algorithm is used to select
which nodes should be awake and which node should be asleep
to save power while maintaining appropriate sensing coverage
of the field. On the other hand, Bundles use a unicast protocol
for reconfiguration. In our first experiment, we assume none
of the designs employ any energy conservation techniques and
in the second experiment we assume both of them employ an
energy conservation technique called sentry selection, which is
implemented in conjunction with duty cycle scheduling [10].
In case of the Bundles, this technique is implemented in sucha
way that sentry selection is performed by the base stations and
duty cycles of the nodes are configured by the base stations
by control messages.

When no power management techniques are used, both
the designs present the same power consumption patterns. In
case of sentry selection with duty cycling, Figure 10 presents
the detection probability, as a function of the duration for
which the network has been deployed. We observe that the
network lifetime using Bundles is only 83.9% of the lifetime
using Vigilnet (the lifetime is 73 days for Bundles and 87
days for Vigilnet). The reasons that Bundles consume more
energy than Vigilnet are: first, Vigilnet uses node to node
communication, while in our design, all operations involving
multiple nodes go through a central process; second, Vigilnet
uses data aggregation, while in case of Bundles, all nodes
report directly to the central process through the base station;
third, Vigilnet floods a single message to initiate the sentry
selection, while we must send several unicast messages to each
node, one by one. Although Bundles consume more energy
than the traditional distributed applications as in this example,
the achieved lifetime is still acceptable.

C. Delay in Actuator Configuration

As we mentioned in Section IV-C, a negotiator remembers
the requirements of applications and tries to configure the
actuators of the corresponding Bundles until successful. In this
section, we evaluate the average delay for reliably changing
the state of remote actuators as function of the number of
actuators in a Bundle.

For this experiment, we use real micaz motes. The experi-
mental setup is as follows. We write an application that creates

13

a Bundle of light actuators (LEDs) of the micaz motes. We
vary the number of members of the Bundle from2 to 28

actuators. The gateway, the negotiator and the applicationare
implemented in the same machine. The application switches
the light actuators of the Bundle on and off in the following
way. When the actual state of a LED is equal to off, the
application generates a requirement to turn it on. When the
actual state of a LED becomes equal to on (and that this
information reaches the application process), the application
changes its requirement to turn the LED off, an so on and so
forth. In the meanwhile, the application measures the time
it takes from the generation of a new requirement to its
satisfaction.

As the underlying routing protocol, the TinyOS collection
tree protocol (CTP) is used to build a collection tree rooted
at the gateway. We use CTP under two different settings. In
one setting, we use the TinyOS dissemination protocol (DP)
to reliably deliver configuration messages from the gateway
to the actuators. In the other setting, we use unicast protocol
(UP) for this purpose.

The results of this experiment are shown in Figure 11, which
graphs the average delay for reliably changing the state of
remote actuators, according to the the number of actuators in
the Bundle. We first note that, whether DP or UP is in use,
for Bundles of up to 8 actuators, the average delay for reliably
changing the state of remote actuators varies from1.24 to
2.24 seconds. Note that this delay includes the delay for the
application to change its requirement on the negotiator, the
delay for the negotiator to compute the new desired state of
the remote actuator, the delay for the gateway to contact the
negotiator about update, the delay for the negotiator to reply
to the gateway with a configuration message, the delay for the
gateway to forward the messages to the remote actuator, and
the delay for the remote actuator to send an acknowledgment
back to the gateway, which forwards it to the negotiator, which
forwards it to the application. We observe that when using
a Bundle larger than eight actuators, the performance starts
to degrade, whether DP or UP is used; however, UP offers
significant performance improvements over DP: The average
delay in the case of DP increases 3.72 times as fast as the
average delay in the case of UP. This can be explained as
follows. In small networks with up to eight nodes, DP and
UP have similar delays, because all the nodes are within one
communication hop of the base station and, as a consequence,
UP does not offer any advantage over DP. In the case of
networks with more than eight actuators, DP suffers from a lot
of contention as it tries to send each message to each node. The
contention is exacerbated by the fact that DP nodes constantly
try to communicate with each other to check whether they
have received the last message.

VI. L IMITATIONS

Although the Bundle is a powerful and flexible program-
ming abstraction, there are some limitations mainly due to
its centralized architecture. Firstly, Bundle does not have the
capability of in-network aggregation and processing. This
may result in more energy consumption than the distributed

programming abstraction in some specific scenarios. Secondly,
all the configuration messages from the applications must be
first uploaded to the negotiator. After being processed, these
messages go from the negotiator to the network nodes via the
gateway. The updates from the network nodes also have to
go to the negotiators first, from where they eventually reach
the applications. Therefore, the response time may not be not
as good as the other programming abstractions. Experiments
performed in [24] show that Bundles should not be used for
applications having responsiveness requirement less thantwo
seconds. Thirdly, the Bundle requires at least one base station
per network (i.e., gateway). However, in some scenarios, a
centralized machine may not be available (e.g., in the wild
area). Finally, another limitation of Bundles is that they create
a strong dependency between the negotiators and the resource
constrained sensors: the sensors must be able to communicate
with their negotiator in order to configure themselves properly
and store the data they generate. In future, we aim to extend
Bundle design to support in-network aggregation and local
processing within Bundles so that energy consumption and
responsiveness improve.

VII. C ONCLUSION

In this paper, we present a group based abstraction called
Bundle for cyber physical systems. Characteristics of Bundles
include easy and concise across networks programming, sup-
port for both intra and inter network mobility and multiple
applications using same sensors and actuators concurrently.
Evaluations show that application programming is concise and
energy consumption is also acceptable. Memory usage for
each device is constant regardless of the number of concurrent
applications.

VIII. A CKNOWLEDGEMENTS

This work was supported, in part, by NSF Grants CNS-
0626632 and IIS-0931972.

REFERENCES

[1] A. Bakshi and V. K. Prasanna, “The abstract task graph: a method-
ology for architecture-independent programming of networked sensor
systems,” inEESR, 2005.

[2] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode, “Spa-
tial programming using smart messages: Design and implementation,”
in ICDCS, 2004, pp. 690–699.

[3] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: A programming
model for event-driven embedded systems,” inSAC, 2003, pp. 698–704.

[4] C. Curino, M. Gianni, M. Giorgetta, A. Curino, A. L. Murphy, and
G. P. Picco, “Tinylime: Bridging mobile and sensor networks through
middleware,” inPerCom, 2005, pp. 61–72.

[5] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random, and
ephemeral events,” inIPSN, 2005, pp. 497–502.

[6] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesc language: A holistic approach to networked embedded systems,”
in PLDI, 2003, pp. 1–11.

[7] O. Gnawali, K.-Y. Jang, J. Peak, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler, “The tenet architecture for tiered sensor
networks,” inSenSys, 2006, pp. 153–166.

[8] R. Gummadi, O. Gnawali, and R. Govindan, “Macroprogramming
wireless sensor networks using kairos,” inDCOSS, 2005, pp. 126–140.

[9] T. He, J. A. Stankovic, R. Stoleru, Y. Gu, and Y. Wu, “Essentia:
Architecting wireless sensor networks asymmetrically,” inINFOCOM,
2008, pp. 1184–1192.

14

[10] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R.Stoleru,
J. A. Stankovic, and T. F. Abdelzaher, “Achieving long-termsurveillance
in vigilnet,” in INFOCOM, 2006, pp. 1–12.

[11] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and K. Whitehouse,
“Macrolab: a vector-based macroprogramming framework for cyber-
physical systems,” inSenSys, 2008, pp. 225–238.

[12] D. Jacobi, P. E. Guerrero, I. Petrov, and A. Buchmann, “Structuring
sensor networks with scopes,” inEuroSSC, 2008.

[13] D. Jacobi, P. E. Guerrero, K. Nawaz, C. Seeger, A. Herzog, K. V.
Laerhoven, and I. Petrov,From Active Data Management to Event-Based
Systems and More, ser. Lecture Notes in Computer Science. Springer,
2010, vol. 6462, ch. Towards Declarative Query Scoping in Sensor
Networks, pp. 281–292.

[14] J. King, R. Bose, H.-I. Yang, S. Pickles, and A. Helal, “Atlas: A
service-oriented sensor platform: Hardware and middleware to enable
programmable pervasive spaces,” inLCN, 2006, pp. 630–638.

[15] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable
and efficient programming abstractions for wireless sensor networks,”
SIGPLAN Not., vol. 42, no. 6, pp. 200–210, 2007.

[16] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic, “Envirosuite:
An environmentally immersive programming framework for sensor
networks,” Trans. on Embedded Computing Sys., vol. 5, pp. 543–576,
2006.

[17] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting
aggregate queries over ad-hoc wireless sensor networks,” in WMCSA,
2002, pp. 49–58.

[18] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[19] L. Mottola and G. P. Picco, “Logical neighborhoods: A programming
abstraction for wireless sensor networks,” inDCOSS, 2006, pp. 150–168.

[20] R. Newton and M. Welsh, “Region streams: functional macroprogram-
ming for sensor networks,” inProceeedings of the 1st international
workshop on Data management for sensor networks: in conjunction with
VLDB 2004, 2004, pp. 78–87.

[21] Y. Ni, U. Kremer, and L. Iftode., “Spatial views: Space-aware program-
ming for networks of embedded systems,” inLCPC, 2003, pp. 258–272.

[22] K. Römerand, C. Frank, P. J. Marrón, and C. Becker, “Generic role
assignment for wireless sensor networks,” inEW11, 2004, pp. 7–12.

[23] F. Sun, C.-L. Fok, and G.-C. Roman, “schat: A group communication
service over wireless sensor networks,” inIPSN, 2007, pp. 543–544.

[24] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic, “Physicalnet:
A generic framework for managing and programming across pervasive
computing networks,” inRTAS, 2010.

[25] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” inNSDI, 2004, pp. 29–42.

[26] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood:a neighbor-
hood abstraction for sensor networks,” inMobiSYS, 2004, pp. 99–110.

[27] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: A framework
for composable semantic interpretation of sensor data,” inProceedings
of the European Workshop on Wireless Sensor Networks, 2006.

Pascal A. Vicaire Pascal A. Vicaire graduated with
a PhD in Computer Science from the University of
Virginia in October 2008 and is now an Engineer for
the Elastic Compute Cloud division of Amazon Web
Services. His research interests include Wireless
Sensor Networks and Cloud Computing.

Enamul HoqueEnamul Hoque completed his Bach-
elor of Science degree in Computer Science from
Bangladesh University of Engineering and Technol-
ogy in 2007 and obtained a Master in Computer
Science (MCS) Degree from University of Virginia
in 2010. He is now a Ph.D. candidate in Computer
Science Department of University of Virginia super-
vised by Professor John A. Stankovic. His current
research directions are on middleware for wireless
sensor networks, applications of wireless sensor net-
works in behavioral monitoring for healthcare and

energy conservation.

Zhiheng Xie Zhiheng Xie graduated with a Master
Degree in Software Engineering from Tsinghua Uni-
versity China in 2007 and is now a Ph.D. candidate
in Computer Science Department of University of
Virginia, following advisor John A. Stankovic. Xie’s
current research directions are on wireless sensor
networks middleware, communication reliability and
localization.

John A. Stankovic Professor John A. Stankovic is
the BP America Professor in the Computer Science
Department at the University of Virginia. He served
as Chair of the department for 8 years. He is a Fellow
of both the IEEE and the ACM. He won the IEEE
Real-Time Systems Technical Committee’s Award
for Outstanding Technical Contributions and Leader-
ship. He also won the IEEE Technical Committee on
Distributed Processing’s Distinguished Achievement
Award (inaugural winner). He has won four Best
Paper awards, including one for ACM SenSys 2006.

He has given more than 25 Keynote talks at conferences and many Distin-
guished Lectures at major Universities. He was the Editor-in-Chief for the
IEEE Transactions on Distributed and Parallel Systems and was founder and
co-editor-in-chief for the Real-Time Systems Journal. His research interests
are in real-time systems, distributed computing, wireless sensor networks,
and cyber physical systems. Prof. Stankovic received his PhDfrom Brown
University.

