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Abstract

Human activity recognition (HAR) is challenging, particu-
larly in natural settings, due to issues like confounding ges-
tures present in different activities, diversity in performing
the same activity, and the wide range of possible human
activities. Acceleration and rotation rate, two of the most
widely used sensing modalities for HAR, are limited in ad-
dressing these issues. Also, many solutions for wearables
are focused on some particular activities, and they do not
generalize to others. One challenge is to develop underly-
ing generic techniques for activity recognition that can be
used in many different wearable based applications. We
present a set of general purpose techniques for activity
recognition using wearables. The techniques are based

on quaternions that represent the orientation of a device

in three-dimensional space. The techniques can be used
for different purposes like reducing computation, increasing
robustness and accuracy, and better understanding move-
ments for HAR.
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Figure 1: For brushing teeth at
different intensity (a) Accelerations
along the X axis, (b) Mean and
standard deviation from 1 second
segments, (c) Gravity vectors along
the X axis

Introduction

Accelerometers and gyroscopes are the most widely used
wearable inertial sensors for HAR. However, they are not,
in general, robust enough in recognizing the wide range of
human activities involving complex and interleaving body
gestures. For example, Figure 1(a) shows the acceleration
values along the X axis from a wrist-worn accelerometer
for brushing teeth in a specific way, but at different speeds
(slow, average, fast). As shown in the figure, the data dif-
fers significantly for the different speeds even though the
gestures are nearly the same. Similar variations are also
present in the data from the Y and the Z axes. Dissimilar-
ity in the sensor data results in dissimilarity in the features
for the same activity, consequently results more similarity
among features from different classes. Figure 1(b) shows
two widely used features, mean and standard deviation, ex-
tracted from 1-second segments from the acceleration data
along the X axis. It demonstrates significant variance in the
feature values even though they are from the similar ges-
tures. Similar to the accelerometers, the gyroscopes also
suffer from these problems.

Today, many solutions for wearables are focused on some
particular activities, and they do not generalize to other.
One challenge is to develop underlying generic techniques
that can be used in many different wearable based appli-
cations, and that would support in addressing several chal-
lenges associated with HAR. We present a set of general
purpose techniques for activity recognition using wearables.
The techniques are based on quaternions that represent
the orientation of an object in three-dimensional space.
Quaternions are widely used in different areas including
computer graphics, gaming, robotics, and computer vision.
There do exist some works for HAR that use quaternions.
However, these methods are designed and developed to
recognize specific activities [2], and they do not generalize

to others. In contrast, our techniques are not activity spe-
cific, and can be used to develop better solutions for HAR.
However, they are not a complete replacement of the exist-
ing methods, and can be used in combination with the state
of the art techniques.

General Purpose Techniques

1. Quaternion Decomposition

As mentioned earlier, our techniques are based on the
quaternions that represent the orientation of a coordinate
system with respect to another coordinate system. In the

context of smart devices like smart phones and smart watches,

a quaternion represents the orientation of the device with
respect to the world coordinate system. A quaternion q is
formally defined by a scalar component (gs) and a 3D vec-
tor (gz, gy, 4=) @8 q = qs + qui + qyJ + q:k, where i, j,
and k are the imaginary basis elements. The quaternion
is called a unit quaternion if its magnitude equals to one,

i.e. if lg = \/qg +¢2 +q2 +q2 = 1. The quaternions
are usually computed through fusing the outputs of multi-
ple sensors such as an accelerometer, a gyroscope, and a
magnetometer. Many of the commercially off-the-shelf de-
vices like smart phones and smart watches provide the unit
quaternions.

The quaternion values depend on the orientation of the de-
vice with respect to both the earth gravity and the direction
of the earth magnetic field (e.g., north or south). Such de-
pendency of the quaternion on direction limits its usage

for HAR where a user can perform an activity facing in any
direction. So, we use rotation matrix, an equivalent repre-
sentation of the quaternion, that is defined as:
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Figure 2: For similar two apple
bites at different speed plot of (a)
The accelerations and (b) The
gravity vectors along the time axis,
(c) The spatiotemporal
representation of the gravity
vectors
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The rows and columns of the matrix are orthonormal (or-
thogonal unit vectors). The first, second and third rows rep-
resent orientation of the device with respect to east, north
and gravity of the world, respectively. So, only the gravity
vectors are used for direction agnostic activity recognition
tasks. The other two vectors are used where direction is
relevant.

It should be noted that the acceleration values are the com-
bination of the earth gravity and the linear accelerations due
to movement. When there is no movement, the magnitudes
of the accelerations equal to the earth gravity (~ 9.8ms~2),
and normalizing the accelerations results the unit gravity
vectors. However, movements from activity adds linear ac-
celerations that depend on the intensity of the movements
even for the same gestures (Figure 1 (a)). On the other
hand, the gravity vectors are less distorted as shown in Fig-
ure 1(c). In contrast to the accelerometers, the gyroscopes
and the magnetometers, the unit vectors from the rotation
matrix are less distorted for the same gestures, providing
more consistent features for the same activity.

2. Spatiotemporal Representation

Since the vectors are unit in length, they can be placed on
the surface of a unit sphere. In contrast to the time domain
representation where the vectors are plotted against time,
the spatiotemporal representation is characterized by the
locations of the unit vectors on the sphere and by the or-
der of the unit vectors over time. For example, Figure 2(a)
and Figure 2(b) show the acceleration and unit gravity data
from the right wrist, respectively, for two similar apple bites.

2
z

Figure 2(c) shows the spatiotemporal representation of the
bites. Here, the later one shows more similarity between
the bites than the others. Such representation not only pro-
vides useful insights about the gestures, but also can be
used to address temporal variations in the gestures.

3. Orientation Reachability

We define the Orientation Reachability for an activity by the
area on the sphere that is covered by the unit vectors of
that activity. For example, Figure 4(a) shows the orientation
reachability of the gravity vectors for brushing teeth activity.
The area is very small compared to the orientation reach-
ability of all possible activities of daily living. This property
can be used to separate most of the data from other activi-
ties before additional feature extraction or processing. This
early pruning results in less computation on average for rec-
ognizing the activities of interest.

In many contexts, for example in homes and offices, infor-
mation about the direction of a user’s body or body parts
helps in better recognizing different activities of the user.
For example, 4(b) and 4(c) show the unit gravity vectors
and the unit north vectors from a wrist device, respectively,
for opening two different doors that are similar, but facing
two different directions. As shown, the doors can be easily
distinguished by the location of the unit north vectors on the
sphere. On the other hand, the unit gravity vectors are not
suitable in distinguishing the doors, but it is useful to differ-
entiate from other activities. So, the orientation reachability
for the north or east vectors are used in combination with
that of the gravity vectors where direction provides useful
information. In addition to better activity recognition, orien-
tation reachability can also be used to find abnormality in
the data.
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Figure 4: Orientation Reachability
for (a) the gravity vectors for
brushing teeth, (b) the gravity
vectors for opening two doors, (c)
the north vectors for opening the
doors

Figure 3: Segmenting the unit sphere

4. Sphere Segmentation

For the better understanding and visualization of the ori-
entation traces, the unit sphere is divided into some nearly
uniform cells as shown in Figure 3. The cells on the unit
sphere are generated by the Voronoi diagram generated
from a regular icosahedron. Fine grained cells are gener-
ated by dividing the icosahedron repeatedly. Each of the
cells is annotated with a unique number that is useful in un-
derstanding the orientation trace or reachability for different
activities. The numbers are not shown here due to smaller
image size influenced by the space limitation. Icosahedron
based division of the sphere surface is widely used in areas
like meteorology.

Discussion

We have done some preliminary studies on the techniques
using a public dataset [1]. Results indicate that the tech-
niques are promising for different aspect of HAR including
increasing robustness and accuracy, reducing computation
requirements, and better visualization. For example, Fig-
ure 5 shows the orientation reachability of the right wrist for
some eating bites when the wrist is moved to the mouth.
We can see the bite moments are clustered in some spe-

Bite/Sip Moments

Figure 5: Orientation Reachability of some eating bites

cific areas of the sphere. The techniques are not activity
specific, and they have the potential to be used for wide
range of activity recognition and monitoring tasks.
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