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ABSTRACT
Continuous and reliable operation of WSNs is notoriously
difficult to guarantee due to hardware degradation and en-
vironmental changes. In this paper, we propose and demon-
strate a methodology for run-time assurance (RTA), in which
we validate at run time that a WSN will function correctly,
despite any changes to the operating conditions since it was
originally designed and deployed. We use program analysis
and compiler techniques to facilitate automated testing of a
WSN at run time. As a proof of concept, we implemented
a framework for designing and automatically testing WSN
applications. We evaluate our implementation on a network
of 21 TelosB nodes, and compare performance with an exist-
ing network health monitoring solution. Our results indicate
that in addition to providing the application-level verifica-
tion function, RTA misses 75% fewer system failures, pro-
duces 70% fewer maintenance dispatches, and incurs 33%
less messaging overhead than network health monitoring.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Design, Experimentation, Performance

Keywords
Wireless sensor networks, Petri Nets, code generation, au-
tomatic test generation, run time application validation

1. INTRODUCTION
Emerging wireless sensor network (WSN) technologies are

applicable to a wide range of mission-critical applications,
including fire fighting and emergency response, infrastruc-
ture monitoring, military surveillance, and medical appli-
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cations. These applications must operate reliably and con-
tinuously due to the high cost of system failure. However,
continuous and reliable operation of WSNs is notoriously
difficult to guarantee due to hardware degradation and en-
vironmental changes, which can cause operating conditions
that were impossible for the original system designers to
foresee. This is particularly true for applications that oper-
ate over long time durations, such as a building monitoring
system that must operate for the lifetime of the building.
Wireless noise and interference may change dramatically as
new wireless technologies are developed and deployed in or
near a building, and sensor readings and network topology
may change as the occupancy, activities, and equipment in
a building evolve over time.

In this paper, we propose and demonstrate a methodol-
ogy for run-time assurance (RTA), in which we validate at
run time that a WSN will function correctly in terms of
meeting its high-level application requirements, irrespective
of any changes to operating conditions since it was origi-
nally designed and deployed. The basic approach is to use
program analysis and compiler techniques to facilitate auto-
mated testing of a WSN at run time. The developer specifies
the application using a high-level specification, which is com-
piled into both (i) the code that will execute the application
on the WSN, and (ii) a set of input/output tests that can be
used to verify correct operation of the application. The test
inputs are then supplied to the WSN at run time, either peri-
odically or by request. The WSN performs all computations,
message passing, and other distributed operations required
to produce output values and actions, which are compared
to the expected outputs. This testing process produces an
end-to-end validation of the essential application logic.

RTA differs from network health monitoring, which de-
tects and reports low-level hardware faults, such as node
or route failures [21, 26]. The end-to-end application-level
tests used for RTA have two key advantages over the tests of
individual hardware components used for health monitoring:
1) fewer false positives - RTA does not test nodes, logic, or
wireless links that are not necessary for correct system oper-
ation, and therefore produces fewer maintenance dispatches
than health monitoring systems; 2) fewer false negatives -
a network health monitoring system will only validate that
all nodes are alive and have a route to a base station, but
does not test more subtle causes of failure such as topolog-
ical changes or clock drift. In contrast, the RTA approach
tests the ways that an application may fail to meet its high-
level requirements because it uses end-to-end tests. Network
health monitoring improves system reliability by detecting



some types of failures, but stops short of actually validat-
ing correct system operation. The goal of RTA, instead, is
to provide a positive affirmation of correct application-level
operation.

We have implemented a framework for designing and auto-
matically testing WSN applications using the RTA method-
ology. The developer specifies the application using a high-
level Sensor Network Event Description Language (SNEDL)
[10], which is an extended Petri net model. Our system com-
piles the SNEDL model down to TinyOS [15] code that runs
on the Telos nodes [3], as well as tests the defined mappings
between sensor input values and system outputs. We use
program analysis techniques to identify the minimal set of
tests that will cover the essential application logic. This
analysis uses new techniques that exploit information about
network topology and the redundancy of nodes based on
sensing range, and builds on existing techniques to cover all
execution paths in the program [13]. Once the minimal set
of tests has been identified, our system deploys the TinyOS
code onto the network and periodically executes the tests.
This implementation serves as a proof of concept of our RTA
methodology, which can also be applied more generally to
other programming models besides SNEDL.

We evaluate our implementation by designing a fire de-
tection system and executing it on a network of 21 TelosB
nodes. We artificially introduce failures into the system, in-
cluding node failures and location errors, and compare the
performance of RTA to that of an existing health monitor-
ing solution [26]. Our results indicate that RTA misses 75%
fewer system failures and also produces 70% fewer mainte-
nance dispatches than health monitoring. Furthermore, our
program analysis techniques reduce the number of tests re-
quired such that RTA incurs 33% less messaging overhead
than health monitoring. The main contributions of this pa-
per are: 1) A novel RTA methodology that positively af-
firms correct system operation at run time; 2) A prototype
implementation based on the SNEDL description language;
3) New analysis techniques exploiting network topology and
sensing redundancy to reduce the number of necessary tests;
4) A quantitative evaluation of our RTA methodology and
implementation, and comparison with an existing network
health monitoring system.

2. RELATED WORK
Although testing has always been a major part of software

development, a very limited amount of work has been done
in the area of testing WSN applications. This is partially
due to a few characteristics of WSN applications such as
operating in concurrent, event-based, and interrupt-driven
manner, which considerably complicates the development of
code representation. Nguyen et al. [18] proposed application
posting graphs to represent behaviors of WSN applications.
Regehr [22] designed a restricted interrupt discipline to en-
able random testing of nesC programs. Lai et al. [14] studied
inter-context control-flow and data-flow adequacy criteria in
nesC programs. However, all previous work is intended for
testing applications prior to deployment when the size of
the test suite is not as critical. Therefore, WSN-specific ap-
proaches for decreasing the size of the number of necessary
tests have not been considered until now.

There is a great array of fault tolerance and reliability
techniques developed over the last 50 years many of which
have been applied to WSNs [2, 19, 28, 34]. We expect that

any WSN that must operate with high confidence will utilize
many of these schemes. However, most existing approaches,
such as eScan [36] and CODA [31], aim to improve the ro-
bustness of individual system components. Therefore, it is
difficult to use such methodologies to validate the high-level
functionality of the application. Similarly, self-healing appli-
cations [8, 6, 35], although attempting to provide continuous
system operation, are not capable of demonstrating adher-
ence of the system to key high-level functional requirements.

Debugging WSN applications is a complicated process
and many different approaches exist. Marionette [32] and
Clairvoyant [33] are source-level debuggers allowing access
to source-level symbols. MDB [29] supports the debug-
ging of microprograms. SNTS [23], Dustminer [12], and
LiveNet [25] use overhearing to gain visibility into the net-
work operations. Some debugging approaches are based on
invariants [7], others attempt to use data mining to discover
hard to find bugs [11]. EnviroLog [17] uses a record and
replay service where it stores and replays the I/O on the
sensor nodes. However, all of these debugging mechanisms
are either used prior deployment or in a post mortem man-
ner, where data about the application is collected and then
analyzed offline. Therefore, these techniques do not provide
a way to monitor and analyze the application behavior at
run time.

Many applications have been developed to achieve sensor
network hardware verification. Sympathy [21], for exam-
ple, is concerned with detecting routing problems. Health-
monitoring systems such as MANNA [27], LiveNet [25], and
Memento [26] employ sniffers or specific embedded code to
monitor the status of a system. However, such applications
monitor low-level components of the system instead of high-
level application requirements. Therefore, they cannot be
used as a substitute for our RTA framework. Instead, if
available, such applications could be used as a monitoring
component. Information from these systems could be used
for RTA checks or to activate further system state checks.

There are very few overall system-management systems
for WSNs [1, 30]. Most of them manage only a few system
properties such as energy [9], topology, or bandwidth. How-
ever, we have not found any that address RTA for high con-
fidence systems in terms of application-level requirements.

3. RTA METHODOLOGY
The RTA methodology is built around the following three

principles:
Run time verification: The RTA principle requires that

a system demonstrates at run time that it is able to per-
form its key services. Currently, testing and debugging tech-
niques are used to fully test the system at design time, and
deployment-time validation [16] is used to verify the system
during deployment. However, due to the changing environ-
ment and the dynamic nature of failures, we argue that even
when these techniques have been employed, RTA is still nec-
essary.

Application-level guarantees: Many sensor networks are
complicated systems, consisting of numerous components
and protocols. Each component may use various fault toler-
ance, self-healing, or other reliability mechanisms to operate
robustly. However, even if one can guarantee that each sep-
arate component works correctly, the system may still fail
to perform some high-level operations. And a user (such as
a fire inspector) is only concerned with whether the system



performs the way they want, rather than whether each com-
ponent works correctly. The goal of the RTA principle is
to address this and focus on verifying the application-level
services.

Correctness demonstration: There are different ways to
demonstrate services at run time. One option is to moni-
tor system health information and infer system correctness
from this information. Such health monitoring techniques
are shown to be effective for certain applications with regu-
lar traffic [4, 24, 25]. However, many critical events, such as
fire or volcano eruptions, are rare. Also, in complex WSN
systems, it is hard to determine which states should be mon-
itored and how to infer the correctness of services. Monitor-
ing too many states is inefficient and may cause many false
positives, but monitoring too few states could fail to reveal
failures. Memento [26] uses a periodic heart beat method
to determine if a node is still alive. This approach is not
suitable for RTA for two main reasons: 1) node responsive-
ness does not imply proper functioning of the system and
its application semantics; 2) node failure does not imply the
failure of the overall system or the application. If we have
some level of node redundancy, a small number of node fail-
ures may not affect the system application at all. Thus,
in general, health monitoring techniques are not sufficient
to provide confidence in application-level requirements for
WSNs at run time. To address this, we employ testing to
verify the proper operation of the application. Using tests
allows us to check if the application provides the results we
expect regardless of what the state of its components might
be.

4. IMPLEMENTATION FRAMEWORK
Figure 1 shows how the components of the RTA frame-

work interact with each other. The framework needs three
inputs: the SNEDL model of the application logic, the test
specification, and the topology of the network. Both the au-
tomated code generation and the automated test generation
mechanisms need the SNEDL application model. Note that
the RTA framework is flexible enough to use other modeling
languages, as long as they are able to clearly and unam-
biguously define the application-level behavior of the sys-
tem. The test generation mechanism also needs information
about what tests the user wants to run (the test specifica-
tion), and how many and what nodes there are in the regions
of the network that will be tested (the network topology).
After the code for the nodes has been generated and de-
ployed, and the proper sets of tests have been created, the
RTA execution mechanism can start monitoring the appli-
cation’s functionality by running RTA tests on the sensor
network.

4.1 The SNEDL Programming Model
SNEDL [10] is the first event specification language to

support key features of WSNs. SNEDL can capture the
structural, spatial, and temporal properties of a complex
event detection system, which can be used to assist system
designers to identify inconsistencies and potential problems.
As a description language, it is an extension of Petri nets
that combines features of Timed, Color, and Stochastic Petri
nets. These additional features make SNEDL a Turing com-
plete language [20].

Figure 2 shows an example SNEDL model of a WSN ap-
plication. The application monitors the temperature and

Figure 1: The main components of the RTA frame-
work are the automatic code generator, the auto-
matic test generator, and the test execution sup-
port.

humidity levels and signals if they go above some predefined
thresholds. The SNEDL model consists of places (circles),
transitions (rectangles or bars), directed arcs, and tokens
(dots inside places).

- Places represent the states in which the application can
be. In SNEDL, dashed places, also called sensor events,
are used to abstract sensors (places 1 and 3). The physi-
cal sensor readings are represented as tokens generated by
the sensor events. The path of these tokens through the
Petri net corresponds to the application behavior when the
corresponding sensor readings stored in the tokens are de-
tected. Higher level events are constructed using sensor
events and/or other higher level events.

- Transitions model various kinds of actions. They rep-
resent the decision part of the application.

- In a traditional Petri net arcs represent changes between
states and the way in which tokens are created or destroyed
[5]. There are three types of arcs in SNEDL: logic, radio,
and hybrid. Logic arcs connect places and transitions that
are part of the application logic of the same node. A radio
arc, shown as a dashed line (arc a3), denotes communication
among nodes. In Figure 2, in order for transition T3 to fire,
the application logic on a node needs to reach place 4 and
also receive a message from another node that has reached
place 2. A hybrid arcs combines the functionality of logic
and radio arcs.

- Tokens hold sensor readings. The tokens that arrive at
each sensor event are associated with temporal and spatial
attributes, and therefore information about when and where
the data has been sensed can be retrieved. For example, if a
token with a time stamp t, capacity c, and location attribute
(x, y, r) reaches a temperature sensor event (place 3 in Fig-
ure 2), we can say that a temperature sensor at location
(x,y) with sensing range r has detected a value c at time t.
Tokens can also contain information about the application
execution. For example, when a transition is fired, the to-
kens injected into that transition’s output places could store
information specific to the transition’s implementation.

An advantage of SNEDL is that it provides a different
perspective of a WSN system. By representing a WSN ap-
plication as a SNEDL model we can view it as a flow of to-
kens from places in the Petri net to other places. There are
several reasons why this is useful for the RTA specification.



Figure 2: SNEDL model of an application that de-
tects when the temperature and humidity values ex-
ceed some predefined thresholds.

First, this is very suitable for testing purposes and makes
running RTA tests extremely straightforward. Second, a
token-flow model allows us to easily differentiate between a
real event and a test event. Since the test events are speci-
fied by test-tokens, all we have to do is mark the test-tokens
as such. Then, whenever a transition is triggered or a place
is reached, we can always check the type of the token that
caused this to happen and react accordingly. Third, such a
model helps the collection of event-logs and makes it easy
to define flow-traces in the system.

The SNEDL model of the WSN application is one of the
inputs to our RTA framework. The user is asked to write
a script to specify the transitions and places of their model
as well as the connections among them. We provide a set
of predefined transition types which, we believe, covers the
majority of logical operations used in a WSN application,
such as, greater, less, equal, minimum, maximum, difference
between two consecutive values, average, and moving aver-
age. If, however, the user wants to specify transitions with
more complex functionality, they can do that by writing the
necessary code themselves.

4.2 Automated Test Generation
For more than a decade automatic test generation has

been widely used in software testing. It has improved the
quality of testing and reduced the effort and time spent on
testing. Despite its many advantages, this approach has
not been applied to WSN application testing. One of the
main benefits of the RTA framework is that it also provides
automatic test generation. The RTA test generator takes
three inputs:

1. the SNEDL model of the application. Since the appli-
cation code is automatically generated based on the SNEDL
model, we analyze the model itself;

2. the network topology;
3. the test specification - the user provides information

about the events they want tests generated for, the areas of
the network they want to test, and the times the test should
be run. Consider the following scenario: a user wants to test
the network for the occurrence of fire (event EFire). They
want the tests to be run on the nodes in two rooms (Room1
and Room2) at 7am on the 1st day of each month. The
nodes in each room are considered equivalent, i.e. they run
the same application and are equipped with the same set of
sensors. The specification describing this example scenario
is:

//equivalence - ’no equivalence’ or ’region equivalence’
region equivalence

//Declare the basic elements of the language
Time T1;
Region R1, R2;
Event EFire;

//Define the elements
T1=07:00:00, */1/2010;

R1={Room1};
R2={Room2};
EFire = Fire @ T1;

A challenge in testing is to maintain a high degree of cov-
erage while reducing the size of the test suite and thus short-
ening the testing stage. There are additional reasons, spe-
cific to WSN applications, for keeping the test suites small.
Extensively testing the network would not only increase the
cost of the project but will also significantly reduce the life-
time of the system. In addition, memory constraints prevent
us from storing too many test inputs on the nodes. There-
fore, it is essential to develop methods that would help de-
crease the number of tests run by the RTA mechanism.

The number of tests needed to fully test the SNEDL model
of an application is mn, where n is the number of inputs and
m is the size of the sensing value range of the sensors. Since
there are multiple sensor nodes in the network, the total
number of tests would be ms∗n where s is the number of
sensors. In an example network with 100 sensor nodes, each
of which has a temperature sensor with value range 0-100
C and a humidity sensor with value range 0-100 RH, the
number of tests for all possible input combinations would
be 1002∗100, or 10400. Running that many tests on a sensor
network is infeasible. To address this problem we utilize
three test reduction techniques. The first technique has been
widely used for reducing the number of tests for software
applications. The second and third ones, however, are novel
and also unique to the nature of WSN applications.

4.2.1 Static model analysis
The first test reduction technique performs a static analy-

sis of the SNEDL model. The transitions that fire based on
the value of the tokens shape the input-to-output behavior
of the model. Therefore, we consider these transitions to be
the important transitions in this analysis. To test such a
transition, it is enough to identify the “passing” and “non-
passing” sets of inputs and then provide values to represent
these two sets. For example, to test a transition with a fir-
ing rule “the value should be greater than 27”, we need two
values - one less or equal to 27, and another one greater than
27. Our static analysis identifies the important transitions
and their passing and non-passing sets. Then it chooses a
random value to represent each of these sets. This reduction
decreases the number of input values to 2t, where t is the
number of important transitions. Therefore, the number of
tests for the whole network is decreased to 2s∗t, which is
significantly smaller than ms∗n since the value range of a
sensor is much larger than 2 and t is comparable with n.

A limitation of this step is that it is tightly coupled with
SNEDL. The reduction step could work with another mod-
eling language only if this language is able to precisely iden-
tify the application logic and the important parts of the
application that define the input-to-output behavior of the
application.



4.2.2 Network topology
A unique characteristic of WSNs application is that, un-

like other software applications, they are strongly dependent
on the topology of the network. For example, two sensors
are more likely to influence each other’s decisions if they
are neighbors. We take advantage of this feature to further
decrease the size of the test suite. We divide the network
into regions. The size and shape of these regions is very
flexible. The default size we use is a room in a building,
but a region could also be a group of nodes located close to
each other. The RTA test specification contains information
about which regions should be tested. When creating the set
of tests for a region we only include the nodes within that
region. An example application to justify this choice would
be detecting an event E in a building with many rooms. A
node determines if E has occurred based on its own read-
ings and the readings of its neighbors, where a neighbor is a
node in the same room. In this case it is sufficient to test the
rooms separately since nodes do not consider the readings
of sensors outside of their own room. This approach reduces
the number of tests to R ∗ (2sR∗t), where R is the number
of regions in the network and sR is the number of sensors
in a region. Since sR is much smaller than the number of
nodes in the network, this reduction substantially decreases
the number of tests.

4.2.3 Redundancy
Another unique characteristic of WSNs is node redun-

dancy. The assumption that all nodes in a region are re-
dundant helps us reduce the number of tests that are suf-
ficient to test the network even further. If we assume that
all nodes in a region are equivalent to each other, we can
use the same test inputs to check the behavior of each one
of them. Using this assumption we can decrease the num-
ber of tests from R ∗ (2sR∗t) to R ∗ (2t). For example, if a
network is deployed in a building with 8 rooms (R = 8) and
there are 5 nodes in each room (sR = 5) with 5 important
transitions in their application logic (t = 5), applying this
reduction step decreases the number of tests from 228 to 28.
Often, if the application logic is more complex, the number
of tests could remain large even after applying all three re-
duction techniques. In these cases, designers could choose a
test subset that has an acceptable level of coverage. Alter-
natively, a test schedule could be devised such that tests are
chosen on a rotation principle and only a few tests are run
each time.

4.3 Automated Code Generation
The input to the automated code generator (ACG) is a

script file that designers write to specify the SNEDL model.
An example script for the model in Figure 2 is shown in Fig-
ure 3. The script specifies the transitions and their types,
the arcs, and the places in the model. Places have two at-
tributes: sensors and actions. At sensor event places, places
1 and 3 in Figure 2, nodes need to access sensors to get data.
The designers have to specify the sensor type and the sam-
pling frequency for these places. Actions are the operations
that a node has to perform after reaching a particular place.
A place can be associated with multiple actions but with
only one sensor.

Nodes in heterogeneous WSNs have different functionali-
ties and run different code. In these cases, the ACG needs
to partition the SNEDL model accordingly before gener-

Figure 3: A script specifying the SNEDL model of
an application describes all arcs, places, and tran-
sitions with their types and attributes. The de-
scription of each SNEDL element (arc, transition,
or place) requires not more than a couple lines of
code.

ating the TinyOS code. Consider a fire detection system
that consists of smoke sensor nodes, temperature nodes, and
cluster-head nodes. Smoke and temperature nodes sense
and notify the cluster-head nodes if they detect abnormal
readings. Cluster-head nodes collect information from the
sensors and run algorithms to determine if there are fires.
Figure 4 shows how the SNEDL model of this example appli-
cation would be partitioned. The partitions are determined
by generating a directed graph with places and transitions
as graph nodes, and logic and hybrid arcs as edges. We use
breath-first search to find the connected components in the
graph which partitions the SNEDL model.

4.3.1 Code Structure
TinyOS programs are built out of software components.

In order to translate the SNEDL model into TinyOS code,
we add a SNEDL structure above the TinyOS component
model. This structure consists of components that represent
places and transitions. It also allows code executions to
be driven, processed, represented, and recorded as tokens
passing through places and transitions.

The core of the code structure is the concept of token.
A token is defined as an encapsulation of a value, temporal
and spatial information, and an RTA ID. ID 0 is used to in-
dicate the real application execution and other ID numbers
are used for tests. The tokens from a particular test use the
test’s ID as their RTA ID. Tokens pass through components
to transfer information and drive the execution. By record-
ing the traversing history of tokens, we can continuously
monitor and collect traces of system execution.

Figure 5 shows the component structure of the generated
code. We generate components for places and transitions.
Another major component, SNEDL ResolverM, works as a
system execution engine. This component accepts tokens
from one logic object (arc, place, or transition) and au-
tomatically transfers them to the next object. Using this
component, each logic object can be configured to block
the incoming tokens or log the tokens that pass through



Figure 4: The code generator automatically parti-
tions a SNEDL model based on the logic and radio
arcs in the model. Each piece is then translated into
TinyOS code for the different types of nodes.

it. SNEDL ResolverM also provides an interface to input a
token into any logic object and then trigger the execution.

The SensorM component contains all sensors from the
SNEDL model. The ACG generates the code to sample
sensors, supplement the readings with location and time
and encapsulate them into tokens that are forwarded to
SNEDL ResolverM. To accommodate testing, the ACG gen-
erates a virtual sensor for each physical sensor. These vir-
tual sensors have a buffer to store virtual test readings and
can also be sampled. The SensorM component can switch
between real sensors and virtual sensors at run time.

The advantages of this code structure are that: 1) it effi-
ciently supports self-testing at run time. We can either run
end-to-end tests by using virtual sensors, or partial tests by
injecting tokens directly into any logic object; 2) it is easy to
monitor execution states and collect running traces by using
the log mode; 3) when real events and tests occurs at the
same time, we can use the tokens’ RTA IDs to distinguish
between them. This gives us the flexibility to cancel tests
by blocking the test tokens.

Although the ACG currently generates only TinyOS code,
it can be adapted to generate code in other languages. For
example, instead of components, we can build structures or
classes for the different SNDEL objects, and change the code
templates in the ACG to generate code in the new languages.

4.4 Test Execution Support
The test execution support is responsible for automati-

cally running the RTA tests on the networked sensing de-
vices. Supporting the execution of RTA tests involves the
following steps:

1. After system initialization, every node in the sensor
network uses a “sync” interface provided by the service layer
to request time synchronization with the WSN gateway and
request its own location. The WSN gateway will get syn-
chronized with the time and location server and then process

Figure 5: The TinyOS code is generated follow-
ing the SENDL structure. The code structure in-
cludes components representing places and transi-
tions. The SNEDLResolverM component drives the
execution by transferring tokens through places and
transitions. The SensorM component provides both
the real and the testing data.

the “sync” requests from each node. The location server gets
node locations by querying the database (Figure 1). After
this synchronization process, each node is assigned its cur-
rent time and location. To improve the reliability, the WSN
gateway periodically sends “sync”messages to guarantee the
time correctness of the nodes.

2. RTA tests are scheduled or requested via test specifi-
cations at the user terminal. RTA test data is generated by
the automated test generation mechanism, delivered to the
WSN gateway, and then shipped to each node using the test
deployment protocol. Each test is scheduled to automati-
cally start and stop at specified times using the test control
protocol. Each RTA test packet is assigned a unique se-
quence number. By checking the continuity of the sequence
numbers, nodes can detect delivery failures and request the
retransmission of lost packets from the gateway.

3. When the scheduled test start time is reached, each sen-
sor node involved in testing enters testing mode and starts
reading from its virtual sensors which store the RTA test
data. The virtual sensor readings then create virtual events
in the network. These virtual events are detected and pro-
cessed by the SNEDL logic at the application layer. When
test mode is entered, each sensor node stops sampling from
the corresponding real sensors to avoid communication con-
flicts. However, to avoid the interruption of real event mon-
itoring, users can specify that sensor nodes should continue
sampling even in test mode.

4. When virtual events are detected by the application,
the results are reported to the gateway and then used for
test result resolution.

The test execution support completely automates the RTA
test process. After the users provide the test specification,
the specification is processed by the test generation mecha-
nism which generated the test data. This test data is then
delivered to the sensor nodes in the network via a WSN gate-
way. When it is time to run the scheduled tests, the sensor
nodes start reading from their virtual sensors to simulate
virtual events. These events are processed by the applica-
tion logic, and the application layer outcomes are reported



Figure 6: A fire detection application uses smoke
and temperature readings to determine the presence
of fire. The SNEDL model of this application logic
concisely and unambiguously depicts the application
logic.

back via the WSN gateway.
With the integration of the ACG, the test generation

mechanism, and the test execution support, the RTA method-
ology can be applied to different user applications with min-
imal effort. Users specify their applications using SNEDL,
and then the ACG generates code for each sensor node, re-
flecting changes in the application logic. The test genera-
tion mechanism uses the same SNEDL model to generate
the RTA tests according to the test specifications. These
tests are automatically deployed and run on the sensor net-
works via the test execution support and users can receive
automatic updates about the RTA test results.

5. CASE STUDY
We present a case study to demonstrate the usability of

our RTA methodology. In this scenario, we are required to
design and build a fire detection system for a building. The
building has seven floors and there are ten rooms per floor.
There is at least one node with a smoke sensor and one node
with a temperature sensor in each room. The fire detection
application uses both smoke and temperature readings to
determine the presence of fire. The fire detection algorithm
we use is composed of two separate algorithms. The first
monitors the temperature and smoke increase rates and if
they both exceed some predefined thresholds, the algorithm
reports the presence of fire. The second algorithm reports
fire if the temperature value exceeds a predefined threshold.
Figure 6 shows the SNEDL model describing the logic of the
application. The elements of this model are:

- Places S1 and S2 represent the two types of sensor events,
while LAs, LAt, and Fire stand for, Local smoke alarm,
Local temperature alarm, and Fire, respectively.

- Transitions: Transition TDS is fired if the smoke increase
rate goes above a specific predefined value. Firing transition
TDS sends the firing value over the radio and raises a Local
smoke alarm. Transition TDT fires if the temperature in-
crease ratio goes above another predefined threshold. This
also causes the application to send a message over the radio
and raise a Local temperature alarm. Transition TFIRE is
fired if fire has been detected. It is activated only if there are
more than two tokens ready to enter it and if these tokens
have been generated from sensor readings from the same
room.

Next, we implement the system. First, we write a new
script file according to this SNEDL model, and input it into

the ACG. The ACG partitions the whole logic and generates
the code for the smoke and temperature sensors.

To automatically generate the test suite, we need the user
to provide us with an RTA test specification. The testing
specification in Section 4.2 could be used for this scenario.
Knowing the test specification, the SNEDL model, and the
topology, we can generate the necessary set of tests to be
run by the execution support. These tests need to provide
such inputs to places S1 and S2 that the presence of fire
is simulated. When these tests are run, the application is
expected to report the presence of fire based on the virtual
readings from the tests.

This case study shows how the RTA methodology is used
to guide and help system designers build a fire detection
system with RTA capabilities. As demonstrated by this ex-
ample, the formal SNEDL model and the RTA specification
language make the application logic and the RTA require-
ments clear, unambiguous, and easy to understand. The
ACG, combined with the SNEDL model, helps generate an
accurate logical implementation of the WSN system high-
level behavior. More importantly, our methodology fully
addresses the RTA requirements.

At first this case study might seem simplistic. However,
several key points must be emphasized. It is important to
recognize that this simple model can represent a fire detec-
tion system that exists across many floors and uses many
sensors. Although we had initially specified that we have
seven floors with ten rooms each, these numbers do not con-
fine the application model. The same model could success-
fully be used to detect fires in a skyscraper with hundreds of
rooms. In other words, even though the model is simple, it
can represent a large scale system. This case study also uses
relatively simple logic for temperature and smoke sensors.
However, the power of the underlying Petri net allows us to
describe arbitrarily complex logic and control flow. An ad-
ditional advantage is that the SNEDL model of a complex
application is not necessarily too big or complicated since
much of the complexity for such systems is encompassed in
the logic associated with the transitions.

6. EVALUATION
To investigate the performance of our RTA methodology,

we have implemented a prototype Fire Detection (FD) sys-
tem that is based on the SNEDL model presented in the
case study. The system is built on an indoor testbed. The
testbed is composed of 21 TelosB nodes, placed in a 7 × 3
grid on a board. One node is chosen as the base station and
the rest are divided into different rooms. The TelosB nodes
are equipped only with a light sensor. We have used the
light sensors to simulate temperature sensors. We use the
fire detection algorithm described in Section 5 and the nodes
only contain the logic for the temperature sensors. Once a
node detects a fire, it sends a report to the base station.
For the communication topology we constrain the nodes to
only directly communicate with nodes in the same room.
For multi-hop communication we use a simple geographic
forwarding routing protocol.

6.1 Test reduction
We have analytically estimated the number of tests neces-

sary to fully test the SNEDL model for both the prototype
FD application and the FD application presented as a case
study. Our calculations are shown in Table 1 and Table



rooms 2 4 5 10
nodes in room 10 5 4 2

baseline
(no reduction) 11 ∗ 1035 11 ∗ 1035 11 ∗ 1035 11 ∗ 1035

static analysis
reduction 11 ∗ 1011 11 ∗ 1011 11 ∗ 1011 11 ∗ 1011

topology
reduction 2 ∗ 107 4096 1280 160

redundancy
reduction 8 16 20 40

Table 1: Combining static analysis techniques and
knowledge about the network topology and node re-
dundancy reduces the size of the test suite for the
FD application by 35 orders of magnitude.

2, respectively. For both tables, the result of applying a
particular reduction step is calculated as the number of au-
tomatically generated tests when the current reduction and
all previous reductions steps have been applied together.

The results in both tables show that the first reduction
step, statically analyzing the SNEDL model, provides the
highest decrease in the number of tests. However, even after
using this reduction, running a hundred billion tests on a
sensor network is still unreasonable, if not impossible, con-
sidering the limited resources of the sensor nodes. In addi-
tion, the situation is further exacerbated by the fact that
the tests must be run periodically.

Applying our second reduction step which takes advantage
of the topology additionally decreases the number of tests.
The impact of this step is much more noticeable in cases
where there are just a few nodes per region. As shown in
Table 1, in the case where we have 10 sensor nodes per
region, the drop in the number of tests is just 105 times,
while the same step leads to a 1010 times reduction in the
scenario with 2 nodes per region. Similar results can be seen
in Table 2.

The decrease in the number of tests after applying the
last reduction step is significant as well. Compared to the
previous reduction step, here we see the opposite effect: the
more sensors there are per region, the higher improvement
we get. This is due to the fact that since the nodes in a
region are considered to be equivalent, all of them can use
the same input test values.

A number of conclusions can be drawn based on the values
in Table 1 and Table 2. First, if no reduction is applied, the
number of tests we have to run increases exponentially with
the number of sensors needed by the application. However,
if all three reduction steps are applied, adding an extra sen-
sor merely doubles the number of necessary tests. Second, it
is better to create fewer regions with more nodes than more
regions each containing a small number of nodes. Third, all
three reduction steps need to be applied in order to gen-
erate a small set of tests. We realize that there might be
cases where the sensor nodes are not equivalent and the last
reduction step cannot be performed. In such situations, to
avoid exhausting the network’s resources, it might be nec-
essary to either only run a carefully chosen subset of the
generated tests or schedule the tests in such a way that all
generated tests are run but over a more extended period of
time.

The automated test generation mechanism is not designed

rooms 2 4 5 10
nodes in room 10 5 4 2

baseline
(no reduction) 11 ∗ 1091 11 ∗ 1091 11 ∗ 1091 11 ∗ 1091

static analysis
reduction 11 ∗ 1017 11 ∗ 1017 11 ∗ 1017 11 ∗ 1017

topology
reduction 2 ∗ 109 131072 20480 640

redundancy
reduction 16 32 40 80

Table 2: When all three reduction steps are applied,
adding an extra sensor only doubles the number of
necessary tests instead of causing an exponential in-
crease.

Figure 7: RTA and HM achieve similar false nega-
tive rates.

to handle node mobility. Therefore, changes in the topology
might cause the RTA tests to fail even if the system is still
able to function correctly. This problem can be alleviated
in networks with low node mobility levels where can rely
on the test execution support to automatically detect topol-
ogy changes and regenerate and redistribute tests when such
changes occur. However, this approach is not feasible when
the level of node mobility is high.

6.2 Robustness to Failure
The goal of RTA is to maintain the accurate operation of

a WSN application despite the unreliable and failure-prone
underlying infrastructure. To evaluate the robustness of our
RTA approach, we have compared it to a health monitor-
ing (HM) system and a pure system with no RTA or health
monitoring support. All three fire detection systems have
the same application logic. The RTA FD system is gener-
ated with the help of our RTA framework. The rooms are
tested on a rotation basis and a different room is picked each
time a test should be run. The FD system with HM monitor-
ing is implemented following the HM mechanism introduced
by Memento [26]. Memento uses heartbeats from neighbor
nodes to determine if a node is functional. We assume that
when an RTA test fails or the HM system detects a node
failure the failed nodes are immediately repaired.

6.2.1 Experimental Results
To demonstrate RTA’s efficiency in maintaining appli-

cation robustness while significantly reducing maintenance



Figure 8: RTA requires 50%-70% fewer repairs than
HM.

cost, we have run multiple experiments under different set-
tings. We use a flashlight to generate the fire events in our
testbed. To measure the system’s performance under realis-
tic scenarios, the fire event sequences are generated using a
Poisson process generator. The room in which a fire occurs
is chosen randomly. A random Poisson process is also used
to compute the failure sequence and determine which nodes
stop executing the application and at what time. During
the experiments, the WSN gateway injects node-failures by
sending messages to the selected nodes and stopping their
execution strictly according to the failure sequence. For each
experiment, we run the three systems sequentially with the
same fire and failure sequences. A node is periodically cho-
sen to fail until no operational nodes are left and the ex-
periment stops. The robustness of the system is represented
by the false negative rate which we define as the ratio be-
tween the number of unreported fires and the total number
of generated fires. Maintenance cost is measured with the
number of repairs, the Mean Time to Repairs (MTTR), i.e.
the average time between two consecutive repairs, and the
number of messages sent during testing.

In the first set of experiments we measure the robustness
and maintenance costs of the three systems. To study the
impact of redundancy, we vary the number of nodes per
room from 2 to 10. All experiments last 20 minutes and
both the RTA and the HM system run a test every minute.
The fire event rate is 0.5/s, and the node failure rate is 1/s.
Figure 7 shows the results of these experiments. Each data
point is the average of 5 trials with a 90% confidence in-
terval. The results reveal that, compared to a pure system,
both RTA and HM significantly reduce the false negative
rates of the FD application. This is expected as both mecha-
nisms can detect node failures and repair nodes immediately.
Comparing the RTA system to the HM system shows that
both systems demonstrate similar robustness levels. The
only visible difference is when there are only 2 nodes per
room. Since according to the application logic we need at
least two nodes per room, any node failure will lead to a
false negative. In this case, the false negative rate of the
RTA system is slightly greater than that of the HM sys-
tem because the RTA system only tests one room at a time
while the HM system tests all nodes every time. Increasing
the level of redundancy eliminates this difference in the false
negative rates. With 5 nodes per room, both systems have

Figure 9: On average, RTA uses 33% less messages
than HM.

a false negative rate close to zero.
We also compare the maintenance cost of the RTA and

HM systems. Figure 8 shows the number of repairs for both
systems. We can see that the RTA system requires fewer re-
pairs than the HM system. The number of repairs required
by the HM system is constant since it triggers a repair ev-
ery time a node fails. On the other hand, the RTA system
repairs nodes only when the operational nodes in a room
cannot detect the fire. Our results show that with a certain
level of redundancy, the RTA mechanism can significantly
reduce the number of repairs while still providing high con-
fidence. For example, with 10 nodes per room, the RTA
system guarantees no false negatives and requires only a to-
tal of 2.5 repairs. On average, the RTA system produces
70% fewer maintenance dispatches. We also measure the
MTTR of both systems. Results show that the RTA system
has much longer MTTR than the HM system. For example,
with 5 nodes per room, the MTTR of the RTA system is 5.6
seconds, with 1.5 seconds for the HM system.

Another type of maintenance cost is the extra messages
incurred by running tests. The base station in the RTA
system needs to send messages to trigger tests and nodes are
required to report virtual fire events during tests. For the
HM system, nodes need to send heartbeats, and the base
station should be notified if no heartbeat is received from
some node. These extra messages use bandwidth, consume
additional energy, and reduce the system lifetime. We have
measured the number of the extra messages for both systems
and the results are shown in Figure 9. We see that the RTA
system introduces much less message overhead. The HM
system always uses over 650 messages, because nodes keep
sending heartbeats. On average, the RTA system uses 33%
less messages than the HM system.

Node level failures are lower level failures and the HM
mechanism has been specifically designed to detect them. In
the next experiment we compare the performance of the two
systems when application level failures are introduced. To
do this we insert a new type of error, which we call location
error. A location error can be defined as any unexpected
changes in the location of a node from one region/room to
another. Such a location change should lead to a failure if
it is against the application’s requirements. In our scenario,
we need to have at least two nodes per room. Therefore,
a location change that decreases the number of nodes in



Figure 10: With location errors, the RTA system
missed 75% fewer fires than the HM system on av-
erage.

a room to less than two should cause an application-level
failure.

In this experiment, we change the location of nodes to
simulate location errors. We still use a Poisson sequence to
generate location errors with the rate of 1/s, and randomly
chosen nodes change their locations to adjacent rooms. The
false negative rates of our three FD systems are shown in
Figure 10. We see that the HM system has a high false nega-
tive rate and cannot guarantee the system’s robustness. This
occurs because when a node is moved to an adjacent room, it
can still send heartbeats to its neighbors, so the HM system
considers it operational. However, since the RTA system
tests the fire detection ability of each room, it can catch such
errors without using extra mechanisms to explicitly detect
location errors. On average, the RTA system misses 75%
fewer system failures. When the node redundancy reaches
5 nodes per room, RTA does not incur any false negatives.
Based on these results we can conclude that, compared to
an HM system, an RTA system can provide better visibility
into the application behavior at run time.

6.2.2 Simulation Results
We have used simulation to demonstrate that RTA can

significantly reduce the amount of network maintenance. We
simulate a scenario in which we have 25 rooms, and each
room has N nodes, where N represents the level of node
redundancy in that room. We assume that the lifetime of the
sensor nodes follows a Poisson distribution. R is the mean
lifetime of the sensors nodes in months and it represents the
reliability of the nodes. We generate fire events following
a Poisson distribution. The expected occurrence interval of
these events is three months, and the simulation period is
set to two years. Each data point represents the average of
five runs.

We make the following two assumptions when comparing
the amount of maintenance work required by RTA and HM:
1) If the RTA tests determine that the nodes in a room are
not able to detect the presence of fire, a maintenance worker
is dispatched to replace the failed nodes in that room; 2) If
the HM determines that a node has failed, a maintenance
worker is dispatched to replace the failed node.

Figure 11: RTA reduces the number of maintenance
dispatches to only 0.3%-33.9% of HM.

System ROM (bytes) RAM (bytes) lines of code
Pure FD 18142 898 1767

FD + RTA 24888 3386 3193
FD + HM 22976 1280 2590

Table 3: Compared to HM, RTA has a larger mem-
ory footprint.

In order to achieve a fair comparison, we use the same
testing overhead (in terms of the number of testing messages
sent) for RTA and HM. On average, an RTA test requires
K times more messages than HM - in our implementation
K≈8. Therefore, in the simulations RTA runs in 1/8 the
frequency of HM. In this simulation the RTA test frequency
is a test per day for each room.

Figure 11 shows the number of maintenance dispatches
under different levels of node reliability R and redundancy
(nodes per room). We observe that when the redundancy
is increased RTA makes a significant reduction in the num-
ber of maintenance dispatches. With 6 or more nodes per
room, the number of RTA maintenance dispatches is less
than 10% of the dispatches required by HM. Since HM main-
tains node-level reliability, the number of maintenance dis-
patches is proportional to the number of node failures. In
contrast, RTA maintains application-level reliability and a
maintenance dispatch is only necessary when the applica-
tion is not able to meet its high-level requirements. Thus,
by taking advantage of the node redundancy level, RTA can
considerably reduce the total number of the required main-
tenance dispatches.

6.3 Overhead
Table 3 compares the memory usage and footprint of the

three FD systems. We can see that, because of its token-flow
programming structure and more powerful test execution
facilities, our RTA system uses more program memory and
RAM. Also, the code for our RTA system is larger than that
for the other two systems. However, since most of this code
is automatically generated by our RTA framework, users
only need to write the SNEDL model specification script,
which was less than 50 lines for the experimental FD system.



7. CONCLUSIONS
A major disadvantage of the current reliability and health

monitoring techniques used for WSN applications is that
they monitor the performance of the low-level components
of the system instead of the reliability of the application
layer. To the best of our knowledge, this is the first paper
to address this issue in WSNs and suggest a methodology
to help designers and users verify an application’s integrity
at run time. We have also implemented a framework that
facilitates the use of our RTA methodology. This framework
provides automated code generation, automated test gener-
ation, and execution support for the RTA tests. To decrease
the vast number of generated test cases, we introduce three
test suite reduction techniques, two of which are unique to
the nature of WSN applications and take advantage of the
network’s topology and node redundancy.

We evaluated an implementation of a fire detection ap-
plication with RTA support and found out that RTA per-
forms much better than health monitoring in identifying
application-level failures and almost just as good in identify-
ing low-level failures. In addition, our RTA implementation
incurs considerably less communication overhead and also
decreases the amount of maintenance work that needs to be
done in order to keep the system operational.
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