
ANDES: an ANalysis-based DEsign tool for
wireless Sensor networks

Vibha Prasad∗, Ting Yan∗, Praveen Jayachandran†, Zengzhong Li∗, Sang H. Son∗, John A. Stankovic∗,
Jörgen Hansson‡ and Tarek Abdelzaher†

∗Department of Computer Science, University of Virginia, Charlottesville, VA 22904
†Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801

‡Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213
Email: {vibha, ty4k, zl5r, son, stankovic}@cs.virginia.edu, {pjayach2, tarek}@cs.uiuc.edu, hansson@sei.cmu.edu

Abstract— We have developed an analysis-based design tool,
ANDES, for modeling a wireless sensor network system and
analyzing its performance before deployment. ANDES enables
designers to systematically develop a model for the system, refine
it iteratively by tuning the system parameters based on existing
analysis techniques, and resolve key design decisions according
to the required system performance. We also present a real-
time communication schedulability analysis for sensor networks
based on exact characterization which utilizes information
regarding network topology and workload characteristics to
analyze the schedulability of a set of periodic streams with real-
time constraints. We further demonstrate the use of ANDES
for the designers through detailed case studies where we
design wireless sensor network applications (for target detection
and environmental monitoring) using ANDES and validate the
results through simulations.

Currently, ANDES supports communication schedulability
analysis, target tracking analysis and real-time capacity analysis
which work on system models with differing levels of detail.
ANDES has been developed by extending the AADL/OSATE
framework which has been used extensively for real-time and
embedded systems. Based on key insights gained from the
development of this analysis tool, we address issues in AADL
for its use in the field of wireless sensor networks. We have
developed a plug-in for ANDES, called ModelGeneration, which
bridges the gap between the semantics needed for sensor
networks and the syntax supported by AADL. This makes it
easy for sensor network designers to build system models that
are intuitive to them. Furthermore, ANDES is extensible and
new analysis techniques can be easily incorporated into the
toolset.

I. INTRODUCTION

Wireless sensor networks (WSNs) have recently gained a
lot of attention because of their potential to have a huge
impact on the way we live and society in general. WSNs
are used for a variety of applications such as environmental
monitoring, chemical plants, vehicle tracking, and smart
healthcare. WSNs are composed of a large number of nodes,
each of which have limited capability for sensing, processing,
and communication. These nodes are deployed in real-world
environments. Properly designing the WSN before deploy-
ment is crucial and involves resolving trade-offs between
many competing objectives. For example, increasing the
number of nodes up to some density limit usually improves
the performance of the system, but at the same time increases
the cost of the system. Moreover, the system requirements

vary vastly from one application to another. For example, the
main constraints in a military application [9] may be lifetime
and real-time constraints, whereas in a healthcare application
[21], privacy may have higher priority than lifetime.

There is a growing need for tools that aid system de-
signers in performance tuning before system deployment.
We propose an analysis-based design tool ANDES, which
relies on offline analysis of the system model to help resolve
design decisions. Theoretical analysis techniques are used to
estimate key performance metrics (such as lifetime, sensing
coverage, real-time capacity and reliability) of the system
model based on a set of system parameters (such as the
number of nodes, duty cycle, sensing range of nodes, and
the available bandwidth). During the design process, these
analysis techniques can be applied iteratively to tune various
system parameters based on the desired performance and
the performance estimated by the analyses. System param-
eter tuning using theoretical analysis techniques have the
attractive benefits of being inexpensive in terms of time
and resources, better suited to large scale systems, and
having a wider applicability and reusability across multiple
deployments, as opposed to using simulation tools or system
prototypes. Currently, ANDES supports target tracking anal-
ysis, real-time communication schedulability analysis, and
real-time capacity analysis, and we envision a larger suite
of analysis techniques to be incorporated into ANDES in the
future.

Our main contribution lies in introducing a design tool to a
field like WSN where few existed, and providing a convenient
mechanism for the designers to use theoretical analyses for
design. Secondly, we develop a new real-time communication
schedulability analysis which accurately determines the set
of end-to-end streams that are schedulable within their dead-
lines. Many WSN applications, especially those concerned
with military surveillance, rescue squads, or fire detection
systems have real-time constraints and would benefit from
such an analysis. This new analysis models itself after the
exact characterization schedulability analysis found in real-
time computing. Finally, we present a case study to illustrate
the use of analysis techniques in ANDES in the design of
a sensor network, and validate the results obtained through
simulations.

The remainder of the paper is organized as follows. We
discuss the related work and the motivation for this work in
Section II. In Section III, we explain our novel real-time
communication schedulability analysis. In Section IV, we
explain the other analysis techniques taken from the literature
but implemented in ANDES, namely, target tracking analysis
[3] and real-time capacity analysis [1]. The implementation
of ANDES and the ModelGeneration plug-in support is
discussed in Section V. In Section VI, we perform detailed
case studies to demonstrate how ANDES can be useful for
designers. We design a tracking-based application and an
environmental monitoring application, and validate the results
obtained from ANDES through simulations. We conclude and
discuss future work in Section VII.

II. MOTIVATION AND RELATED WORK

Generally, designers of a WSN carry out simulations
or evaluate the performance of a small prototype before
developing the system. Various tools and services have been
proposed in the literature to aid in-field testing and debugging
[12], or performing simulation and emulation [7], [2], [18].
However, in-field testing requires at least a prototype system
to be deployed and compared to simulations and prototyping,
conducting offline analysis is inexpensive in terms of time
and resources. At the same time, the accuracy of theoretical
analyses depends on its assumptions and on how close the
mathematical models assumed by the analysis are to the
actual real-world scenario. Generally, simulators allow the
designers to tune many different parameters and provide
a fairly good resemblance of the real environment. Thus,
theoretical analysis provides an alternate method of designing
systems with lower cost and accuracy as compared to detailed
simulation. Analysis-based design can be used along with
simulation to evaluate trade-offs involved during system
design.

Although theoretical analysis of WSNs is a relatively new
area, there is a growing interest and new types of analysis
are continuously being developed [3], [11], [23], [22], [1].
We believe that the attractive benefits of theoretical analysis
towards system design will foster the development of a much
needed theoretical foundation in the field of WSNs. Adding
analysis techniques to design tools further has the advantage
of providing the designers with the familiar and easy-to-use
interface of the design tool while providing the benefits of
theoretical analysis.

With respect to WSN systems, an analysis technique can be
classified as an application level analysis or a system level
analysis. Application level analysis techniques are specific
for an application and assume a global view of the system,
where the internal details of the WSN, such as the routing
protocol, the energy level at each node etc., are hidden from
the analysis and thus can be considered to be a part of
the assumptions. System level analysis techniques operate
at the system level and consider issues such as routing,
communication model, group management protocols etc.,
depending on the level of abstraction provided by the system
model.

From a designers’ point of view, it is desirable to start
from a high-level model and incrementally add complexity
to the model. Based on the results obtained from higher level
analyses, the designers can fix certain system parameters
(such as the node density, the duty cycle of the sensor
nodes and the network topology) and move on to system
level analyses. The designers can continue to choose other
analysis techniques that focus on different sets of input sys-
tem parameters and performance metrics. Suppose initially
the designers want an estimate of the number of nodes to
adequately cover a given area or to meet the desired quality
of tracking (in a tracking-based application). After deciding
on the no. of nodes and the topology of the network, the
designers may be interested in estimating the capacity of the
network or evaluating various routing protocols. At a lower
level, the system model can further be integrated with an
energy model, which considers transmission cost, reception
cost and computation cost, to determine the expected lifetime
of the system. Using this energy model, the system designers
may further want to understand the effect of data aggregation
on schedulability or estimate the reliability of the current
system. Note that at each step we are getting closer to
the actual implementation of the WSN. Thus, the system
model can be refined iteratively by performing analysis at
each level of abstraction/granularity. Ideally, the final model
should cover as many design decisions as possible using the
available analyses.

We used the AADL/OSATE framework for ANDES.
AADL/OSATE has been widely used for real-time and em-
bedded systems and provides a component-based framework
for modeling hardware and software components as well as
the interaction between these components. More importantly,
AADL/OSATE offers several analysis plug-ins for embedded
and real-time systems which can be used for WSNs. Some
examples of the available analyses and consistency checks
are required connection checking (which ensures that some
ports are always connected), flow latency analysis (which
checks the latency of flow implementations with respect to
the flow specifications) and resource allocation and budget
analysis (which allows users to perform resource budgeting
for processors, memory and network bandwidth and analyze
whether the capacity is exceeded by the budgets). Thus,
AADL/OSATE is an ideal platform for WSN systems which
involve a very close interaction between the hardware and
software components and can benefit from the existing sup-
port offered by AADL/OSATE.

Design frameworks other than AADL/OSATE could be
used, but using AADL has several advantages over other
existing design tools such as the following. Tools like VEST
[16] and Cadena [8] have been developed in academia, but are
not as widely used nor as mature as AADL. There are several
UML-based tools like Rhapsody [15], but UML [10] does
not support precise semantics and is not used specifically for
real-time and embedded systems. Tools like TimeWiz [19]
and STOOD [17] are proprietary and MetaH [20], developed
by Honeywell, is the predecessor of AADL.

There are a few other design tools for WSNs, but their
motivation and approach is different from ANDES. Tinker
[4] is a high-level design tool for sensor networks which
uses actual data streams from the deployment site to decide
on data processing algorithms. Various algorithms can be
compared to find the one that gives the best result for
the given application. Unlike Tinker, ANDES does not use
data to guide its decisions. It uses an analysis-based design
approach to decide on the system configuration. However,
ANDES can be extended to include data-driven analysis
where real-world deployment data is used to tune the system
model. Integrating data processing algorithms with ANDES
can be part of the future work. SensDep [14] is a design tool
for WSNs which considers the trade-off between coverage
and the cost of the system. This is closer to the work
presented through ANDES. SensDep considers mobility and
differential surveillance requirements. The optimal solution
presented in the paper works for small scale systems only and
is based on integer mathematical programming. The heuristic
solutions work by generating a list of deployment patterns
and matching the deployment patterns that perform well with
devices. Currently, ANDES does not support such an analy-
sis. However, such an analysis can be easily incorporated in
ANDES.

Both the tools help the designers in understanding the
system better and develop a model in a more informed
manner. However, using ANDES has additional benefits. The
AADL system model can be used as a document for inter-
action among the designers, clients and developers through
all phases in the software lifecycle. Building architectural
models allows the designers to early on and throughout the
development cycle establish assurance of a system design,
and conduct impact and trade-off analysis, e.g., with respect
to performance, security, and dependability. As the models
are incrementally augmented with system details and pa-
rameters, the designers can establish increased assurance of
the quality attributes of the system design. In addition to
improving the quality and predictability of the system design,
this achieves a considerable reduction in the cost (time and
money) of testing and maintenance.

The existing work on WSN analysis consists of isolated
efforts and the analyses are usually geared towards a specific
application. Our vision of ANDES consists of a design
framework for WSNs that not only has the support provided
by AADL/OSATE, but also integrates these isolated efforts
into a repository of analyses which are at the designers’
disposal. This unified framework will provide the designers
with ample choice which would not have been available
otherwise. The designers can use the wealth of knowledge
available in the AADL/OSATE framework and through the
repository for modeling and validation of WSN systems. At
the same time, it is crucial for the success of such a tool not
to compromise on the convenient, easy-to-use and intuitive
interface for the designers.

III. COMMUNICATION SCHEDULABILITY ANALYSIS

The main goal of the real-time communication schedu-
lability analysis is to find out if a schedule for multi-
hop end-to-end communication streams is able to meet the
deadlines of all the streams in the system under given
assumptions. This problem is NP-hard [11], we develop
and evaluate three offline heuristic algorithms with different
scheduling granularity and problem scale. We model our
solutions after the exact characterization method employed
in real-time scheduling theory. Although, many asymptotic
throughput analyses for WSNs exist in the literature, they
only consider the general throughput bounds and do not
utilize information regarding the network configuration and
the workload characteristics, if they are known beforehand.
We assume complete knowledge of the network configu-
ration and workload characteristics and focus on periodic
streams with explicit time constraints, instead of dealing
with bit-level workloads. In developing the communication
schedulability analysis, we were motivated by the grow-
ing number of WSN applications with real-time constraints
(military surveillance systems, fire detection system, volcano
monitoring etc.) and the lack of analysis techniques on
communication schedulability which take interference among
sensor nodes into account. The communication schedulability
analysis is especially suited for such applications where the
throughput analysis may be too pessimistic in its evaluation.
The designers can perform the throughput/capacity analysis
to understand the communication capabilities of the system
and refine the design to include information regarding the
network topology and workload characteristics to analyze
the system using the communication schedulability analysis.
This information can come from constraints imposed by the
application requirements (e.g. on the period of streams), or
the deployment environment (e.g. on the network topology),
or from previous experiences. In this section, we explain the
three algorithms, Stream-Major, Link-Major and Time-Major
algorithms and evaluate them in Section VI-D. For further
details, the reader can refer to [11].

All communication links are assumed to be symmetric.
For successful transmission, the receiver should lie within the
sender’s radio range and no other sender should lie within the
interference range of the receiver. It is also assumed that the
receiver’s interference range is not less than the radio range
of the receiver, which is true for most wireless scenarios.

The analysis defines streams as periodic end-to-end data
transmissions which need to traverse from source sensors
to destination sensors via multiple hops. Every stream is
characterized by an ordered tuple, Stream Vector = (Deadline,
Period, Start Time, Transmission Delay, Routing Path). The
Deadline is the maximum duration of time starting from
inception of a packet of the stream, within which the packet’s
end-to-end transmission needs to be completed. The Period
defines how frequently the stream regenerates. A new in-
stance of the stream is generated after each period. The Start
Time is the time when the timer starts counting down for
the Deadline. The Transmission Delay is the time taken for

data sensor data
end sensor data;

property set wsn property is
grid size: aadlinteger applies to (system);
...
node no: aadlinteger applies to (device);

end wsn property;

device Node
features

in port: in data port sensor data;
out port: out data port sensor data;

flows
flow source: flow source out port ;
flow path: flow path in port − > out port;
flow sink: flow sink in port;

end Node;

device implementation Node.node0
properties

wsn property::node no => 0;
end Node.node0;
...

system wsn
end wsn;

system implementation wsn.wsn1
subcomponents

node0: device Node.node0;
...

connections
conn14: data port

node1.out port − > node4.in port;
...

flows
stream1:

end to end flow node1.flow source -> conn14
-> node4.flow out -> conn43 -> node3.flow sink;

...
properties

wsn property::grid size => 3;
...

end wsn.wsn1;

Fig. 1. A Simple AADL Program with streams

one hop transmission and is assumed to be the same for
the entire path of the specific stream. The delay can be
used to account for the unreliable nature of the wireless
medium. The Routing Path is a list of communication links
through which the data is transmitted in order to reach the
destination node. An internal data structure called the link
allocation table is used for the analysis, where the rows
represent all the communication links in the network and
the columns represent time slots. A time slot represents the
number of time units for a single packet transmission. A table
entry represents the status of the communication link (free,
allocated, blocked) in a given time slot.

The basic scheduling strategy followed by the heuristic
algorithms is as follows:

1) Find and choose the most important stream based on
scheduling heuristics.

2) Find and allocate free link entries to the stream taking
interference into account.

3) Update every stream’s importance upon the changes

made by the new allocation.
4) If there are streams waiting to be scheduled, return to

step 1.

The scheduling heuristic determines which stream should
be scheduled in the current scheduling step. The heuristic
can be a static heuristic (based on deadline, period or total
no. of transmission hops), that do not change during the
scheduling process, or dynamic heuristics which may change
in every scheduling step. Dynamic heuristics can further be
divided into Urgency-First and Throughput-First heuristics.
Urgency-First heuristics give higher priority to streams that
are closer to their deadline. Throughput-First heuristics try
to maximize the channel use. Furthermore, there are three
urgency metrics of interest, earliest start time, laxity, and
velocity, which reflect different properties of the network
and the workload. Earliest start time (EST) is the earliest
time slot which is available to the stream such that there
are enough continuous unoccupied and non-interfered free
entries in the link allocation table to be allocated for the
stream’s next requested communication link. EST not only
depends on the stream’s preceding state, but also on other
streams’ states as one stream’s transmission interference may
delay the other streams. The laxity of a stream represents the
delay (in terms of time slots) it can tolerate in the remaining
transmissions and it can be calculated as: Laxity = Start
Time + Deadline - Remaining Hops × Transmission Delay
- EST. Streams with lower value of laxity are more urgent.
Adding EST to the calculation of laxity increases its accuracy.
Velocity indicates the stream’s required transmission speed
and can be calculated as: Velocity = Remaining Hops/(Start
Time + Deadline - EST). Thus, streams with larger velocities
have higher urgency. A similar throughput heuristic is hard
to quantify because of the NP-Hard nature of the problem.
However, we can associate an interference index with every
requested communication link, which indicates the number
of links with which this link interferes. A heuristic solution
for the throughput optimization can be obtained by choosing
the stream with the smallest interference index.

Scheduling the different streams in the network occurs
in a sequence of scheduling steps, where each schedul-
ing step represents a run of the scheduling heuristic. The
Stream-Major algorithm schedules one entire stream in every
scheduling step using laxity as its urgency metric. The
Link-Major algorithm schedules one individual link in every
scheduling step using laxity as its urgency metric. Note that
although laxity is being used as the urgency metric, EST
has to be calculated in every scheduling step. The Time-
Major algorithm allocates link entries for one time slot in
every scheduling step. It is motivated by the Throughput-First
heuristic which aims at scheduling multiple simultaneous
transmissions. Among these three algorithms, Stream-Major
has the least number of scheduling steps as it schedules all
instances of a stream in each scheduling step. The scheduling
granularity of Stream-Major algorithm is still coarse as
compared to the other algorithms, as it does not consider
the individual priority of the stream instance and schedules

the entire stream at once. The number of evaluations of the
heuristic that are needed are of the order of O(N2), where
N is the number of streams. In contrast, Link-Major has the
maximum number of scheduling steps as it schedules one
link of one active instance of a stream in each scheduling
step. It is supposed to have the highest scheduling precision
among these three algorithms as it schedules one transmission
of one instance of a stream in every scheduling step. The
total number of evaluations of the heuristic needed are of
the order of O(N × I × H2), where N is the number of
streams, I is the average number of instances per stream,
and H is the average number of transmission hops per
stream. The Time-Major heuristic involves fewer scheduling
steps than the Link-Major heuristic as it schedules multiple
transmissions in one scheduling step. For Time-Major, the
total number of evaluations is O(SchedulingLength), where
SchedulingLength is the number of columns needed in the
link allocation table.

The schedulability analysis is designed for cases where
the designers have a detailed knowledge of the system. More
specifically, the designers should have sufficient information
about the expected workload in the system. This is dependent
on the application. For example, suppose in a WSN fire
alarm and rescue system, all the sensor nodes send data
periodically back to the base station (and have a sleep cycle
to conserve energy). However, in case of a fire, all nodes
wake up and send data with a smaller period back to the
base station. This data can be used to rescue people in the
building. In those crucial moments, it is necessary that no
data is lost in transition and the information reaches within
a deadline. Using the communication schedulability analysis,
the designers can evaluate the performance of the system for
average as well as worst case workloads. Figure 1 shows the
system model required for the communication schedulability
analysis, which has much more detail than the tracking
analysis (Figure 2). Note that a sensor node participating
in a stream can either pass data or act as a source/sink of
data (flows in device Node). One of the end-to-end streams,
stream1, is shown, where the data flows from node1 to node3
via node4 (using conn14 and conn43).

IV. ANALYSIS TECHNIQUES IN ANDES

Currently, we have developed plug-ins to support three
analyses: target tracking analysis [3], real-time capacity anal-
ysis [1] and real-time communication schedulability analysis
(described in Section III). To fully understand the value of
the tool, in the following subsections, we briefly explain
the theory behind the tracking analysis and the capacity
analysis implemented in ANDES. Since the tool is extensible,
over time, key analysis techniques from the literature can
be added. Including these two solutions here demonstrates
this capability. Further, implementing these three analyses as
plug-ins, enables us to compare the system models needed for
these analyses and derive the issues that need to be addressed
in AADL.

property set UVAWSN is
WSN Period: aadlreal applies to (system);
WSN DutyCycle: aadlreal applies to (system);
WSN SensingRange:

aadlreal applies to (system);
WSN Density: aadlreal applies to (system);
TARGET Speed: aadlreal applies to (device);
TARGET FromOutside:

aadlboolean applies to (device);
end UVAWSN;

system WSN
end WSN;

device TARGET
end TARGET;

system implementation WSN.WSN1
properties

UVAWSN::WSN Period => 1.0;
UVAWSN::WSN DutyCycle => 0.1;
UVAWSN::WSN SensingRange => 10.0;
UVAWSN::WSN Density => 0.016;

end WSN.WSN1;

device implementation TARGET.TARGET1
properties

UVAWSN::TARGET Speed => 20.0;
UVAWSN::TARGET FromOutside => true;

end TARGET.TARGET1;
...

Fig. 2. AADL system model for Tracking Analysis

A. Tracking Analysis

The main goal of the tracking analysis [3] is to predict
surveillance performance attributes, represented by the de-
tection probability and average detection delay of intruding
targets, based on tunable system parameters, the node density
and sleep duty cycle of the WSN. The analysis considers
stationary, slow moving and fast moving targets through the
network. The authors have also evaluated the sensing model
and shown that the results are robust to a realistic sensing
model.

The AADL system model needed for the tracking analysis
is shown in Figure 2. There is one WSN system implemen-
tation and several implementations for external targets. This
model needs a few properties: node density(d), period(T),
sensing range(R) duty cycle (β, the fraction of the time
period the nodes stay awake) and width(L, length of the
target path in the network) to describe the WSN and speed(v)
and direction of the target (whether the target is inside the
network or is coming from outside the network) to describe
the target.

Table I summarizes the results obtained in the tracking
analysis. For their derivations and further details, we refer
the reader to [3]. The tracking analysis is very useful for
the designers of a tracking-based applications as the sensing
quality is directly related to deployment choices.

B. Real-Time Capacity Analysis

Real-time capacity for wireless sensor networks was first
analyzed in [1], where real-time capacity of a sensor network
is defined as the bit-distance product of all messages deliv-
ered by the network, normalized by their relative deadlines.
This definition is intuitive as it can be expected that the
network can deliver more bits when the deadlines are larger,

Speed From Probability of Detection Average Detection Delayof the target

Fast

Outside 1− e
−2RLd(β+ πR

2vT
) e−βπR2d

d(2Rβv+ πR2
T

)

Inside 1− e
−(2RL+πR2/2)d(β+ πRL

vT (2L+πR/2)
) e−βπR2d/2

d(2Rβv+ πR2
T

)

Slow

Outside 1− e
−2RLd(β+ πR2+k

2RvT
) e−βπR2d/2

d(2Rβv+ πR2
T

)
[1− ke(−2RβvT+πR2)(1−β)d/2

2RβvT+πR2+k
]

Inside
1− e

−(2RL+πR2/2)d(β+ πR2L+m
vT R(2L+πR/2)

) e−βπR2d

d(2Rβv+ πR2
T

)
[1− ke(−2RβvT+πR2)(1−β)d

2RβvT+πR2+k
]

where a = (1 − β)vT/2, k = 2a

√
(R2 − a2) − 2R2cos−1(a

R
), m = (L − a)k

TABLE I
RESULTS OBTAINED FROM TRACKING ANALYSIS

and when the distance traversed by messages is shorter
(exploiting spatial diversity). For a load-balanced sensor
network, the real-time capacity was obtained as:

CRT =
nα

2mN
W (1)

where n is the number of nodes in the network, m is called
the node density parameter defined as the average number
of neighbors a node can transmit to, N is the maximum
hop length of any message, W is the transmission rate, and
α is called the urgency inversion parameter defined as the
minimum ratio of the deadline of a message to that of any
higher priority message.

For more realistic multihop sensor network traffic patterns
where a small number of sinks collect sensor readings from
all the sensor nodes (also known as convergecast traffic), a
real-time capacity expression is derived in [1] as:

CRT =
αKNk

2 + ln Nk
W (2)

where K is the number of sinks, and Nk is the maximum
source-to-sink hop count.

In our implementation, the designer can either calculate
the real-time capacity given the above system parameters,
or conversely can estimate the number of sinks required to
ensure a minimum specified capacity.

V. IMPLEMENTATION OF ANDES

In this section, we describe how ANDES fits in the
AADL/OSATE framework and discuss several issues in us-
ing AADL for developing WSN system models. We use
the communication schedulability analysis to illustrate these
shortcomings and suggest modifications to be included as
part of ModelGeneration.

The SAE1 AADL (Architecture Analysis and Design Lan-
guage2) is an international standard for predictable model-
based engineering of real-time and embedded computer sys-
tems. AADL is very popular in industry as well as academia
and many analysis tools for real-time embedded systems
use AADL to conduct impact and trade-off analysis, e.g.,
with respect to performance, security, and dependability.

1Society of Automotive Engineers
2Formerly known as Avionics Architecture Description Language

AADL offers a set of predefined component categories [5]
to represent real-time systems and it is capable of describing
functional interfaces to components like dataflows and con-
trol flows as well as non-functional aspects of components
like timing properties.

OSATE (Open Source AADL Tool Environment) is an
Eclipse-based open source framework that is a front-end
AADL parser and generator. AADL models are developed
in OSATE and an intermediate representation (an XML
representation, AAXL) is generated. The XML representation
allows interoperability and integration with other commercial
and in-house tools. The interaction between the OSATE
framework, the analysis plug-ins, ANDES, and the AADL
system models is shown in Figure 3. The analysis plug-ins are
written in Java and are built on top of the OSATE framework.
ANDES is invoked as the runtime Eclipse application and
AADL system models are built on the ANDES framework.
Analysis techniques can be invoked from ANDES to analyze
the system models. The plug-in nature of OSATE allows it
to be extensible and hence ANDES can be easily extended
to add other analysis techniques.

From a designers’ perspective, the learning curve involves
learning AADL, which is a component-based modeling lan-
guage with pre-defined components for modeling hardware,
software and their interactions. From our experience, AADL
has a clean syntax which is easy to learn. However, if the
designers wish to add more analyses to ANDES, it involves
more effort. In particular, it requires the designers to be
familiar with the OSATE plug-in development environment
and necessary support plug-ins. The plug-ins themselves are
written in Java.

Fig. 3. ANDES and AADL/OSATE framework

In our experience with AADL for WSNs, we encountered
many instances where AADL did not have a convenient
solution for modeling WSNs. The main challenges were in
achieving scalability (sensor networks typically have hun-
dreds or even thousands of nodes), specifying the connec-
tivity among nodes, and the coverage shape of WSNs. We
have addressed these issues in ANDES by developing a
plug-in (ModelGeneration) which bridges the gap between
the semantics needed for sensor networks and the syntax
supported by AADL. We list the main issues with AADL
faced by the system designers of WSN systems and the
solution proposed by ModelGeneration as follows:
• Scalability: In real applications, it is not unusual for a

WSN system to have hundreds or thousands of nodes,
thus it is essential for the interface of the design tool
to be simple and easy-to-use, and scale well even for
large-scale systems. To model a large-scale system with
many nodes, currently3 the component implementation
of each of these nodes has to be defined individually.
ModelGeneration Solution For Scalability: The WSN
coverage shape is the shape of the deployment area. In
ANDES, WSN coverage shapes such as grid, random,
rectangular and T-shape can be expressed and we discuss
their implementation later in this section. The number
of nodes in the system is represented by using three
properties: grid deployment, grid size, and
active nodes. grid deployment is a boolean
property which is true if the WSN coverage shape
is a grid and false otherwise. grid size represents
the size of the grid where the grid is a square of
edge length grid size. active nodes represent
the number of nodes active in the grid, and is useful
when the nodes are distributed according to a WSN
coverage shape other than a grid. For example, suppose
the system model contains component implementations
for m sensor nodes, such that m ≤ active nodes, and
the nodes are distributed according to a WSN coverage
shape other than a grid. This means that the system
contains (active nodes−m) more nodes which have
not been declared in the system model and hence should
be added by ModelGeneration according to the specified
coverage shape.

• Connectivity: First, all the connections for each
node have to be explicitly laid out for the analysis. A
connection is a communication link between two sensor
nodes. If we consider an n × n grid, where each of
the nodes is connected to its immediate neighbor on
all four sides, the total number of connections in the
network is Θ(n2). Secondly, there is no easy way of
specifying wireless connections based on a given radio
range and interference range. It is not intuitive to use
the component type bus, which is used extensively in
AADL to allow access to processor, memory, devices

3It has been agreed by the AADL Subcommittee that AADL v2 will
include constructs for arrays and templates that support representation of
multiplicity.

etc., for wireless systems. Finally, it is not possible for
designers to specify the end points of the stream and
determine the feasible set of routes for the streams in
the WSN. In AADL, the details of the stream have to
be specified by the designers as a flow path.
ModelGeneration Solution For Connectivity: For
specifying connectivity between nodes, we use the prop-
erties radio range and interference range.
All nodes within the radio range of a node
are connected to it. Any transmission within the
interference range of a node, interferes with
transmissions to that node. The connections between
nodes are calculated using these properties and added
to the system.
Streams are represented by the keyword flows in
AADL. ModelGeneration enables the user to specify a
high-level description of end-to-end streams by using
the keyword device which has source node no
and sink node no as its properties. This is especially
useful if the analysis can intelligently change the route
of the streams based on the end points and the result of
the analysis (i.e. if the streams are schedulable or not).

• WSN Coverage Shape: Specifying each node location
through the node numbers or grid positions is not intu-
itive for the designers when the nodes are not deployed
in a grid. It is much easier if there is a way to specify
the WSN coverage shape (rectangular, circular, T-shaped
etc.) as a whole and declare some special parameters
associated with it which specify it completely.
ModelGeneration Solution For WSN Coverage
Shape: Currently, we have support for modeling grid,
randomly distributed, rectangular and T-shaped WSN
coverage shapes. More WSN coverage shapes can be
added to ANDES based on what is needed by the
analysis. The WSN coverage shape is specified by the
parameters topology, length, width and border. Each
WSN coverage shape that is implemented is assigned
a unique number to denote its topology. Length, width
and border are specific to the WSN coverage shape.

Although, AADL consists of a textual as well as a graphi-
cal language for modeling the system architecture, currently,
flows cannot be depicted graphically in OSATE. Since flows
are an important aspect of the system models used in this
paper, we were unable to illustrate graphical models of the
system. This problem should be addressed by OSATE in
future. Graphical AADL models improve the ease of use of
ANDES.

VI. CASE STUDIES AND EVALUATION

In this section, we design simple sensor network sys-
tems using ANDES and validate the design decisions us-
ing simulations. In Sections VI-A and VI-C, we design a
target tracking application and an environmental monitoring
application, respectively. We evaluate the design decisions
for the application in case study 1 in Sections VI-B. The
main motivation of such an evaluation is to demonstrate

(a) (b)

Fig. 4. Designing a Tracking-based WSN System (node density = 0.015)

the usability of ANDES and quantify the accuracy of the
recommendations made, which depend on the incorporated
analyses. Due to lack of space, we have not included the
evaluations for case study 2. In Section VI-D, we evaluate
the communication schedulability analysis. We have also
evaluated ANDES in terms of the convenience offered to
the designer by comparing the lines of code (LOC) needed
for the WSN system models. For further details, the reader
is referred to [13].

A. Case Study 1: Designing a Tracking-based Application

In this section, we design a target tracking application. The
task of the system designers is to design an application for the
surveillance of a 100m×100m area. The designers can use a
maximum of 200 sensor nodes, each having a sensing range
of 10m and a transmission range of 20m. The sensors are
deployed in a uniform random manner, which is realistic for
many surveillance applications. We make two assumptions in
this scenario. Our first assumption is that only one message
stream is generated per target. This can be implemented using
an appropriate group management protocol. Among a group
of nodes that detect the target, one node can be designated as
the group leader and can communicate with the base station.
Our second assumption is that after the target is detected, the
group leader sends periodic messages (0.25Kb of data every
half a second) until the target is out of its sensing range. At
that time, a new group leader can be appointed. The sensor
nodes can transmit at a rate of 20Kbps.

The requirements for the system performance are as fol-
lows. The system must be able to detect targets 99% of
the time, for all mobile targets.The system is required to
have a maximum average target detection delay of 1s for
fast moving targets and 2s for slow moving targets. For the
tracking analysis, we assume that we are interested in targets
moving at speeds around 2.5m/s (which are considered to
be slow moving targets) and those moving at speeds around
25m/s (which are considered to be fast moving targets).
Moreover, the system should be able to support 5 concurrent
targets in the average case and up to 20 concurrent targets
in the worst case. Taking these constraints into account, our
task as system designers is to design a sensor network to

meet these requirements.
As described in Section II, we start with an application

level analysis (the tracking analysis) and then add sophis-
tication to the design using a system level analysis (the
capacity analysis). The system parameters that can be tuned
using the tracking analysis are node density and duty cycle.
Since we have a predetermined area, reducing the node
density reduces the number of nodes and hence the cost of
the system, but would negatively affect the target detection
probability and detection delay. Likewise, reducing the duty
cycle gives higher energy savings, but would decrease the
detection probability and increase the detection delay. We
therefore need to determine the minimum values for node
density and duty cycle that would ensure that the performance
requirements are satisfied. After identifying the required
node density and duty cycle using the tracking analysis, we
demonstrate how these values can be used by the capacity
analysis to compute the minimum number of base stations
that would be required to ensure enough capacity in the
system to detect and report 20 concurrent targets.

In order to demonstrate how the performance requirements
vary with the tunable system parameters, we show the varia-
tion of the probability of detection and the average detection
delay with duty cycle, when the node density is fixed at 0.015,
in Figures 4(a) and 4(b). We can observe from these figures
that the probability of detection increases monotonically with
the duty cycle and the average detection delay decreases with
increasing duty cycle. The probability of detection degrades
faster with decreasing duty cycle for faster targets. For one
case (slow targets coming from outside the sensor field), the
detection delay is higher at low duty cycle as compared to
others. This is due to the combination of two factors. Firstly,
slower targets may move a very short distance in a sensing
range, therefore, they may be go undetected for a longer
time when the duty cycle is low. Moreover, there may be an
added delay in the case of outside targets as the edges of the
sensor field may not be covered that well. This becomes more
pronounced in the case of slow targets. For a node density
of 0.015, although the probability of detection is more than
99%, the average detection delay for slow moving targets
coming from outside is not less than 2s for duty cycle < 0.4.

This demonstrates that it is indeed quite difficult for the
designer to manually adjust and estimate even near-optimal
values for the node density and duty cycle, that would meet
the performance requirements.

The analyses described in this paper estimate some per-
formance metric given values for various system parameters.
However, typically the designers are interested in estimat-
ing suitable values for tunable system parameters, given
minimum (or maximum) performance requirements. This
functionality has been added for target tracking analysis and
real-time capacity analysis. Instead of manually adjusting
the tunable system parameters and getting values of the
performance metrics for every system configuration, the
designers can alternatively specify the desired performance
requirements. In that case, ANDES determines values for the
tunable system parameters that best satisfy the requirements
and displays them in a tabular form. This is an efficient
mechanism to obtain an estimate of the system parameters.
For this case study, we obtained results for targets with
velocities between 5m/s and 25m/s entering the sensor field
from outside. For different values of node duty cycle, these
results provide the minimum density of node deployment
required to satisfy the performance requirements. We see
that the slow target from outside can not be detected within
the desired performance criteria for duty cycle lesser than
0.4 (the tool returns “No Solution” for these values). From
these results, the designers may select the values of duty
cycle as 0.4 and node density as 0.015 nodes/sq. meter and
obtain results4. This functionality, where the designers can
obtain an initial estimate of the system design parameters
from the desired system performance, enables the designers
to use ANDES efficiently.

A node density of 0.015 nodes/sq.meter in a 100m×100m
field implies a deployment of 150 nodes. Based on our
assumptions that nodes are deployed uniformly at random
and each node has a transmission radius of 20m, it is
reasonable to assume that the maximum number of hops from
any node to a centrally located base station is 6.

We now conduct the capacity analysis to compute the
number of base stations needed by the system to support
20 concurrent targets, with each target generating 0.5Kbps
of data. As each stream needs to be carried for a maximum
of 6 hops, the total required capacity of the system can be
calculated as 20 × 0.5 × 6 = 60Kb − hops/sec. With a
capacity requirement of 60Kb−hops/sec and a transmission
rate of 20Kbps, ANDES estimates the required number of
sinks (K) as 2 using the capacity analysis (the result can be
determined using Equation 2).

Using this case study, we have shown how designers
can use ANDES to get recommendations based on analysis
of the system model. While the actual performance of the
system depends on external factors and the accuracy of the
assumptions made, going through this process is extremely

4When the duty cycle and node density values are fixed at 0.4 and 0.015
nodes/sq.m respectively, the probability of detection and average detection
delay for a target with velocity 25m/s is 0.999 and 0.059s respectively.

valuable for the designers in understanding the impact of
the system parameters on the performance. We validate this
design in the next subsection.

B. Evaluation of Design Decisions: Case Study 1

In this section, we evaluate the design decisions obtained
for case study 1 (tracking and capacity analysis) through
simulations. We used a C++ based simulator obtained from
Cao et al. [3].

Fig. 5. Comparison of Tracking Analysis and Simulation results

Figure 5 shows the results obtained from analysis and those
obtained from simulation for the average detection delay
with varying target velocity. We conducted 100 rounds of
simulations. In each of these rounds, the locations for 150
nodes and 20 targets are generated. The detection delay was
measured for every target and Figure 5 shows the average
detection delay for 100 rounds of simulation with the 95%
confidence level. In our simulations, the sensing range is not
uniformly circular. It is based on actual readings from the PIR
sensors [3]. From the graph, we observe that the detection
delay meets the original performance requirements, as it is
less than 2s for target velocities varying from 2.5m/s to
10m/s (slow targets) and less than 1s for target velocities
varying from 10m/s to 30m/s (fast targets).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 30 25 20 15 10 5

R
ea

l-T
im

e
C

ap
ac

ity
 (

K
bi

t-
ho

ps
/s

)

Transmission rate (Kbps)

Simulation
Analysis

Fig. 6. Comparison of real-time capacity obtained from analysis and
simulations for different values of transmission rate

As in [1], we used a customized simulator to study the
capacity of wireless sensor networks. Nodes were assumed to
be placed uniformly within the field and flows were generated

by choosing sources uniformly at random and transmitting
packets to the nearest of two sinks. Prioritized scheduling was
implemented within each node, such that packets belonging
to a flow of higher priority would always be transmitted ahead
of packets of a lower priority flow. Since we are interested in
the maximum sustainable capacity, a lossless MAC layer was
assumed. For the scenario described, the minimum capacity
of the network at which a deadline miss was observed was
noted as 65.70Kbit− hops/second (this was the minimum
from 50 randomized runs). In Figure 6, we plot the capacity
of the network obtained from simulations and analysis for
different transmission rates ranging from 5Kbps to 30Kbps.
The actual maximum capacity of the network is expected to
be better than this value as the routing used for this simulation
was shortest-path routing, and if the intended recipient of a
message is blocked due to another transmission, the packet
was not scheduled until that transmission was over. With
smarter routing protocols, it is possible to transmit the packet
to an alternate free node so that progress can be made towards
the sink node without being blocked.

C. Case Study 2: Designing an Environmental Monitoring
Application

In this section, we use ANDES to design an environmental
monitoring application. For this application, the sensors are
deployed in a 5 × 5 grid, with a grid spacing of 10m.
Each sensor node is equipped with many sensors such as
temperature, humidity, and light. All the sensor nodes send
data from its sensors (of message length 0.5Kb) periodically
every minute to the base station. The radio range of the sensor
nodes is 12m and the interference range is 25m. In a grid, this
means that every node has four neighbors, and the maximum
number of hops from any node to a centrally located base
station is 4. We assume that the nodes can transmit at a rate
of 25Kbps. Our main assumption in this case study is that the
data are not aggregated at any point. Each node is a source
of a stream of data to the base station.

We first use the capacity analysis to find the number of
base stations required to support concurrent streams from
all the nodes in the system. The number of hops that
each message traverses before reaching the destination varies
between 1 and 4, and the average number of hops can be
taken as 2.5. The maximum required capacity is therefore
24 × 2.5 × 0.5Kbps = 30Kb − hops/s (at least one node
would act as a base station, and would therefore not create
any traffic). With a maximum of 4 hops from any node to
a base station, and nodes transmitting at 25Kbps, from the
capacity analysis we find that one sink is sufficient for this
network.

The schedulability analysis uses more detailed knowledge
of the system to compute if the streams are schedulable
within their deadline. We place the base station at the center
of the 5 × 5 grid. With the given specifications, 24 streams
were generated from all the sensor nodes to the base station.
The period and deadline were set at 60s. The schedulability
analysis reported that all streams will be schedulable within

their deadlines. Due to lack of space, we have not included
the evaluation of this case study using simulations in this
paper. Instead of evaluating schedulability analysis for this
specific case, we discuss a more general evaluation for
schedulability analysis in Section VI-D.

D. Evaluation of Communication Schedulability Analysis

In this section, we evaluate the three heuristic algorithms
Stream-Major, Link-Major and Time-Major, for a more gen-
eral design. The performance of these algorithms is evaluated
with respect to the workload (number of streams) and the
network size. We have evaluated the algorithms using MatLab
and used “Fraction of Streams Scheduled” as the evaluation
metric. The WSN topology is assumed to be a 10× 10 grid
of nodes with a grid spacing of 10m. Ten pairs of source
and sink locations are generated randomly and twenty routes
are generated for every pair constituting the twenty sets of
streams. For all the streams, the deadline is equal to the
period and the period is the same for all (20s). The radio
range is 12m and the interference range is 25m.

Fig. 7. Schedulability Analysis Results: Effect of Stream Workload

Figure 7 shows the variation of the fraction of scheduled
streams with the number of streams. The performance de-
grades quickly as all streams have the same periods and there
is a higher probability of the streams getting delayed because
of interference. We can see that despite its coarse granularity
Stream-Major is able to keep up with Link-Major. Time-
Major has the lowest fraction of scheduled streams among
the three, however, it catches up when the number of streams
becomes larger. The reason for this could be that Time-Major
is not able to schedule many links simultaneously in a dense
network due to interference.

Figure 8 shows the variation of the fraction of scheduled
streams with the grid size. The number of streams is fixed
at 10. Time-Major performs the worst among the three and
it shows the highest variance. Stream-Major and Link-Major
consistently perform above 90%. The results show that Time-
Major is the most sensitive to the location of streams in the
workload.

Fig. 8. Schedulability Analysis Results: Effect of Grid Size

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an analysis-based design
tool, ANDES, for WSNs with the AADL/OSATE framework.
We have highlighted a few issues with AADL syntax that
does not adequately cater to semantics needed for WSN
modeling. We have developed a new real-time communi-
cation schedulability analysis that accurately determines the
set of end-to-end streams that are schedulable within their
deadlines. In addition to the communication schedulability
analysis, we have also implemented a tracking analysis and
a real-time capacity analysis in ANDES. Finally, we demon-
strate the usage of ANDES through detailed case studies.

An important open research question is determining the
proper set of analysis techniques that must be developed
together with an understanding of their interactions in order
to make design tools like ANDES sufficient for designing
WSNs. We believe that for completeness the analytical toolset
should at least cover lifetime, reliability, sensing coverage,
real-time capacity, scheduling, quality of service, and security
issues.

ACKNOWLEDGMENTS

We thank Aaron Greenhouse for his timely help with
AADL/OSATE. This work was supported in part by SEI 06-
00423 and NSF grants CNS 0614886, CCR 0329609, CNS
06-26342 and CNS 06-13665.

REFERENCES

[1] T. F. Abdelzaher, S. Prabh, and R. Kiran. On Real-Time Capacity
Limits of Multihop Wireless Sensor Networks. In Proceedings of the
25th IEEE International Real-Time Systems Symposium(RTSS), 2004.

[2] atemu - sensor network emulator/simulator/debugger.
http://www.hynet.umd.edu/research/atemu/.

[3] Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher. Analysis of Target
Detection Performance for Wireless Sensor Networks. In Proceedings
of the International Conference on Distributed Computing in Sensor
Networks (DCOSS 2005), pages 84–89. TeX Users Group, June 2005.

[4] J. Elson and A. Parker. Tinker: A Tool for Designing Data-Centric
Sensor Networks. In Proceedings of the Fifth Information Processing
in Sensor Networks, Track on Sensor Platform, Tools and Design
Methods for Networked Embedded Systems (IPSN SPOTS), April 2006.

[5] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis
and Design Language (AADL): An Introduction. Technical Re-
port CMU/SEI-2006-TN-011, Software Engineering Institute, Carnegie
Mellon University, February 2006.

[6] N. Fournel, A. Fraboulet, G. Chelius, E. Fleury, B. Allard, and
O. Brevet. Worldsens: from lab to sensor network application de-
velopment and deployment. In Proceedings of the 6th international
conference on Information processing in sensor networks, pages 551–
552. ACM Press, 2007.

[7] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. EmStar: a Software Environment for Developing and
Deploying Wireless Sensor Networks. In USENIX General Track,
2004.

[8] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Cadena:
An Integrated Development, Analysis, and Verification Environment
for Component-based Systems. In Proceedings of the International
Conference on Software Engineering (ICSE), May 2003.

[9] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru,
J. A. Stankovic, and T. F. Abdelzaher. Achieving Long-Term Surveil-
lance in VigilNet. In Proceedings of the IEEE INFOCOM, April 2006.

[10] B. Henderson-Sellers et al. UML - the Good, the Bad or the Ugly?
Perspectives from a panel of experts. Software and System Modeling,
4(1):4–13, February 2005.

[11] Z. Li. Communication and Schedulability Analysis in Wireless Sensor
Network. Master’s project report, University of Virginia, 2004.

[12] L. Luo, T. He, G. Zhou, L. Gu, T. A. Abdelzaher, and J. A. Stankovic.
Achieving Repeatability of Asynchronous Events in Wireless Sensor
Networks with EnviroLog. In Proceedings of the IEEE INFOCOM,
April 2006.

[13] V. Prasad. ANDES: an ANalysis-based DEsign tool for wireless Sensor
networks. Master’s thesis, University of Virginia, August 2007.

[14] R. Ramadan, K. Abdelghany, and H. El-Rewini. SensDep: A Design
Tool for the Deployment of Heterogeneous Sensing Systems. In
Proceedings of the Second IEEE Workshop on Dependability and
Security in Sensor Networks and Systems (DSSNS), pages 44–53, April
2006.

[15] Rhapsody. http://www.ilogix.com/sublevel.aspx?id=53.
[16] J. A. Stankovic. VEST: A Toolset for Constructing and Analyzing

Component Based Embedded Systems. Lecture Notes in Computer
Science, 2001.

[17] STOOD. http://www.ellidiss.com/stood.shtml.
[18] The network simulator ns-2. http://www.isi.edu/nsnam/ns/ns-

documentation.html.
[19] TimeWiz Model and Analyze System Performance.

http://www.bitpipe.com/detail/res/1103108790 56.h-tml.
[20] S. Vestal. MetaH Support for Real-Time Multi-Processor Avionics. In

Proceedings of the Joint Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS/ OORTS), 1997.

[21] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang,
Z. He, S. Lin, and J. Stankovic. ALARM-NET: Wireless Sensor
Networks for Assisted-Living and Residential Monitoring. Technical
Report CS-2006-11, University of Virginia, 2006.

[22] T. Yan. Analysis Approaches for Predicting Performance of Wireless
Sensor Networks. PhD thesis, University of Virginia, August 2006.

[23] T. Yan, T. He, and J. A. Stankovic. Differentiated Surveillance for
Sensor Networks. In Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003), November 2003.

