
1

Smart Personalized Routing For Smart Cities
Abdeltawab M. Hendawi1 Aqeel Rustum2 Amr A. Ahmadain1 David Hazel3

Ankur Teredesai3 Dev Oliver4 Mohamed Ali3 John A. Stankovic1

1University of Virginia, VA, USA, {hendawi, aaa9aj, stankovic}@virginia.edu
2 Saudi Aramco, DH, KSA, binrusas@aramco.com.sa

3 University of Washington, Tacoma, WA, USA, {dhazel, ankurt,mhali}@uw.edu
4(ESRI) Environmental Systems Research Institute, CA, USA, doliver@esri.com

Abstract—In smart cities, commuters have the opportunities for smart
routing that may enable selecting a route with less car accidents, or
one that is more scenic, or perhaps a straight and flat route. Such smart
personalization requires a data management framework that goes beyond
a static road network graph. This paper introduces PreGo, a novel system
developed to provide real time personalized routing. The recommended
routes by PreGo are smart and personalized in the sense of being (1)
adjustable to individual users preferences, (2) subjective to the trip
start time, and (3) sensitive to changes of the road conditions. Extensive
experimental evaluation using real and synthetic data demonstrates the
efficiency of the PreGo system.

I. INTRODUCTION
Modern smart cities aim at managing the city’s infrastructures that

include, but are not limited to, transportation systems, hospitals and
health-care systems, urban planning, water and waste management,
energy and power plants, and many other services. Routing from a
source location to a destination is an essential service in people’s
daily life and an integral part in the smart cities blueprint [2], [5],
[22].

Since smart cities integrate a massive number of sensors, (e.g.,
wearable devices), that embed location sensing, e.g., GPS-device,
a tremendous amount of geo-tagged information, (e.g., GPS traces,
accidents reports, air quality), are available [8]. Accordingly, it is
feasible to expect users to look for a smarter and a personalized
routing that goes beyond just finding the shortest path. Actually,
personalization needs not be defined narrowly, but should be broad
to include safety, special attractions, services, disruptions, social-
proximity to other destinations, familiarity with neighborhoods, and
numerous such factors.

In this work, we first formulate the personalized routing query
problem as a preference augmented routing problem. Then we sys-
tematically design a solution that enables heterogeneous geo-tagged
data sets to be stored, retrieved and inferred in conjunction with road
network data. We then demonstrate the utility of the PreGo system 1

to process personalized routing queries. This problem is challenging
because accurate extraction and representation of various attributes
of the road network during different time periods of the day is a
burdensome matter. Systematic consolidation of recent changes in
maps while combining and processing users’ personalized routing
queries based on many attributes is also challenging. Evaluating
each individual personalized query while assuring the overall system
efficiency and scalability to serve large numbers of users is another
arduous issue. In the domain of using geo-tagged data for route
recommendation [9], [30], [39], previous work focuses on analyzing
users’ past trips in order to infer their preferred route to commute.
As they consider GPS trajectories as a sole source, limited personal-
ization is offered, e.g., using shortest distance or travel time. Hence,
recommendations here provide very limited personalization.

1The name PreGo has two parts, Pre for preferred and Go that refers to routes. Prego
is also an Italian word that means You are welcome! or Please!.

In this paper, we develop the PreGo system that is constructed
from available geo-tagged data and that supports the evaluation of
personalized routing queries with the following merits. (1) PreGo
finds the best route according to a user’s set of personal preferences.
(2) PreGo does not depend on a static snapshot of the underlying road
network. Rather, it computes the best route taking into consideration
various cost elements at different time instances of the day. (3) For
not in a rush user, PreGo recommends a trip start time such that
user’s preferences are best fulfilled. (4) Personalization parameters are
controlled by each user’s preference weights. (5) PreGo is internally
crafted to scale to large road network graphs, a wide range of time
sensitive preferences, and heavy routing request workloads.

To achieve this while preserving efficiency and scalability, PreGo
leverages the Attributes Time Aggregated Graph (ATAG) structure.
The ATAG structure is a representation of the underlying road network
in which intersections are represented as nodes and roads as edges,
and each edge can have multiple attributes or features, each of which
could have multiple weights at different time slots during the day. For
the construction of the ATAG, we use sets of different data sources to
obtain the actual costs for each attribute in the graph during various
time slots of the day, i.e., rush hours, early morning, or late night.
The ATAG is instantly maintained in real time fashion once new data
is received. This allows PreGo to provide routing recommendations
based on a fresh snapshot of the underlying road map. For example,
real time traffic, road closures, or car accidents data, trigger real-time
updates to corresponding edges weight in the ATAG structures and,
hence, in the results returned by PreGo are up to date.

To process such multi-preferences routing queries, the PreGo
framework is equipped with the Time-Parameterized Multi-Preference
Shortest Path (TP SP) algorithm that efficiently extracts the best route
from the ATAG. Via a single traverse of the up-to-date ATAG structure,
the TP SP algorithm discovers the best path(s) from a source to a
destination with respect to a combination of attributes by applying
the prune and wait approach.

The prune concept tends to stop the expansion of graph traverse at
node n when all attributes’ total cost values, (i.e., Cost vector, the
total cost for each attribute on the path from the source node s to node
n), on this node are dominated by the values, (i.e., Cost vector),
on the destination node d. Hence, the prune strategy assures system
efficiency by saving the computational resources from being wasted
in extraneous graph expansion.

The wait concept enforces the TP SP algorithm to wait and not to
declare the in-hand path at the destination node d as the optimal path
until all other branches are pruned. That means we are sure that the
accumulated cost values, (i.e., Cost vector), at the destination node
represent the costs of the dominant path and it will not be beaten by
any other branch.

In order to further decrease the response time to a query, we
introduce the bidirectional version of our TP SP algorithm. For this,



2

we augment the TP SP algorithm with an additional thread that starts
its execution from the destination node d and traverses to reach the
start node s. During its backward traversing, this thread computes
the minimum accumulated cost, named upper limit µ, from each
visited node n to the destination node d. This upper limit is seen by
both forward thread and backward thread while they are expanding.
With this bidirectional approach, the unnecessary branching can be
significantly reduced by using the concept of pruning through setting
up the upper limit for the newly branching cost.

For those users that have flexible time to begin their travel, we
provide the best-start TP SP algorithm. This algorithm recommends
the best time to start a trip such that at this time user’s preferences
are best fulfilled.

The main contributions of our work are:
• The design and development of the PreGo system that leverages

the available geo-tagged data sources to process personalized
routing queries.

• The construction of the Attributes Time Aggregated Graph
(ATAG) to model the underlying road network in a such a way
to support multi-preference optimal path search based on the
time of the day.

• The development of the Time-Parameterized Multi-Preference
Shortest Path (TP SP) algorithm to obtain the set of optimal
paths in a single traverse of the road network graph.

• The development of the bidirectional TP SP algorithm as a
more optimized version from the response time perspective,
and the best-start TP SP to suggest a trip start time.

• A user study to validate drivers’ routing preferences.
• The extensive empirical evaluation on real and synthetic data

sets to study the performance of PreGo. Experiments provide
that PreGo outperforms competitive techniques by more than
one order of magnitude.

The rest of the paper is organized as follows. The study of
related work is given in Section II. Section III sets the preliminaries.
Section IV introduces the PreGo system. Section V describes the
construction and maintenance of the ATAG from real VGI data.
Section VI explains the algorithms augmented in PreGo to process
routing queries. The PreGo system is experimentally evaluated in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

Dynamic multi-preference routing is an important area in Spatial
Computing. Previous approaches have been static (i.e., time is not
considered) and single preference-based [18], [25], [32], [36], [10];
dynamic (i.e., time-based), focusing on only one preference objec-
tive [6], [13], [26], [28], [29], [35]; or static, focusing on multiple
preference objectives [3], [11], [12], [38], [40].

Previous static, single-preference-based approaches include classi-
cal routing techniques such as Dijkstra algorithm [10], A* [19], hier-
archical [32], [36], materialization [18], [25], etc. These approaches
are typically of interest to drivers who are mainly concerned with a
single preference (e.g., minimizing travel time). However, they do not
account for time-dependent scenarios (routing in rush hour vs. non-
rush hour traffic), and do not consider multiple preferences (reducing
fuel consumption, minimizing distance travelled, etc.).

Previous dynamic approaches [6], [13], [20], [26], [28], [29], [35]
account for the time-varying nature of one attribute for each edge in
the network. For example, if the objective is to minimize travel time
between a given source and destination (i.e., the fastest path), time-
based approaches are able to factor in the differences between rush-
hour and non-rush-hour. Then they return a different result for the
fastest path depending on the time of day. Representative time-based
approaches include [29], and [13]. In [29], the dynamic pickup and

Fig. 1. Attributes Time Aggregated Graph (ATAG)

delivery problem with transfers is explored; here the idea is to identify
(in a dynamic scenario) the shortest path from a node representing
the pickup location to that of the delivery location. In [13], a
dynamic approach for bidirectional A* search for time-dependent
fast paths is presented. However, existing dynamic approaches only
consider a single preference objective and cannot take advantage of
multiple preferences based on multiple attributes (e.g., travel time,
fuel consumption, safety, etc). The work in [20] supports traffic aware
routing and focuses solely on travel time attribute.

Previous static, multiple preference approaches account for multiple
objectives in the network [3], [11], [12], [38], [40]. In [40], the skyline
query problem is considered in a Wireless Sensor Network context
with the objective of maximizing the network lifetime whereas [12]
investigates how to find a set of paths (as opposed to a single
path) so as to permit various choices concerning multiple criteria.
However, existing approaches do not consider the dynamic nature
of the network, which is important for gleaning information such as
traffic light synchronization, curves in routes, safe periods to travel
on routes, etc. Other work includes [33] that studies the dynamic
routing with a focus on a single attribute. Authors of [15] provide a
data mining technique for speed patterns extraction from large sets
of traffic data. In [42], the authors focus on finding time-dependent
shortest path under time constraints. They assume a single attributed
edge. Existing work in the area of preference routing suffers from the
following limitations. They focus on either obtaining the best route
w.r.t. a single time-dependent attribute, or finding the best route w.r.t.
multiple time-independent attributes on the road network graph.

The proposed PreGo system differentiates itself from the existing
work by supporting multiple preference routing in variant time
instances based on road networks that are fully constructed from the
public available geo-tagged data sources.

III. PRELIMINARIES

In this section, we describe the concept of road network repre-
sentation and modeling to serve the context of personalized multi-
preference routing. Then, we set up a formal definition for the
research problem we address in this paper. We also state the assump-
tions, and definitions as needed to frame the boundaries of this work.

A. Road Network Graph Modeling

Definition 1, Attributes Time Aggregated Graph (ATAG): The ATAG
data structure is a directed graph G(N,E,W ) proposed to model the
underlying road networks in the context of dynamic multi-preference
routing [24]. Here, N represents the set of nodes and each n ∈ N
represents an intersection, or a dead end of a road. E is the set of
edges where each e(n, u) ∈ E represents a directed edge that links
the two nodes n and u and indicates that e is traversable in the
direction from node n to node u. W carries positive weights for
the set of attributes/features A on each edge e. For example, a ∈ A
might represent the total travel time, distance, number of attractions,
services, or car accidents, etc.



3

Each attribute a will have a vector of weights equivalent to the
number of time slots of the day T , where t ∈ T is a time interval
(ts, te], e.g., {(6-10], (10-15], (15-19], (19-24], (24-6]}. Thus, the
weight w(e)at is the weight of an edge e w.r.t. the attribute a at
a start time in a time slot t of the day. Those weights also differ
based on the day of the week. For example, the travel time on the
University street is 10 minutes at 9:00am and 5 minutes at 11:00pm
on Sundays, while it is 15 minutes during both times on Tuesdays.
It is worth mentioning here that the ATAG is flexible in the sense
that it allows different attributes to have different time intervals. For
example, the ATAG structure in Figure 1 considers the whole day as
one time interval for the distance attribute while it is divided into three
and five intervals for the risk and travel time attributes, respectively.

We employ the ATAG structure to save all data in a way that allows
computing the shortest path from a given source location to a destina-
tion. Intrinsically, ATAG supports multi-preference routing functions,
e.g., less fuel consumption, less car accidents, less pollution, or paths
with more services, at different start times.

Figure 1 illustrates the idea of storing multiple attributes for each
single edge in the ATAG data structure. While this figure shows only
three attributes, we emphasis that our PreGo framework and its ATAG
structure and embedded algorithms can smoothly extend to accom-
modate other attributes as depicted experimentally in Section VII.

Definition 2, Cost of A Path (Route):

Cost(p)t = <
k∑

i=1

w(ei)a1t ,
k∑

i=1

w(ei)a2t , ... ,
k∑

i=1

w(ei)a|A|t >

Cost of a path p at time t consists of a vector of length |A|, i.e.,
number of attributes in the ATAG. Each value in this vector is obtained
by the summation of all costs on the path edges w.r.t. a specific
attribute a at the corresponding start time t.

Definition 3, An Optimal Path: An optimal path ◦p is the path with
the minimum total cost w.r.t. at least one attribute among all possible
paths between its two ends, (i.e., source and destination nodes), at
a given start time. The set of optimal paths

◦
P carries all possible

optimal paths for all attributes at a certain start time t.
◦
P =

⋃
ts∈T,∀a∈A

{ ◦p}

Definition 4, A Preferred Optimal Path: Pref(
◦
p) is the user

preferred path among the set of optimal paths
◦
P . One user might

prefer the path with minimum travel time, while another might prefer
the one with lowest risk. This preferred optimal path is controlled
by the user’s given weighted-preferences. For example, a user who
prefers the fastest path then the safest path and does not care about
the distance can set the weighted-preferences as 80% travel time and
20% Risk. As will be shown later in Section VI-A, PreGo takes care
of this by factoring the edges’ weight using the user’s given weighted-
preferences.

B. Problem Definition

The main problem we address in this paper can be formalized
as follows. Given a set of geo-tagged data, a source node ns, a
destination node nd, and a user multi-preferences function Pref
on the set of the attributes A, (e.g., minimize travel time, fuel
consumption, and car accident risk), we need to find the optimal
path(s) ◦

p from ns to nd that achieves the user multi-preference
function at the start time t.

IV. SYSTEM OVERVIEW
In this section, we give a brief description of the proposed PreGo

system. First, we outline the system architecture and highlight its
main components. Next, we define the underlying geo-tagged data
sources.

Fig. 2. The Architecture Of The PreGo System

A. System Architecture

The architecture of the PreGo system is given in Figure 2.
PreGo consumes different types of geo-tagged data sources, namely,
public GPS traces, open access maps, and reported events, e.g., car
accidents. The system also has three main components, namely, the
attributes time aggregated graph (ATAG) data structure, (Section III),
the graph construction and maintenance module, (Section V), and
the query processing module, (Section VI). This section discusses the
data sources and overviews the other system components. Subsequent
sections will detail the three main components of PreGo.

B. Geo-tagged Data Sources

The proposed framework relies on data extracted from heteroge-
neous data sets as follows.

(1) Public GPS Traces. Our main source is the GPS tracks for
users’ current and past trips. We consider this source as a core one
for extracting the real travel time on each edge in the underlying road
network. OpenStreeMap (OSM) allows the download of volunteered
GPS traces filtered by areas of interest. We use a tool provided on the
OSM wiki called JOSM [27] which allows us to view and download
the GPS traces for certain areas on the map. In addition, we are able
to get 15GB of public GPS traces [34].

(2) Real Time Traffic. This is a complementary source for the GPS
traces to get an a fresh and more dense snapshot for the current traffic
on the road network edges. This is easily obtainable through the traffic
layer of the Google Maps APIs [16]. The standard plan of these APIs
provides sufficient number of transactions for free.

(3) Open Access Maps. To obtain the base for the ATAG structure,
we rely on the available free accessible map resources such as shape
files [7], and the Minnesota traffic and map generator [4]. Through
those resources, we are able to extract the road network graph as
set of nodes, edges and compute the basic weights, e.g., distance.
In addition, they give us the ability to extract some indicators about
the near by services and points of interests around each edge, e.g.,
lakes, parks, commercial buildings, schools etc. (4) Reported Events.
This source contains geotagged data for events reported by users on
their ways, e.g., restaurant check-ins, care accident. For example, the
number of recorded crimes and accidents events [31] around an edge
gives an indicator of how risky this edge is. The TAREEG web-
service [1] is used to obtain services and POI locations. Through its
simple web interface, we are able to draw a rectangle that can cover
a whole state and request the data for various types of services inside
that rectangle. In addition to those public sources, PreGo allows its
users to report past and instant geotagged point of interest, (e.g., park,
restaurant), and events (e.g., car accident, fair).

V. GRAPH CONSTRUCTION AND MAINTENANCE

In this section, we explain how geotagged data sources are lever-
aged to construct and maintain the ATAG structure. The core of the



4

Algorithm 1 Extracting Travel Time Cost
Input: ATAG G(N,E,W ), GPS Trajectories TRAJ

1: wv(e)t ← φ //weights vector for travel times on e at t
2: w(e)t ← 0 //final travel time weight on e at t
3: for each time slot t ∈ T do
4: TRAJt ← tracks in TRAJ at time slot t
5: for each traj ∈ TRAJt do
6: Etraj ← MapMatch traj to its corresponding edge(s)
7: for each e ∈ Etraj do
8: wv(e)t ← append time difference between first and last GPS

points on e
9: end for

10: end for
11: for each e ∈ E do
12: w(e)t ← average of weights in wv(e)t
13: end for
14: Reflect w(e)t to ATAG
15: end for
16: return ATAG

Fig. 3. Using GPS Tracks to Update Edge Weights

graph is obtained from the open access maps [1] by extracting the set
of nodes, edges and weights for the distance attribute. The weights
for other attributes, rather than the distance, are obtained according
to the nature of each attribute. We can classify those weights into two
categories based on the complexity to extract from the available data,
(1) simple weights, e.g., risk, services, and (2) complex weights, e.g.,
travel time.

A. Simple Weights Extraction

The translation of the number of car accidents and crimes, e.g.,
NHTSA [31], into a risk weight for an edge is done through a straight
forward process, i.e., normalizing this number by the edge distance
as follows.

w(e)risk,t =
risks(e)t
distance(e)

Normally, the smaller the value the safer the road. For those attributes
with maximization dominance property, (e.g., find the most scenic
path), we store the complementary weight. We do this to make the
weights consistent with the minimization function in the optimal path
calculation. For example, the optimal path based on the services
attribute is the one that maximizes the number of services, e.g.,
restaurants and gas stations. Therefore, its weight is obtained as
follows.

w(e)services,t =
NonService Addresses(e)t

total addresses(e)

The number of available services on a road edge differs according
to the time of the day. For example, the number of open Cinemas
increases at night while the number of available athletic centers
increases in the morning.

B. Complex Weights Extraction

In fact, the most complex weight to obtain is the travel time
cost during specific time interval of the day. To achieve that, we
leverage the public GPS traces. In the rest of this section, we focus on
describing how to extract the travel time weights using the available
GPS trajectories.

Main Idea. We mine the set of in-hand GPS tracks to pick up the
valid ones, e.g., not violated speed limit nor direction of the edge.

Then, for each edge in the graph, we obtain its weight by calculating
the average travel time of those valid tracks in the corresponding time
slot.

Algorithm. Algorithm 1 presents the steps to extract the travel
time cost from a given set of trajectories. The input consists of the
ATAG structure in addition to the in-hand GPS trajectories. The output
is the ATAG with updated weights, (i.e., for travel time attribute).
The algorithm starts by applying a kind of temporal clustering by
examining each time slot and extracting only the relevant trajectories
for that time slot, (Line 4 in Algorithm 1). For each trajectory relevant
to a certain time slot t, the trajectory is map-matched [14] to its
corresponding edges. Internally, we apply a kind of spatial clustering
using the R-tree index [17] to retrieve all trajectories inside one
portion of the ATAG. The travel time cost of each edge e that the
trajectory traj spans is then computed and appended to the vector
wv(e)t, (Lines 6 to 8). The wv(e)t contains a vector of weights for
edge e at time slot t. Then, the algorithm calculates the average of the
values in wv(e)t and uses this as the final travel time weight for the
edge e at time slot t; this information is stored in w(e)t, (Line 12).
Next, the value in w(e)t is pushed to the ATAG, (Line 14). Once all
time slots are considered, the returned ATAG should hold travel time
weights for all edges during the stated time slots, (Line 16).

Example. Figure 3 illustrates how the collected GPS trajectories
are analyzed and leveraged to update the ATAG data structure. In this
example, we have a track with six points, p1, p1, ... p6. The value
on the arrow between each pair of points represents the time cost it
takes to travel from point pi, to its next point pj , e.g., cost from p1

to p2 is one minute. When we map-match this track to the equivalent
nodes and edges in the ATAG, we find that p1 is matched to node
n1, and p4 is matched to node n3. Thus, the total cost for the edge
connecting n1 and n3 is three minutes, assuming the trip starts at
time slot t0. In the same way, the edge between nodes n3 and n4

is one minute, assuming the start at time slot t3. In some cases, the
GPS points appear after the start node or before the end node of an
edge. To handle this situation, we extrapolate the weight according
to the ratio between the covered distance by the GPS points to the
total distance of that edge as follows.

w(e)travelT ime =
time(pl)− time(pf )

distance(pf , pl)
× distance(e)

Here, pf is the first mapped GPS point to e after/at its start node,
and pl is the last point before/at the end node of e.

C. Harmony Between Real-Time and History

The initial construction of the ATAG is completely based on the
historical data as described earlier. Therefore, if PreGo provides
route recommendation depending on this data without augmenting the
current real-time data, (e.g., most recent GPS tracks, traffic, accidents
etc), the recommended routes will not match the reality. On the
opposite side, if PreGo uses the most recent data to override the
existing values in the ATAG, road network history will be lost. To
overcome this issue, we maintain two versions for the ATAG structure;
one for the historical data and the other for the real-time snapshot. The
later is used to answer those routing requests that span the current
time slot. Beyond that slot, we depend on the earlier version. For
example, assuming the current time slot is one hour, in this case, all
queries with less than one hour travel time are processed through the
real-time snapshot ATAG solely. However, for long distance queries,
(e.g., inter-states trips), the ATAG historical version is employed to
answer the portion after the first hour. This means, both versions are
harmoniously used side-by-side. For users’ trips that will start after
one hour, we just dispatch the historical ATAG as it accommodates a
more mature picture for the whole road network.



5

Algorithm 2 Time Parameterized Multi-Preference Shortest Path
(TP SP) Algorithm
Input: ATAG G(N,E,W ) , Source node s , Destination node d , Start time
t , User Weighted-Preferences Pref
1: //Cost vectorǹn: the aggregated attributes’ costs from source s to node

n through a predecessor node ǹ
2: //Set the travel time to t, and all other attributes’ costs to zero for the

Cost vector at the source node s
3: Cost vectors ← [(t) , (0 ∀a ∈ A)]
4: Insert Cost vectors → PQ //PQ is a priority queue
5: Pathu ← φ //optimal path from s to current node u
6: Visited-Nodes List V L← φ
7: Global set← φ
8: Solution set← φ
9: while PQ is not empty do

10: Cost vectorv̀v ← PQ.dequeue()
11: for each node u accessor to v and u /∈ V L do
12: e← e(v, u)
13: Cost vectorvu ← [(tv + w(e)travelT ime,tv ) , (av +

w(e)a,tv ∀a ∈ A)]
14: if not dominated(Cost vectorvu , Global set , Pref) and

not dominated(Cost vectorvu, Solution set, Pref) then
15: Append u→ Pathu
16: if Cost vectorvu accured at the destination d then
17: Insert Cost vectorvu , Pathu → Solution set
18: Remove dominated vectors and paths from Solution set
19: Remove dominated vectors and paths from Global set
20: else
21: Insert Cost vectorvu , Pathu → Global set
22: end if
23: end if
24: end for
25: V L← v
26: ND ← Get not dominated vectors and paths from Global set
27: Insert ND → PQ
28: Remove ND from Global set
29: end while
30: return Solution set

VI. QUERY PROCESSING

This section explains the query processing module inside the PreGo
framework. Initially, it illustrates how the ATAG data structure is
employed to answer multi-preference routing queries. The section
introduces the Time-Parameterized Multi-Preference Shortest Path
(TP SP) algorithm and describes how it is leveraged to provide
personalized routing inside PreGo. Then, the bidirectional version
of (TP SP) and the best-start TP SP algorithms are provided.

A. Find Optimal Paths

To find the set of optimal paths (
◦
P ) for a given source-destination

pair of nodes at a certain start time, we propose the Time Parame-
terized Multi-Preference Shortest Path TP SP algorithm. Main Idea.
In a single traverse, the TP SP algorithm can find all optimal paths,
i.e, the one with minimum total weight, at a given start time w.r.t.
to all/subset of the attributes stored in the ATAG structure. This is
achieved based on two concepts, (1) The prune concept cuts off
the expansion of all in-hand branches, obtained after expanding the
start node in ATAG, except for those branches that are likely to
contribute to the optimal paths result. We call one of these branches
a non-dominated sub-route. This internally means there is at least
one attribute’s weight in this route that dominates the weights of the
same attribute(s) in all other ongoing branches as well as the weight
of the obtained route, if any, at the destination node. (2) The wait
concept tells the TP SP algorithm to wait and not to consider the
first route to reach the destination node as the optimal until all the
ongoing branches are pruned and there is no further expansion. By
doing this, we guarantee that the paths collected at the destination
node represents the optimal set of paths.

Algorithm. The pseudocode in Algorithm 2 outlines the steps to
get the set of time-parameterized multi-preference shortest paths from
the underlying ATAG structure. The algorithm starts by initializing the
used sets and priority queue data structures as follows, (Lines 3 to 8 in
Algorithm 2). The Cost vectorv̀v carries the costs for all attributes
at the node v. This represents the total costs for the sub-route from
the start node s to v passing through a predecessor node v̀.

The first cost element in any cost vector represents the travel
time cost. Thus, at the start node s, we initialize its cost vector,
Cost vectors, by setting the travel time to the given start time t and
other attributes’ cost are set to zero, (Line 3). The Global set holds
all nodes that are still open for possible expansion, (Line 7). Pathu

holds the optimal path to node u w.r.t. at least one attribute. When the
graph traversing reaches the destination node d, Pathu should be a
final optimal path from s to d. The Solution set should maintain the
cost vectors for those routes that successfully reach the destination
node d, (Line 8). In addition, this set is going to be used to prune
the Global set through removing all dominated cost vectors. Later
at the end of the algorithm, Solution set will be carrying only the
set of optimal paths

◦
P for the given trip start time t.

Essentially, the priority queue PQ is meant for ordering the ex-
pansion. It is going to be populated with non-dominated cost vectors
being extracted from the Global set along with the information about
their sub-routes in Pathu. The non-dominated cost vector is the one
that has the minimum cost for at least one attribute compared to other
cost vectors in Global set. Intuitively, the cost vector at s is the first
guess to PQ, (Line 4).

Then, the algorithm iterates through the non-dominated cost vectors
kept at PQ. We first dequeue a cost vector Cost vectorv̀v from
PQ and then start expanding from its last node which is v to its
successors. A new cost vector Cost vectorvu is generated for each
successor node u. That is done by summing up the values of the
previous cost vector Cost vectorv̀v and the weights of the recent
passed edge e(v, u) at the equivalent time slot of tv . The tv is the
start time for the expansion process at node v which equals the total
travel time costs from s to reach v through v̀ plus the given start time
t, (Lines 12 and 13).

The Cost vectorvu is examined to be non-dominated through the
comparison with its competitors on the node u, i.e., Cost vectorùu,
as well as those on the destination node d, i.e., those in Solution set.
This is achieved by calling the dominated() function that takes as
arguments, the cost vector to be examined, the set of competitive
cost vectors, and the set of user weighted-preferences Pref . This
function leverages the user’s weighted-preferences to decide which
cost vector is the dominant one as follows. It normalizes the cost
of each attribute according to the current maximum cost value of
that attribute in the competitive set of vectors. Then it applies the
user’s weights by multiplying each attribute cost in all cost vectors by
the corresponding user weighted-preference in Pref . Then the cost
vector with the lowest total value for all attributes is the dominant
one, (not dominated). In case the user has no weighted-preferences,
absolute costs are compared in pairs. Therefore, two cost vectors can
dominate each other, i.e., each vector is dominant w.r.t. one attribute.

The Cost vectorvu is pruned from further expansion, if it is
completely dominated, otherwise, the algorithm proceeds and checks
if this sub-route reaches the destination node, i.e., u is d. If this
not the case, we just insert Cost vectorvu to the Global set,
(Line 21). Otherwise, we insert it into the Solution set, accordingly,
we remove from the Solution set and the Global set all cost
vectors that are dominated by Cost vectorvu, (Lines 17 to 19).
Consequently, the number of cost vectors to be considered for further
expansion is reduced, in turns, this leads to less CPU and memory
overheads.



6

(a) Initialization (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

Fig. 4. Example For Tracing The TP SP Algorithm

Before we proceed for next iteration of expansion, we update
the PQ by moving to it all non-dominated cost vectors from the
Global set, (Line 26 to 28). Here, we need to highlight that the
algorithm does not return the final answer until it is sure that the PQ
is empty. This means routes in Solution set can not be dominated
anymore. Finally, the Solution set that carries the set of optimal
paths at the start time t for all attributes on ATAG is returned.

Example. To better understand how the algorithm works, Figure 4
gives an example to search for the set of shortest paths from a source
node s to a destination node d at the start time t=0. For the sake of
simplicity, we assume two attributes to be considered; travel time
and risk. Both change over the time of the day and both are to
be minimized. The graph’s state and the dominance relationship are
traced in each iteration. Furthermore, the distribution of the generated
cost vectors is given in Table II, (note: C V stands for Cost vector
).

We use the black background to indicate the nodes with non-
dominated cost vectors and the gray background to indicate the nodes
which have valid cost vectors in the Global set. Also, we use the
bold border to indicate the node that has just been expanded.

Initially, a cost vector is generated for the source node s with a
start time and risk level both were set to zero and then be inserted
into PQ to kick off the expansion as shown in Figure 4(a).

In the first iteration, two cost vectors were generated and added to
the Global set as a result of expanding s, i.e., one for node a and
one for node b. Because the cost vector for node a dominates the one
for b, we delete a from the Global set and then insert it into the
PQ to be considered for next expansion, Figure 4(b). It is noticeable
that we have picked up the risk and travel time weights in the first
time slot. However, at node a, the start time is two, so we use the
weights in the second time slot.

In the second iteration, two more cost vectors are generated for
each of the nodes c and e, and then added to the Global set. The
cost vector of node e is the only non-dominated one, therefore, it was
nominated for the next expansion, Figure 4(c).

In the third iteration, we have the first route reaching the destination
d with cost vector equals to < 4, 7 >. As a result, the cost vector for
node b got removed from the Global set because of being dominated
by the cost vector of the just discovered route, Figure 4(d). At this
moment, the PQ is populated with the cost vector of c because it

was the only one exists at the Global set.
In the fourth iteration, a cost vector was generated for node g

due to the expansion from node c. Then it is inserted into the PQ,
Figure 4(e).

At the fifth iteration, a new cost vector appears at the destination d
coming from g with dominant costs over the previous one. Therefore,
the Solution set is updated by removing the previous cost vector
and adding the in-hand one, Figure 4(f). Finally, the algorithm
terminates because the PQ is empty. At the end the Solution set is
returned containing [s, a, c, g, d] as the shortest route with total travel
time cost equals to four and total risk equals to four.

B. Finding Bidirectional Optimal Paths

In order to speed up the process of finding the optimal path and
hence reducing the user’s waiting time to get the answer for his
routing query, we introducea bidirectional version of the TP SP
algorithm.

Main Idea. The main idea of the Bidirectional TP SP algorithm
is to start the optimal path finding process from the two ends of the
routing query. This means, for each single routing query from a source
location to a destination, we run two optimal path finding threads.
One thread starts from the source node towards the destination node
and is guided by the start time as in the above TP SP and the
other thread starts from the destination node back to the source node
without considering the start time. Thus, the edges weights for all time
instances are taken into consideration while the backward thread is
expanding.

Intrinsically, when a backward branch meets a forward branch,
we combine their cost values at the correct time instance, decided
by the forward thread. Then, we set the combined cost value as an
upper limit value µ which is used as a tool for pruning. As we get
more meetings between forward and backward threads, we reset µ
to the minimum value among the combined costs. We employ the µ
to stop the expansion of all in-hand forward and backward branches
that exceed the value of µ. For example, assuming that we have
µ is set to 20 minutes for travel time cost and 5 as the risk cost.
Then, all branches produced from the forward thread and cost more
than these two values to go from the start node to the current node
is pruned and prevented from further expansion. The same happens
for all backward branches that their current costs to the destination



7

Algorithm 3 Bidirectional TP SP Algorithm
Input: ATAG G(N,E,W ), Source node s , Destination node d , Start time
t

1: //Cost vectorǹn: the aggregated attributes’ costs from source s to node
n through a predecessor node ǹ

2: //Set the travel time to t, and all other attributes’ costs to zero for the
Cost vector at the source node s

3: //µ the time dependent upper cost vector of the first meeting between
the forward and backward threads. Assuming they first meet at node v,
then µ ← Cost vectorv + βv , where βv is the cost vector it takes to
the destination node d from node v and this value is generated by the
backward thread.

4: M ← φ //Hash-Map data structure for maintaining the settled nodes by
the backward thread

5: µ←∞
6: Call Backward Thread, Call Forward Thread

exceeds µ. With each extra forward-backward meeting, a pruning
action is fired to clip the current expanding branches. When there is
no more branches to prune or to expand, the in-hand µ represents
the minimum cost and its reference route is declared as the optimal
path. By doing this enhancement, at one side, we cut down up to
half of the response time, (time since a query is issued to an answer
is reported back), compared to the regular TP SP. However, on the
other side, we have to pay extra computation and memory overheads
as a result of carrying the cost values for all time instances during
the backward thread expansion.

Algorithm. The pseudo code in Algorithm 3 outlines the steps of
the bidirectional algorithm. It also shows how to call both the forward
and the backward search threads for finding the optimal path(s) from
the underlying ATAG structure. The algorithm at Line 4 starts by
initializing a common hash-map data structure namedM that is used
to (1) maintain the computed time dependent cost vectors for each
settled node by the backward thread, and (2) from which the forward
thread can get the heuristic time dependent cost vector of any node. At
Line 5, the upper bound cost vector µ, which is the cost of a potential
s to d path is initialized to infinity. Latter µ is going to be modified to
a non-dominated cost vector resulting from any intersection between
the forward and backward threads. Then the algorithm runs the
backward and forward threads to traverse the graph from the end and
start nodes simultaneously (Line 6 in Algorithm 3). The algorithm
obtains the path with the lowest time-dependent accumulated costs
in three phases. In each phase the behavior of both threads varies
according to the constraints introduced at each one. The phases are
as follows. In phase one, both of the forward and backward search’s
are up and running. The forward search works in the same way as the
TP SP algorithm, except that a heuristic cost vector, (i.e., the cost of
each attribute on the path to the destination node d),

h cost vectors←n,t, ∀t ∈ T

is computed at each node involved in the dominance relationship
computation. Initially, the heuristic cost at each node, (except the
destination node), that hasn’t been settled yet by the backward thread
is set to infinity as shown with this formula:

h cost vectors←n,t∞, ∀t ∈ T

Indeed, involving the heuristic function in this phase does not
have an impact on the dominance relationship computation. That is
because it is going to be the same for any settled nodes at this phase.
Therefore, for this phase, we ignore it in the dominance relationship
computation. On the other side, the backward thread traverses the
graph using breadth first search and computes the minimum heuristic
time dependent cost vectors for each visited node. The nodes settled
by the backward thread are maintained in the common hash-mapM.

Algorithm 4 Backward Thread
1: for each time slot t ∈ T do
2: Cost vectord(t)← 0 ∀a ∈ A
3: end for
4: Insert [d, Cost vectord] ← M PQ← d //PQ is a priority queue
5: while PQ is not empty do
6: u← PQ.dequeue()
7: for each node v predecessor to u do
8: e← e(v, u)
9: for each time slot t ∈ T do

10: Cost vectorv(t)← (w(e)a,t ∀a ∈ A) + Cost vectorsu(t+
w(e)travelT ime,t)

11: if Cost vectorsv(t) not dominated by µ then
12: if M.get(v)tisnull then
13: Insert [vt, Cost vectorsv] ← M
14: else
15: M.get(v)t ← nonDominated(M.get(v)t,

Cost vectorsv)
16: end if
17: end if
18: end for
19: //schedule the node, if it has at least one valid vector
20: if M.get(v).size() > 0 then
21: Insert v ← PQ
22: end if
23: end for
24: end while

This phase terminates once the two threads intersect at any node
v ∈ V for the first time. By then, the time dependent upper bound
cost vector µ, which is initially set to ∞, is modified and set to the
accrued cost vector on node v at time tv plus the heuristic cost vector
at the same node. Pruning of the expanding branches begins in this
situation where all cost vectors dominated by µ at the Global set
are going to be removed. In phase two, the forward search thread
keeps working as before, but with additional constraint such that
only cost vectors that are not dominated by µ are considered for
expansion. The same constraint is applied on the backward thread
where any new visited node is added to M, if at least one of its
time dependent cost vectors is not dominated by µ for at least one
time slot. Therefore, it is allowed to proceed until no more nodes are
eligible for expansion. At this moment, the algorithm transfers to the
third phase. In phase three, only the forward search thread continues,
with an additional constraint that only the nodes maintained at M
are eligible to proceeds for expansion. The forward search terminates
when it reaches the destination node d returning the optimal path
resides at the Solution set.

Example. For the sake of simplicity, and to better understand how
the bidirectional algorithm works, we use the same example used for
explaining the TP SP algorithm. The graph’s state and the dominance
relationship are traced in each iteration. Furthermore, the generated
cost vectors of the forward thread are provided in Table I, while the
tracing of the backward thread is given if Figure 8.

As indicated earlier, we use the black background to indicate the
nodes with non-dominated cost vector and the gray dotted background
to indicate the nodes that has valid cost vectors in the Global set.
Also, we use the bold border to indicate the node that has just been
expanded. On the other hand, we use the blue background to show
the settled nodes by the backward thread and the blue bold border to
indicate the node that has just been expanded.

Initially, a cost vector is generated for the source node s with a
start time and risk level which are both set to zero and then inserted
into the PQ to kick off the forward thread. On the other side, a cost
vector per each time slot is generated for the destination node d and
initialized to zero for each attribute and then added to the common
Hash-map M and queued to trigger the backward thread to start



8

(a) Initialization (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

Fig. 5. Example For Tracing The Bidirectional TP SP Algorithm (best viewed in color)

traversing as shown in Figure 5(a). To focus more on explaining the
backward thread, we assume that the backward thread is one step
ahead from the forward thread in this example. In the first iteration
of the backward thread as shown in Figure 5(b), nodes [g,e,h] are
settled and five cost vectors are generated for each node as per the
number of time slots defined in this example, Figure 8(a) and then
added to the shared data structureM and queued for next expansion
as well.

In the second iteration of the backward thread, node c was settled
as a result of the expansion on node g as shown in Figure 5(c) and
Figure 8(b). On the other hand, the forward thread had just started
expanding on the source node s and as a result, two cost vectors were
generated and added to the Global set; one for node a and one for
node b.

Since the time dependent costs at both nodes are still infinity, (i.e.,
because they have not been settled yet by the forward thread), we
ignore the those costs in computation of the dominance relationship
between nodes a and b. Accordingly, the cost vector for node a
is dominant on the one for b, and therefore, it is deleted from the
Global set and then inserted into the PQ for next expansion. Due

TABLE I. COST VECTORS FOR FORWARD THREAD

Iteration Global set PQ Solution set µ
0 φ C Vs = < 0, 0 > φ ∞
1 C Vsb = < 5, 7 > C Vsa = < 1, 1 > φ ∞

2 C Vsb = < 5, 7 > C Vac = < 2, 3 > φ < 4, 7 >
C Vae = < 2, 2 > φ < 4, 4 >

3 φ C Vcg = < 3, 4 > φ < 4, 4 >
4 φ φ C Vgd = < 4, 4 > < 4, 4 >

to the expansion on node a in the second iteration of the forward
thread, the forward and the backward thread had intersected for the
first time at node e. As a result, the upper bound cost vector µ were
set to < 4, 7 > and the phase were shifted to the next node. In the
same iteration µ was updated to < 4, 4 > (which is less than its
previous value), when the two threads intersected again at node c. As
a result, the pruning happened for the costvector of nodes e and b
due to being dominated by µ and left only with the cost vector of
node c at the Global set. Therefore, it was nominated for the next
expansion Figure 5(d). In the third iteration of the forward thread, the
cost vector of node g, which was generated as the result of expansion
on node c, was the only one at the Global set. Therefore, it was

nominated for the next expansion, 5(e). In the fourth iteration of the
forward thread, the destination node d was reached for the first time.
Therefore, the accrued cost vector was added to the Solution set
and the forward thread is terminated. At the end the Solution set
is returned containing [s,a,c,g,d] as the optimal route w.r.t the travel
time and risk attributes with total travel time cost equal to four and
total risk equal to four, Figure 5(f). Due to space considerations, We
do not show the expansion of the backward thread on iteration two
since the further expansions will not affect the final result.

Optimizing The Bidirectional algorithm. In the above
bidirectional TP SP algorithm, the potential optimal paths cost
can be discovered and/or updated with every intersection between
the forward and the backward threads at a node v ∈ V . However,
the navigation through the rest of the route, which is from v to d, is
not known by that time. Hence, the forward thread keeps proceeding
from the intersection node to find out the remaining directions to the
destination node. In other words, the backward thread works as a
guidance to the forward thread as it just calculates the total cost for
the potential optimal path.

As an optimization, we propose to assign the navigation task to
the backward thread. So that when the intersection with the forward
thread occurs, the total cost vector and navigation are available. To
achieve this, the backward thread needs to maintain a reference for
each heuristic time dependent cost vector. By this optimization, the
navigation time decreases. However, it requires extra memory to
maintain the paths’ references while traversing to meet the forward
thread.

C. Finding The Best Start Time

In fact, the cost of an optimal route for a given source-destination
pair of locations and w.r.t multiple dynamic attributes is highly
influenced by the start time parameter. Based on that, PreGo is
advanced with the Best-start TP SP algorithm for finding those routes
by determining the start time at which they can be achieved. Basically,
our proposed approach for finding the best start time inherits its
core idea from the TP SP algorithm. The Best-start TP SP algorithm
can be summarized in four main steps as follows. (1) Initially, the
expansion starts from the sources node s with initial cost vectors as
many as the number of the predefined time slots of the day. Next, we



9

proceed the expansion with the non dominated cost vectors extracted
from the in-hand cost vectors at the Global set (2) When arriving
at the destination node d, only we maintain the non-dominated cost
vectors accrued at d in the Solution set and then, we prune the
Global set by eliminating the dominated cost vectors of the settled
nodes. (3) We wait for the in-hand ongoing expansions for potential
better routes. (4) Finally, when all expansions are either pruned or
reached the destination, the algorithm terminates and returns the cost
vectors in the Solution set along with their associated start time.

TABLE II. THE GENERATED COST VECTORS

Iteration Global set PQ Solution set
0 φ C Vs = < 0, 0 > φ
1 C Vsb = < 5, 7 > C Vsa = < 1, 1 > φ

2 C Vsb = < 5, 7 > C Vae = < 2, 2 > φ
C Vac = < 2, 3 >

3 C Vsb = < 5, 7 > C Vac = < 2, 3 > C Ved = < 4, 7 >
4 φ C Vcg = < 3, 4 > C Ved = < 4, 7 >
5 φ φ C Ved = < 4, 7 >

C Vgd = < 4, 4 >

The time asymptotic time complexity of the TP SP algorithm is
O(|E|(|A|logT + log|N |)) where T is the number of time instants,
|N| is the number of nodes in N , |E| is the number of edges in E
in the (ATAG) graph and |A| is the number of attributes in A.

VII. EXPERIMENTAL EVALUATION

The purpose of these experiments is to evaluate the efficiency and
the scalability of the proposed algorithms within the PreGo frame-
work in terms of two factors; CPU time and memory consumption.

A. Experimental Setup

The evaluation of the proposed approach was conducted through
running various workloads of routing queries. Each query consists
of source-destination pair of nodes and a given start time. We vary
the values for four different parameters and observe the effect the
overall performance. The parameters we focus on in this study are;
(1) the number of preferred attributes, (2) the distance between the
source node and the destination, (3) the number of queries, and (4)
the number of time slots of the day. All experiments were conducted
on a Windows 7 workstation equipped with Intel(R) Xeon(R) CPU
E5-1607 v2 @ 3.00GHz processor and 32GB RAM.

All experiments are based on an actual Java implementation of the
TP SP algorithm and its variations, the ATAG data structure, and the
whole PreGo system. The competitive techniques are implemented
in Java as well and tested in the same environment. The source code
of our implementation is accessible through [37], and the system
interface and usage scenarios are described in [23].

The experiments were performed with generated routing queries
on real road network map of Washington State, USA. This map has
535,451 nodes and 1,283,539 edges. The 15GB of GPS traces [34] is
the core source for the attributes in the ATAG structure. The types of
data sets described in Section IV-B, (e.g., reported car accidents), are
not sufficient for performance evaluation. So, we generated synthetic
data sets to serve the experimental evaluation purposes. We divide
the day equally into five time slots. We also build a query generator
to generate batches of queries, (from 10K to 50K), according to the
need of each set of experiments.

B. Competitive Approach

To provide a sound experimental evaluation of the proposed TP SP
algorithm and its bidirectional and best-start time versions, we need

to compare its performance in terms of CPU time and memory
consumption with a comparable algorithm. The most recent and
competitive work is the SP-Skyline [41], where skyline approach is
used to provide personalized routing. This work has a basic limitation,
lack of pruning while traversing the road network graph. In other
words, pruning happens at the end node. The number of supported
attributes and time slots of the day and lack of best start time is
another issue. Another relevant work is the SP-TAG algorithm [6]. It
supports time-dependent graph traverse but for single attribute. It is
also chosen as it supports best start time.

C. Effect of the distance between source-destination nodes

We vary the distance between source and destination nodes from
1 to 40 miles while the number of attributes and queries are
kept constant at three attributes and 10K queries respectively. It is
observed that the CPU time and memory consumption increase for
the four algorithms, (SP TAG, SP-Skyline, PreGo(TP SP), bidirec-
tional TP SP), as the distance increases, Figure 6(a), Figure 7(a),
Figure 9(a), Figure 10(a). That makes sense because the number of
expansions/branching increases with the distance. Accordingly, the
number of generated cost vectors increases which in turns increases
the memory usage. However, it is clear that both algorithms of
PreGo are significantly more efficient than the SP-TAG and SP-
Skyline algorithms. That is because PreGo consolidates all attributes
in the dominance function which is used inside its optimized graph
navigation to obtain the optimal path in just one traverse of the
graph. Another reason is that PreGo algorithms applies early pruning
which significantly cuts the irrelevant graph traversing. As expected,
the bidirectional TP SP algorithm behaves better than the regular
TP SP. For example, at one mile query, it takes on average 6.0ms
and 0.58ms/query from the SP-Skyline and SP-TAG algorithms, re-
spectively, while it takes only 0.026ms and 0.01ms from our SP-TAG
and bidirectional TP SP algorithms respectively. At 40 miles, it takes
77.6ms, 19.9ms, 0.848ms and 0.475ms from the four algorithms re-
spectively. We obviously can see that PreGo algorithms behaves more
than one and two order of magnitudes better than the SP TAG, SP-
Skyline algorithms, respectively. This behavior is repeated throughout
the remaining results.

D. Effect of the number of preferred attributes

In this set of experiments, we increase the number of attributes to
be considered in the optimal path(s) search from two to six attributes
while maintaining the distance and the number of queries constant
at 10 miles and 10K queries respectively. In general, we notice that
the CPU time and memory consumption slightly decrease for the
TP SP as the number of preferred attributes increases, while it has a
visible increasing trend in memory for the bidirectional Figure 9(b),
Figure 10(b). It is a straight and sharp increasing pattern for the
SP-TAG and SP-Skyline algoritms, Figure 6(b), Figure 7(b). The
bidirectional outperforms other algorithms. This can be attributed
to the fact that the number of non-dominated cost vectors queued
for expansion at every iteration is decreasing due to involving more
attributes that are working as filters in the dominance relationship
computation, i.e., prune concept. For example, consider four cost
vectors with distance attribute only were involved in a dominance
relationship. Assuming that those costs are 1, 1, 2, and 1 miles
respectively. Therefore, three cost vectors are going to be queued
for next expansions due to being not-dominated. With involving
additional attribute such as travel time to these cost vectors, this will
lead to have costs < 1, 1 >,< 1, 2 >,< 2, 3 >,< 1, 2 >. In this
case, only one cost vector, i.e., < 1, 1 >, will be nominated and
queued for the next expansion.



10

 0

 10

 20

 30

 40

 50

 60

 70

1 10 20 30 40

C
P

U
 C

o
s

t 
(m

s
)

Distance (mi)

PreGo(TP_SP)
SP-Skyline

SP-TAG

(a) Distance

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 3 4 5 6

C
P

U
 C

o
s

t 
(m

s
)

Attributes

PreGo(TP_SP)
SP-Skyline

SP-TAG

(b) Attributes

 0

 1

 2

 3

 4

 5

 6

 7

 8

10K 20K 30K 40K 50K

C
P

U
 C

o
s

t 
(m

s
)

Queries

PreGo(TP_SP)
SP-Skyline

SP-TAG

(c) Queries

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5

C
P

U
 C

o
s

t 
(m

s
)

Time Slots

PreGo(TP_SP)
SP-Skyline

SP-TAG

(d) Times

Fig. 6. Performance Evaluation (CPU Time)

 2

 4

 6

 8

 10

1 10 20 30 40

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Distance (mi)

PreGo(TP_SP)
SP-Skyline

SP-TAG

(a) Distance

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2 3 4 5 6

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Attributes

PreGo(TP_SP)
SP-Skyline

SP-TAG

(b) Attributes

 1

 2

 3

 4

 5

 6

 7

10K 20K 30K 40K 50K

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Queries

PreGo(TP_SP)
SP-Skyline

SP-TAG

(c) Queries

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Time Slots

PreGo(TP_SP)
SP-Skyline

SP-TAG

(d) Times

Fig. 7. Performance Evaluation (Memory Overhead)

(a) Iteration 1 (b) Iteration 2

Fig. 8. Tracing of Backward Thread

E. Effect of the number of queries

We increase the number of queries from 10K to 50K while
maintaining the distance and the number of preferred attributes
constant at 10 miles and three attributes respectively. In general, we
can observe that the CPU time for the four algorithms is fluctuating
in a very narrow range as the number of queries increases. From the
memory perspective, it is jus the SP-Skyline that increases while the
number of queries increases. That is because, keeps all expansion
results to the end of graph navigation. Therefore, it can be inferred
that this parameter has no major impact on the total performance.
However, there is a dramatic difference between the average CPU
cost for the SP-Skyline SP-TAG at 6.8ms and 4ms, respectively, and
the two algorithms of PreGo at 0.15ms and 0.075ms for the TP SP
and bidirectional respectively.

F. Effect of the number of time slots of the day

We range the number of time slots of the day from one, which
means that there is no division of the day time, to five time
slots while maintaining the distance and the number of preferred
attributes constant at 10 miles and three attributes respectively. In
total, it is observed that the CPU time and memory consumption are
fluctuating within a small range a round four different cost values at
6.6ms/6.78GB, 4.5ms/2GB, 0.168ms/1.33GB, and 0.091ms/1.33GM
for the the SP-Skyline, SP-TAG, TP SP, and bidirectional TP SP
respectively, Figure 6(d), Figure 7(d), Figure 9(d), Figure 10(d).
Hence, it can be deduced that this parameter does not have significant
influence on the overall performance patterns.

G. Evaluation of Obtaining Best-Start Time

In this set of experiments, we examine the performance of the
PreGo Best-start algorithm that is introduced to obtain the best time

recommended to start a trip such that the optimal path can be obtained.
With varying the distance between source and destination nodes,

it is observed that the CPU time and memory consumption increase
for the two algorithms as the distance increases. It is obvious that
PreGo is significantly more efficient than the SP-TAG Best-Start
from the CPU time perspective, Figure 11(a). For example, with
40 miles distant query, it takes 6.75ms from SP-TAG, while PreGo
accomplishes it in just 1.116ms. That is because PreGo consolidates
all attributes in one run. However, PreGo is approaching the SP-TAG
Best-Start in the memory consumption as shown in Figure 12(a).
That’s because the increasing in the number of expansions with long
distances. Accordingly, the number of generated cost vectors will
increase which in turns increases the memory usage.

In the study of the effect of the number of attributes to be
considered while obtaining the best start time, we get the following
patterns. (1) For the CPU time, it is noticed that both algorithms
have increasing trend. However, PreGo is growing slightly with
smaller values than the SP-TAG which rises sharply with much larger
values. (2) Regarding the memory consumption, both of them slightly
increase but the cost was higher with PreGo. That is attributed to the
consolidated set of attributes in one run, in contrast with a single
attribute at a time in SP-TAG Best-Start.

When we vary the number of queries, we find that the CPU time
slightly increases for both algorithms, however, PreGo acts with
smaller values. For example, at 5K queries, PreGo accomplishes it in
0.14ms/query while SP-TAG takes 0.78ms on average, Figure 11(c).
From memory consumption view, SP-TAG Best-Start almost goes
steady at 1.3GB, whereas PreGo starts at 0.93GB, then it increases
to reach the SP-TAG Best-Start, Figure 12(c).

When we test the effect of the number of time slots of the day,
we notice that the CPU time and memory consumption are almost
going steady with a very slight increasing trend with PreGo. On
the other side, it is significantly increasing with SP-TAG Best-Start,
Figures 11(d) and 12(d). In a nutshell, PreGo outperforms SP-TAG
in finding the best start time.

H. User Study

We conduct a user study to validate if users really need a routing
service that goes beyond the shortest travel time route. We also
aim at examining the variability of weights for each routing option,



11

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 20 30 40

C
P

U
 C

o
s

t 
(m

s
)

Distance (mi)

PreGo(TP_SP)
PreGo(Bidirectional)

(a) Distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6

C
P

U
 C

o
s

t 
(m

s
)

Attributes

PreGo(TP_SP)
PreGo(Bidirectional)

(b) Attributes

 0

 0.04

 0.08

 0.12

 0.16

 0.2

10 20 30 40 50

C
P

U
 C

o
s

t 
(m

s
)

Queries (K)

PreGo(TP_SP)
PreGo(Bidirectional)

(c) Queries

 0

 0.04

 0.08

 0.12

 0.16

 0.2

1 2 3 4 5

C
P

U
 C

o
s

t 
(m

s
)

Time Slots

PreGo(TP_SP)
PreGo(Bidirectional)

(d) Times

Fig. 9. Effect of bidirectional Processing on Performance (CPU Time)

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 10 20 30 40

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Distance (mi)

PreGo(TP_SP)
PreGo(Bidirectional)

(a) Distance

 0

 0.5

 1

 1.5

 2

 2.5

2 3 4 5 6

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Attributes

PreGo(TP_SP)
PreGo(Bidirectional)

(b) Attributes

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 20 30 40 50

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Queries (K)

PreGo(TP_SP)
PreGo(Bidirectional)

(c) Queries

 0

 0.5

 1

 1.5

1 2 3 4 5

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Time Slots

PreGo(TP_SP)
PreGo(Bidirectional)

(d) Times

Fig. 10. Effect of bidirectional Processing on Performance (Memory Overhead)

 0

 1

 2

 3

 4

 5

 6

 7

1 10 20 30 40

C
P

U
 C

o
s

t 
(m

s
)

Distance (mi)

PreGo(Best-Start)
SP-TAG(Best-Start)

(a) Distance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 3 4 5 6

C
P

U
 C

o
s

t 
(m

s
)

Attributes

PreGo(Best-Start)
SP-TAG(Best-Start)

(b) Attributes

 0

 0.2

 0.4

 0.6

 0.8

 1

1K 2K 3K 4K 5K

C
P

U
 C

o
s

t 
(m

s
)

Queries

PreGo(Best-Start)
SP-TAG(Best-Start)

(c) Queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5

C
P

U
 C

o
s

t 
(m

s
)

Time Slots

PreGo(Best-Start)
SP-TAG(Best-Start)

(d) Times

Fig. 11. Find Best-Start Time, Performance Evaluation (CPU Time)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 10 20 30 40

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Distance (mi)

PreGo(Best-Start))
SP-TAG(Best-Start)

(a) Distance

 1

 1.1

 1.2

 1.3

 1.4

 1.5

2 3 4 5 6

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Attributes

PreGo(Best-Start)
SP-TAG(Best-Start)

(b) Attributes

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1K 2K 3K 4K 5K

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Queries

PreGo(Best-Start)
SP-TAG(Best-Start)

(c) Queries

 1.2
 1.22
 1.24
 1.26
 1.28

 1.3
 1.32
 1.34
 1.36
 1.38

 1.4

1 2 3 4 5

M
e

m
o

ry
 C

o
s

t 
(G

B
)

Time Slots

PreGo(Best-Start)
SP-TAG(Best-Start)

(d) Times

Fig. 12. Find Best-Start Time, Performance Evaluation (Memory Overhead)

(e.g., safest or scenic routes). We surveyed 58 adult participants
around the University of Virginia and the University of Washington
campuses. The participants consist of 28 females and 30 males and
they represent non-students, city residents, students, staff, and faculty.
The study asks the participants to rank and weight five different
routes, (fastest in travel time, shortest in distance, safest which is
lowest in car accidents, most scenic, and route with most services
and stores) during four different driving conditions (in the morning to
work/school, at night traveling back home, on a vacation for which
you drive, and on weekends for shopping). The questions and all
participants’ responses are available to the reader for further analysis
through [21]. Figure 13 gives the summary of the user study. The
weighted average for each route during the four listed conditions are
classified based on the gender. As expected, users take fastest route in
their daily commute to work and school. Female drivers tend to care
more about the safest path in their daily trips. At night, drivers prefer
to go through a path that is safer. Though, male drivers slightly prefer
the fastest route but, female drivers choose the safest route. From the
third and fourth questions, all users choose to enjoy the scenic and
most serviced paths if they travel for a vacation or shopping during
a weekend. However, female users still consider safety more than

the male users. From this study, we can conclude: (1) Drivers do
have variety of routing preferences beyond shortest route, (2) Safest,
most-scenic, and most-serviced paths are important options, (3) Users’
preferences are dynamic and depend on the time of the day and trip
conditions and (4) User’s weights span a wide range of values that
reflect their need for smart personalized routing.

VIII. CONCLUSION

This paper presents the PreGo system that leverages the geotagged
data obtained from a variety of sources in smart cities to provide
personalized multi-preference routing services. This work includes
handling efficiency and scalability issues when the areas of maps
being handled are large or the number of personalization parameters
increases linearly. PreGo also supports optimizing start times, and
integrating user’s weighted preferences Those are key features miss-
ing from several research and commercial frameworks. Experimental
evaluation demonstrates that the (TP SP) family of algorithms within
PreGo performs more than 100 times faster than the competitive
techniques. A user study with 58 participants confirms the users’
desire for personalized routing that offers more than the shortest path
in time or distance.



12

Fig. 13. Summary of The User Study. Average Weight (Percentage) For Each Route/Condition Classified by Gender.

REFERENCES

[1] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel. TAREEQ:
A MapReduce-Based Web Service for Extracting Spatial Data from
OpenStreetMap. In SIGMOD, Utah, USA, June 2014.

[2] AllWebsiteStats. Statisitcs For Websites Usage. http://allwebsitestats.
com/, June 2014.

[3] Balteanu Adrian and Jossé Gregor and Schubert Matthias. Mining
driving preferences in multi-cost networks. In SSTD, pages 74–91,
Munich, Germany, Aug. 2013.

[4] J. Bao, A. Magdy, M. Sarwat, and M. F. Mokbel. Minnesota
Traffic Generator. URL:http://mntg.cs.umn.edu/traffic requests/create
request/, Oct. 2013.

[5] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, , and Y. Portugali. Smart cities of the
future. The European Physical Journal Special Topics, 214(1):481–518,
2012.

[6] G. Betsy, S. Kim, and S. Shekhar. Spatio-temporal network databases
and routing algorithms: A summary of results. Advances in Spatial and
Temporal Databases, 4605:460–477, 2007.

[7] U. C. Bureau. TIGER/Line and Shapefiles. http://www.census.gov/geo/
maps-data/data/tiger-line.html, Oct. 2013.

[8] J.-P. Calbimonte, J. Eberle, and K. Aberer. Semantic Data Layers in
Air Quality Monitoring for Smarter Cities. In International Semantic
Web Conference. Semantics for Smarter Cities, Pennsylvania, USA, Oct.
2015.

[9] D. Delling, A. V. Goldberg, M. Goldszmidt, J. Krumm, K. Talwar, , and
R. F. Werneck. Navigation made personal: Inferring driving preferences
from gps traces. In ACM SIGSPATIAL GIS, Washington, USA, Nov.
2012.

[10] D. Edsger. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[11] G. Franz, K. Hans-Peter, R. Matthias, and S. Matthias. Mario:
multi-attribute routing in open street map. In SSTD, pages 486–490,
Minnesota, USA, Aug. 2011.

[12] Fujimura and Kikuo. Path planning with multiple objectives. Automa-
tion Magazine, 38(1):33–38, 19996.

[13] N. Giacomo, D. Daniel, L. Leo, and S. Dominik. Bidirectional A*
search for time-dependent fast paths. Experimental Algorithms, pages
334–346, 2008.

[14] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet.
Online map-matching based on hidden markov model for real-time
traffic sensing applications. In SIGMOD, pages 776–781, Anchorage,
USA, Sept. 2012.

[15] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive
fastest path computation on a road network: A traffic mining approach.
In VLDB, pages 794–805, Vienna, Austria, Sept. 2007.

[16] Google. Google Maps APIs. Traffic Layer. https://developers.google.
com/maps/documentation/javascript/trafficlayer, July 2016.

[17] Guttman and Antonin. R-trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, pages 47–57, Massachusetts, USA, June 1984.

[18] S. Hanan, S. Jagan, and A. Houman. Scalable network distance
browsing in spatial databases. In SIGMOD, pages 43–54, Vancouver,
Canada, June 2008.

[19] P. E. Hart, N. J. Nils, and R. Bertram. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[20] W. Henan, G. Li, H. Hu, S. Chen, B. Shen, H. Wu, W.-S. Li, and K.-L.
Tan. R3: a real-time route recommendation system. In VLDB, pages
1549–1552, Hangzhou, China, Sept. 2014.

[21] A. M. Hendawi, D. Hazel, A. Rustum, A. Teredesai, D. Oliver, M. Ali,
A. A. Ahmadain, and J. A. Stankovic. Smart Routing User Study Re-

sults. URL:http://www.cs.virginia.edu/hendawi/UserStudyResults.pdf,
Oct. 2016.

[22] A. M. Hendawi, M. Khalefa, H. Liu, M. Ali, and J. A. Stankovic.
A vision for micro and macro location aware services. In ACM
SIGSPATIAL GIS, page 12, California, USA, Oct. 2016.

[23] A. M. Hendawi, A. Rustum, A. A. Ahmadain, D. Oliver, D. Hazel,
A. Teredesai, and M. Ali. Dynamic and Personalized Routing in PreGo.
In MDM, Porto, Portugal, June 2016.

[24] A. M. Hendawi, E. Sturm, D. Oliver, and S. Shekhar. CrowdPath:
a framework for next generation routing services using volunteered
geographic information. In SSTD, pages 456–461, Munich, Germany,
Aug. 2013.

[25] S. Jagan and S. Hanan. Query processing using distance oracles for
spatial networks. TKDE, 22(8):1158–1175, 2010.

[26] X. Jiajie, G. Limin, D. Zhiming, S. Xiling, and L. Chengfei. Traffic
aware route planning in dynamic road networks. In DASFAA, pages
576–591, Busan, South Korea, Apr. 2012.

[27] JOSM. An extensible editor for OpenStreetMap (OSM). http://josm.
openstreetmap.de/wiki, Jan. 2016.

[28] L. Julia, J. Krumm, and E. Horvitz. Trip router with individualized
preferences (trip): Incorporating personalization into route planning.
Proceedings of the National Conference on Artificial Intelligence,
21(2):1795–1800, 2006.

[29] I. KB and S. V. Goal Directed Relative Skyline Queries in Time
Dependent Road Networks. arXiv preprint arXiv:1205.1853, 2012.

[30] W. Ling-Yin, Y. Zheng, and W.-C. Peng. Constructing popular routes
from uncertain trajectories. In KDD, pages 195–203, Beijin, China,
Aug. 2012.

[31] NHTS. National Highway Traffic Safety Administration. Fatality
Analysis Reporting System (FARS). ftp://ftp.nhtsa.dot.gov/FARS/, Jan.
2016.

[32] J. Ning, H. Yun-Wu, and R. E. A. Hierarchical optimization of optimal
path finding for transportation applications. In CIKM, pages 261–268,
Maryland, USA, Nov. 1996.

[33] M. Nirmesh, S. Madden, and A. Bhattacharya. A continuous query
system for dynamic route planning. In ICDE, pages 792–803, Hannover,
Germany, Apr. 2011.

[34] OSM. GPS Tracks. http://planet.openstreetmap.org/gps/, Jan. 2016.
[35] B. Panagiotis, S. Dimitris, D. Theodore, and S. Timos. Dynamic pickup

and delivery with transfers. In SSTD, pages 112–129, Minnesota, USA,
Aug. 2011.

[36] J. G. Rosario, S. Thambipillai, and Q. KH. Heuristic techniques for
accelerating hierarchical routing on road networks. IEEE Trans on
Intelligent Transportation Systems, 3(4):301–309, 2002.

[37] A. B. Rustum, A. M. Hendawi, and M. Ali. PreGo Source Code and
Sample Data. URL:https://github.com/binrusas/PreGo, Oct. 2015.

[38] N. Saeed and M. R. Delavar. Multi-criteria, personalized route planning
using quantifier-guided ordered weighted averaging operators. Inter-
national Journal of Applied Earth Observation and Geoinformation,
13(1):322–335, 2011.

[39] C. Vaida and C. S. Jensen. Vehicle Routing with User-Generated
Trajectory Data. In MDM, pages 14–23, Pennsylvania, USA, June 2015.

[40] L. Weifa, C. Baichen, and Y. J. Xu. Energy-efficient skyline query
processing and maintenance in sensor networks. In CIKM, pages 1471–
1472, California, USA, Oct. 2008.

[41] B. Yang, C. Guo, Y. Ma, and C. S. Jensen. Toward personalized,
context-aware routing. VLDB Journal, 24(2):297–318, 2015.

[42] Y. Yang, H. Gao, J. X. Yu, and J. Li. Finding the CostOptimal Path
with Time Constraint over TimeDependent Graphs. In VLDB, pages
673–684, Hangzhou, China, Sept. 2014.


