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Abstract—Wireless Sensor Networks (WSNs) are being devel-
oped and deployed in a wide range of Cyber-Physical systems,
some of which must be dependable, e.g. in assisted living facilities
where their failure could lead to an accident. In this paper, it
is shown that the state of the art approaches do not meet the
needs of dependability that these applications require. The main
reason is an issue is the unpredictable physical environment
in which they operate. Currently there is little emphasis on
how these systems behave when failures occur, instead authors
emphasise average case performance. Consequently there is little
understanding of how and why systems fail and the possible
consequences e.g. a system hazard. In this paper simulated tests
are used at run-time to check key dependability properties of the
system. The results of these tests are used to plan maintenance,
thus ensuring available and reliable operation, and determining
when the system is at risk of subjecting people to unacceptable
hazards such that appropriate steps can be taken. Our approach
has been show to perform with 15% less time at risk than the
current state-of-the art.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are being developed
to monitor the physical environment around us upon which
we regularly rely upon, from monitoring the condition of
cables within suspension bridges [15], the size of cracks
within concrete bridges [6] and expansion and contraction of
tunnels [15]. This not only provides a comprehensive log of
information over time, but also allows the system to directly
alert the users should a major change in the physical state be
detected. With the increased use of these systems however,
there is a tendency for the users of these systems to become
more reliant upon the data they provide. This means that
should the systems fail, e.g. due to random or systematic
events, a hazard may occur that could ultimately caused injury
or loss of life. Furthermore there is significant evidence that
current WSN deployments have dependability issues [4], [18].

For typical sense-and-send applications node failures would
be easily detected by the lack of information from specific
sensors. However WSNs are also being proposed for use
within event driven systems such as fire detection systems
[8]. Typically in these systems, only upon an event occurring
do sensors generate data and alert the operator. Therefore it
is hard to distinguish between no events happening and the
system failing silent.

Whilst systems have been proposed to either check for
failed devices or that the network is functionally correct with
respect to the application, to the best of our knowledge no
publication exists that addresses the end-to-end dependability

of a WSN with respect to its specific application. For this
work the definition of dependability we use is the alternative
proposed by Avizienis et al [1], "the ability of a system to
avoid service failures that are more frequent or more severe
than is acceptable". This alternative definition differs from
the traditional view as it acknowledges that most systems
cannot be guaranteed never to fail, however if the severity
of the failure falls within the specified acceptable bounds
then it can still be viewed as dependable. Dependability can
be decomposed into a number of specific attributes [1]. The
dependability attributes that we address within this work are
listed below.

• Availability - Readiness for correct service
• Reliability - Continuity of correct service
• Safety - Absence of catastrophic consequences on the

user(s) and the environment
• Integrity - Absence of improper system alterations.
• Maintainability - Ability to undergo modifications and

repairs.

To address these attributes we do not focus on eliminating
the causes. Even for simple systems safety analysis is hard
and for WSNs it is more difficult as the external factors
vary dramatically with the deployment scenario. This difficulty
also increases for WSNs due to their dependency on the
physical environment which commonly changes during their
operational lifetime. Instead we will discuss and demonstrate
how the environment in combination with the software can
affect the dependability attributes of the WSN system, and to
what level these effects can be reasoned about and mitigated
through the WSN design.

The method in this paper provides the following contribu-
tions:

• Detecting when the system is approaching a state when
the applications semantics may no longer be met. This
allows for maintenance to be performed before there is
a failure to provide the expected service (reliability) and
before there is a service outage (availability). The current
state-of-the-art approaches only react once the system
enters the time at-risk-state.

• Reducing the likelihood of hazards (safety) and showing
how additional Derived Safety Requirements (DSRs) can
be supported. This results in 15% less time at risk that
the current state-of-the-art.

• Reduction in the number of maintenance requests needed
(maintainability). There were 97% fewer maintenance



requests for the same time at risk as the traditional
approach (the lowest time at risk of all approaches).

• Tuning the parameters of Dependability Assurance (DA)
to get an appropriate balance between the dependabil-
ity attributes above and the detection rate of events
specifically associated with DA. We show that for lower
node failure rates our system performs close to the best
possible time at risk.

The structure of the paper is as follows: Section II provides
a review of the current state-of-the-art on dependability, the
DSRs, attributes of dependability, existing Health Monitoring
(HM) systems, finishing with our proposed approach and how
it compares to the current systems. Section III provides a
worked Case Study of our method, showing how the DA
consists of Dependability Tests (DTs) and how these meet the
DSRs. Simulations and a physical experiments are performed
and the results analysed. Section IV provides an overall
conclusion of the DA system.

II. COMPONENTS OF DEPENDABILITY

The purpose of this section is to present the current state of
dependability within WSNs. An overview of the DSRs to be
used in this paper will follow, along with discussion as to how
these relate to the attributes of dependability. Finally a review
of existing related work is provided on the HM systems to be
compared against our proposed approach.

A. Dependability Methods

Previous works related to dependability of WSN’s [9] [3]
have focused heavily on fault injection into specific parts of the
underlying software stack. They have however failed to focus
on the specific application. There are only a few works within
the literature that specifically target dependability, with the
majority by Sailhan et al [13] [12]. Sailhan demonstrates the
use of fault injection in order to measure the impact of changes
within the physical environment upon the dependability of a
WSN. This work however fails to use any formal derivation
for the requirements, leading to issues such as timing of
events being omitted. Previous works have also lacked of
any concrete method of generating, performing and evaluating
tests. This work in this paper addresses these issues.

B. Derived Safety Requirements

For the purposes of this paper we will analyse a fire
detection system (further details in section III) similar to that
proposed by Wu et al [16] based on the DSRs presented in
Bate et al [2]. The DSRs in Table I represent the requirements
for the monitoring system to ensure that the underlying hazards
of the system are mitigated.

The precise nature of the DSRs and the case study are not
the main emphasis of this work. The key point is how the
DSRs relate to dependability, and how the methods proposed
efficiently achieve these dependability goals.

Availability - This attribute is covered by DSR1. The
requirement to have a minimum number of nodes (Y) within
an area in order to detect the event; and DSR2, the timely

reporting of events. These two DSRs are directly defined by
the physical number of nodes that are required within an area
to detect the event, and the longest possible delay the operators
are willing to accept between an event occurring and an event
being reported.

Reliability - The DSRs cannot directly alter the reliability
of the underlying technologies, e.g. the nodes, the communi-
cations system etc. Instead these factors are a manifestation
of the physical environment in which the WSN operates. The
DSRs however directly affect the ability of the system to meet
the application semantics, tolerating the effects of the physical
environment, assuming the appropriate maintenance steps are
taken.

Safety - The WSN is not directly safety-related as it cannot
cause direct harm to people as it has no physical effectors.
However DSRs 1-4 are concerned with correctly detecting a
fire and DSR5 with informing the operator when the WSN no
longer has this capability. As such all these DSRs all contribute
to the overall safety by reducing the likelihood of hazards.

Integrity - Integrity of the HM system can be compromised
by the physical environment affecting two major parts of WSN
operation.

1) Data being sampled - DSR3 ensures errors with the
sensors on the devices are detected and reported to the
operators.

2) Communications between nodes - DSR4 ensures anoma-
lies such as bit errors in communications are accounted
for.

Maintainability - All the DSRs help inform when and what
types of maintenance are required. In section III-E how
the information is used to plan maintenance schedules and
maintenance procedures is discussed.

C. Health monitoring

In order to ensure that the above DSRs are accounted
for at run-time it is necessary to perform monitoring of the
systems health. Full assessment of the events cannot typically
be performed ahead of time as the exact positioning of nodes is
not known. This is due to WSNs being commonly deployed in
an ad-hoc fashion to provide additional functionality, without
major modification to existing infrastructure. More importantly
the exact characteristics of the environmental noise, due to the
building or other factors, is commonly unknown and changes
continuously during the run time of the system. There are two
types of approaches for HM, passive approaches and active
approaches.

DSR Description

1 Detect event when fewer than Y
nodes are operational

2 An event is reported within X seconds

3 Larger errors and implausible values
from sensors are detected

4 Network is tolerant to anomalies
5 Monitoring failure is detected within W seconds

TABLE I
SUMMARY OF DSRS



Dependability
Attribute

HB RTA DA

Availability Ensures all nodes are available Ensures one node per area is available Configurable number of available nodes per area
Reliability High due to redundancy Low due to minimal redundancy Varied depending on configured number of alive nodes

Safety No Check No Check Checks executed to ensure DA system status
Integrity No Check No Check Checks that erroneous output with be reported to the sink

node
Maintainability Constantly requires

maintenance
Assumes instant repair, unrealistic

maintenance
Varied depending on configured number of alive nodes

TABLE II
PRELIMINARY ASSESSMENT

Passive approaches rely upon the normal communications
within the network to obtain information, i.e. deciding if
communication looks likely based upon the monitoring of Link
Quality Interval (LQI) values [5]. As our application typically
does not transmit information until an event occurs, this
approach is unsuitable, and so active monitoring must be used.
The most common approach to active monitoring is periodic
heartbeats (HB) to detect failures [10], however these only
detect failed nodes and not the WSN’s ability to deliver the
expected application semantics. A consequence of this is that
maintenance may be ordered before it is needed, breaking one
of our main attributes of dependability, maintainability. Within
our fire example this issue would manifest itself through
maintenance being scheduled within a room despite sufficient
nodes to detect a fire, as any failed nodes present within the
same room would trigger the HM system.

Wu et al. [16] proposed RTA, which aims to ‘provide
confidence in application-level requirements for WSNs at run
time’, as opposed to simply checking if all nodes are alive. The
approach is motivated by a WSN often being reactive which
means for long periods the WSN may be quiet indicating there
is no sensed data worth reporting. However it could also mean
that the WSN has failed. Wu et al ’s approach proposes that
periodically the expected event is simulated, which allows
the sink node, or device, to determine whether the WSN
still has enough nodes to successfully meet the application
requirements. We performed a preliminary analysis of Wu et
al’s approach and found that despite it using more messages
than a traditional HB system, it did not raise false positives
causing nodes to be replaced unnecessarily.

Given the dependability attributes proposed in section II-B,
Table II contains an initial assessment of the existing HM’s
ability to satisfy these attributes. The table clearly shows that
both approaches do not meet all our requirements. Across
all the HM systems it was clear that no approach takes into
account the overall dependability of the system. The HMs
focus only upon availability, most commonly indicated by
an unrealistic assumption that maintenance, once ordered, is
immediate. Our approach needs to take into account other
factors not addressed within these methods, such as the time
taken between a failure being detected and the maintenance
occurring. Not handling this could lead to a ‘period at risk’
when the system does not meet the application requirements.
The table demonstrates that all the objectives are met by the
DA method presented in this paper.

D. Proposed Method for Dependable HM

As the approach used by Wu et al is the only method to
correctly identify failures without false positives, we use the
same idea of simulating events to measure the impact upon the
system within our work. This approach is used in combination
with the idea of fault injection identified within the previous
works on dependability. Fault injection is used not only to
test for functional correctness of the system but also to test
correctness under set failure conditions. This allows us to cover
all the DSRs in Table I and identify the failures correctly.

Final Tests To
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At Run-Time

HM &
RTA

Application

DSR3DSR2DSR1 DSR4 DSR5

DT3DT2DT1 DT5

DT3DT1 DT5

Test at
Run-Time

Safety Analysis

Requirements Reduc-
tion (DSR4 Handled
by MAC)

Test Case Reduction
(DSR2 Merged into
DSR1

Fig. 1. Figure showing the generation of the Dependability Tests

Figure 1 shows the method for deriving the Dependability
Tests (DT). The first stage, which has been covered in a
previous paper [2], is the derivation of the DSR’s from the
application. The derived DSR’s are shown above in Table I.
Secondly is the reduction stage where we reason about failures
that invalidate the DSR’s and how they might occur. Within
this application DSR4 (handling of anomalies) is handled by
the lower aspects of the protocol stack, and as such no tests
are needed. The second reduction is the observation that DSR2
(packet delay) equates to packet loss, and thus is covered by
DSR1. This transformation of delay into packet loss is due to
the time scales involved in the application being in seconds.
At the level of seconds the routing layers and MAC layers



will have timed out delayed messages, dropping the packet.
This provides the final set of tests for the DA system. The
area currently covered by HB and RTA are indicated.
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Fig. 2. Figure showing the actions that can be taken within DA

Figure 2 shows the three remaining DTs after the reduction
from the 5 DSRs and how these cover DSRs 1-4 and DSR
5. These DTs are checked at run-time as the core part of the
DA. DSR2, DSR3 and DSR5 are not covered by any other HM
approach and DSR1 that both HB and RTA cover is indicated.

III. CASE STUDY

Within this section we will describe the DA system, how it
comprises of DTs and the maintenance that may be performed.
The subsystems required from the nodes such as time synchro-
nisation will be described and reasoned about, followed by the
main experimental parameters for the simulation environment
and the physical system.

A. Scenario / Application Specification

There are a number of possible scenarios that could be
used to analyse typical WSN deployments, ranging from
environmental controls [17] to logistics [11]. Any event-driven
scenarios would be suitable for analysis, however we have
chosen fire detection as it is one of the less trivial scenarios,
as the failure of the system could directly lead to loss of life.
Within the fire detection system there are two types of WSN
nodes, temperature detection nodes and the operator node.

These node types were chosen as they are the same used by
Wu et al. It is easy to envisage how a real application may
require multiple sensor types per node, however these would
simply be included within the reported readings and as such
do not affect the analysis of the DA system. In the context
of this paper it is assumed that temperature detecting nodes
broadcast a warning to the operator if they detect a possible
fire. If the operator node receives one or more warnings about
a fire then the room is flagged as containing a fire, with the
fire service being alerted in a real deployment.

An important issue for WSNs is when and how the system is
deployed. The WSN may have been statically deployed before
the event (specifically to monitor the building), or perhaps
having been dynamically deployed (e.g. as breadcrumbs for
communication around the site [7]) as the event is ongoing.
For the purposes of this paper a static, pre-defined deployment
of nodes is assumed which monitors the building constantly.
By assuming this static scenario we can assess the likelihood
of fires occurring and the effect they have. We can also assess
what effect the parameters of the monitoring system have
upon the dependability of the WSN. Throughout this paper
it is assumed that there is only one operator node, to which
all monitoring applications report, to more closely match the
previous literature. However in practice, especially in large
buildings, there would be multiple spatially separated operator
nodes physically networked together to avoid a single point of
failure, e.g. a fire breaking out where the operator’s console
is situated.

There are a number of assumptions within previous litera-
ture that are relaxed within this paper, primarily that mainte-
nance occurs instantaneously. Secondly we relax the criteria
that a fire must be detected immediately or is otherwise a false
negative (unreported fire). Instead we opt for fire detection
within a fixed period. This more accurately reflects the phys-
ical environment where detection within some specified time
of the fire starting may be satisfactory. An arbitrary duration
of 5 minutes is chosen for this work and is discussed further
in section III-D2.

B. Application of DTs

The purpose of this section is to describe the tests that
form the DA (DTs), and how these meet the DSRs, with
specific parameters being investigated within section III-D.
It is assumed that the operator node is initially unaware of
the number of rooms, the number of nodes or the location
of any nodes. This information is built up as nodes report
their DT messages at runtime, with their unique identifier and
their location (in this case which room they are within) to the
operator node. Once information from a specific node has been
added it is continuously monitored, including after failure, and
it is assumed that any replacement nodes have the same room
designation. Whenever these DTs are performed a DT test flag
is included within all outgoing messages to indicate that they
have been generated during this time period and thus can be
distinguished from a real message.



DSR1 is checked by DT1, an on-line simulation of fires
within a specific room performed every HM period. These
simulations are constructed by returning emulated values in-
stead of the real values for the temperature sensors. Emulated
values are set such that the temperature is sufficiently high to
indicate a fire. Should any node from the room being tested
not alert the operator node to the presence of the test fire then
the node in question is flagged as having a DT1, and thus
DSR1 failure.

DSR2 raises a DSR failure if any nodes DT message does
not arrive at the operator node after X amount of time. Within
the fire scenario X is assumed to be 1 minute, as this is an early
indication of either a node failure, node communications being
disrupted, or messages taking too long to reach the operator
node. All of these issues should be handled by the maintenance
procedures. No extra DT messages are generated for this DSR,
instead it relies on the messages produced from DT1. The test
for DSR2 is performed on the operator(s) consoles.

DSR3 is another on-line simulated test, using DT3, with the
node simulating the presence of a temperature sensor fault by
injecting temperatures well outside normal operating range for
non-fire and fire scenarios. These clearly incorrect readings
should be caught by the nodes internal logic, and alert the
operator node to a DSR3 failure. Should a DSR3 failure not
be reported to the operator node, the node is marked as failed.
The raw sensor values are not transmitted to the operator as
these may be large depending on the application. For example
if the alarm is raised based upon statistical evaluation of the
sensor readings every T ms, then we would not want all the
readings being transmitted to the operator.

DSR4 is not tested by any of the HM systems as it is
assumed low level errors such as bit-errors or routing path
issues are handled by the appropriate protocol. Any issues
involving local denial of service, such as physical destruction
of nodes or wireless jamming are identified with DSRs 1 and
2, in combination with the locality of the errors. Global denial
of service is identified by DSR5. The security of the WSN, in
the form of intrusion into the software on the nodes is outside
the scope of this paper.

DSR5 is the total failure of the HM system and is the last
on-line test to be run. Periodically all DTs are suspended for
a set period of time. As with DSR1, it is expected that this
test is performed on the operator(s) consoles, and that when
all DTs are suspended the operators console raises a DSR5
failure, the absence of which indicates a failed test.

If problems are detected then the maintenance procedures
from Figure 2 is used.

C. Node Simulation and Physical Implementation

For the experiments we used both simulation and a physical
implementation of the application. The simulation allows us
to generate a large number of results within a reasonable time
frame due to the ability to run numerous tests in parallel
and without the need to change any batteries. The physical
tests allow us to verify that the simulated results are an
accurate representation of the real application behaviour, in

addition to verifying that the additional noise from the physical
environment does not adversely effect the application.

HM periods and Maintenance periods aim reflect to the
context in which the system is deployed, with HM being
performed every 6 hours and maintenance every week. Failure
times are also picked to be as accurate to real-world situations,
with values being picked randomly from the inverse survival
function, commonly used in survival analysis to define failure
times, with a mean of 30 days and a standard deviation of 3.

Implementation: NS-2 is used to simulate the network
level for the nodes, allowing for high fidelity simulation.
NS-2 is configured for a typical WSN application, AODV
for the transport layer with 802.15.4 for the MAC protocol
used in combination with the two-ray ground model for the
physical radio model. To verify that the behaviour observed
in the simulation of the DA is an accurate representation of
the systems behaviour a smaller scale physical deployment
was conducted. For this 12 TelosB nodes were used which
have been tested to ensure suitable clock drift tolerance. The
application logic is implemented on top of TinyOS 2.1.1,
with the NST-AODV routing protocol, along with the use of
the standard 802.15.4 MAC implementation within TinyOS.
The majority of the node logic was automatically generated
from the simulation logic adding to the confidence in its
correctness. Transmission power levels were adjusted before
the experiment so that only communication between rooms is
reliable.

D. Deployment and Evaluation Metrics

This deployment was conducted with 12 nodes evenly
deployed over 4 rooms, with communications range being
limited to neighbouring rooms. As the experiment was to
demonstrate the inter-room connectivity, not connectivity to
the sink, the room containing the sink node does not experi-
ence any node failures. This ensures that the last hop to the
sink has a greater chance of success. Figure 3 shows the layout
of the nodes.

There are three possible criteria that can be used to measure
the cost of running the HM system, the one used by most
literature is the number of packets used by the network,
however we also suggest two additional metrics; number of
maintenance requests and time at risk. Maintenance requests
are used as these can be directly associated with calling in
contractors to replace broken nodes, which incurs large costs in
addition to being one of the important dependability attributes
as stated in section II-B. Another metric is the notion of time
at risk, an important aspect of safety maintainability, which
is how often and how long a room has no coverage, possibly
missing the initial stages of a fire. DSR1 is the only DSR
common to all the HM systems, however our system improves
on the current state of the art by allowing the operator to
tune the network to either of the above metrics to obtain the
desired availability (how low are we willing to let the node
population go), maintainability (how often are we willing to
call out maintenance) and battery life (directly detecting the
maintenance schedule) trade-off.
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1) DSR1: DSR1 establishes that there should never be
less than Y fully working nodes per room, and as such is
concerned with detecting node failures so that maintenance
can be scheduled.

Simulated Deployment
Initial testing was done within the NS-2 simulator, with

simulations running for 1/2 a year of simulation time which
equates to 34 minutes of elapsed computing time. Tests were
performed 10 times for each of the experiments, with an
experiment run for each of the node types. The results are
shown in Table III.

Node Type Time At Risk Maintenance requests Number Of Messages
HB 15 58 61275
RTA 7955 16 43916
DA 2198 23 46700

TABLE III
OVERVIEW OF THE THREE HM SYSTEMS IN THE SIMULATED

DEPLOYMENT SHOWING THE TIME ROOMS WERE AT RISK, THE AMOUNT
OF MAINTENANCE AND THE NUMBER OF FAILURES.

Here time at risk is the amount of time where there is no
ability to detect a fire should one occur. It can be clearly seen
how DA incurs much less time at risk than RTA, with a small
increase in maintenance requests, whereas HB has the lowest
time at risk, but incurs large numbers of maintenance requests
and a large increase in the number of messages.

Physical Deployment
To validate the results from the simulation it was decided to

run a physical deployment of the same fire detection scenario
described in section II-B.

So that the experiments could produce results within a
reasonable time frame the tests were accelerated by 800 times,
allowing 1/2 a year to pass in 5.5 hours, causing a HM
test to run every 45 seconds. With this level of acceleration
collisions between packets within the same test may become
more frequent, which may prove pessimistic. Pessimism is
still safe for our dependability testing as it assumes the worst
case. However as identified earlier even a small level of
desynchronization will alleviate this issue.

Time at risk Maintenance requests Total Failures
HB 23806 72 47
RTA 63996 52 45
DA 31532 65 45

TABLE IV
OVERVIEW OF THE THREE HM SYSTEMS IN THE PHYSICAL DEPLOYMENT

SHOWING THE TIME ROOMS WERE AT RISK, THE AMOUNT OF
MAINTENANCE AND THE NUMBER OF FAILURES.

Table IV shows the results of the experiments. It clearly
shows that RTA allows a large time-at-risk, which is unac-
ceptable for a fire detection system. 170% more time at risk
in RTA for a 28% reduction in maintenance requests when
compared to 32% increase in time at risk for DA for a 10%
reduction in maintenance requests.

2) DSR2: DSR2 is the timely delivery of alerts to the
operator node. Within our fire detection system we assume that
timely equates to less than 5 minutes between detection and
the operator being alerted. Tests were undertaken to assess how
the worst case time for the message to reach the destination
is affected by the number of nodes. This showed that as the
number of nodes approaches 128 the time increases up to 22
seconds, however at 256 nodes it decreases to 13 seconds. The
number of dropped packets however increases with the number
of nodes which is consistent with the literature [14]. Further
experiments showing that with a small spread of 1.8 seconds
between the nodes the number of missed messages drops back
down to 0% for 256 nodes. From this experiment we can
deduce that as long as all the nodes are roughly synchronised
(i.e. to within the same 10 seconds) then there should be no
substantial packet loss. The time it takes for packets to travel
does not need to be monitored, instead monitoring the loss
of packets is enough to ensure dependability. For this reason
tests still need to be executed to check that DSR2 holds.

3) DSR3: The third DSR exclusively deals with nonsensical
output from the nodes, as it is important that erroneous sensor
output is detected as soon as possible after it has occurred.
This error should also be reported to the operator immediately
so that maintenance can be scheduled accordingly. Only large
errors that are clearly outside the expected range of values can
be detected confidently, however sensors are typically designed
to fail with Full Scale Deflection. Tests were conducted
showing that these were correctly handled by DA, with HB
and RTA raising many false positives.



Monitoring
Type

Real
Fires

Detected
Instances

Maintenance
Requests

False
Positives

HB 75 286 374 134005
RTA 84 278 418 122233
DA 77 156 159 7

TABLE V
THE NUMBER OF FALSE POSITIVES (FIRES DETECTED THAT DO NOT
ACTUALLY OCCUR) REPORTED BY DIFFERENT HM SYSTEMS WHEN

PRESENTED WITH REAL FIRES AND FAULTY SENSORS

Table V clearly shows the significantly increased number
of false positives reported by HB and RTA, leading to more
maintenance requests. It should be noted that looking at false
negatives (unreported fires), all three of the systems report fires
within the 5 minute window. This is due to the high statistical
chance that a faulty node is reported as a fire at the correct
times, due to it randomly receiving readings from the sensor.

4) DSR4: The fourth DSR states that the nodes should be
tolerant to anomalies, and as such should deal with node and
communications failures. Failure to deal with these anomalies
can lead to a failure of the system to report a fire. From
experiments the fire detection application showed tolerance
to transient failures as fires were still successfully detected.
The HB based system however scheduled an unnecessary large
amount of maintenance. Both RTA and DA are comparable in
the number of missed fires and the number of maintenance
requests, as the majority of nodes have to simultaneously be
in the failed state to raise a maintenance request.

5) DSR5: Finally the fifth DSR requires that a monitoring
failure be reported to the operator nodes. This is extremely
important as any monitoring failure must be handled immedi-
ately as the application may not be fulfilling its requirements,
which in the case of the fire detection system could lead to loss
of life. Should the monitoring system itself fail on either the
HB system or the RTA system then the end user is none-the-
wiser as both systems are fully autonomous and never inform
the user of anything apart from if maintenance is required.
DA detects the failure of the DTs and then alert the operator
that the system needs to be repaired and any backup systems
should be used.

E. Parameter Tuning

Throughout the evaluation it became clear that there are a
number of different factors that may affect the HM systems,
and the network as a whole. This section aims to investigate
a number of these factors with a larger number of nodes and
a larger number of rooms.

Nodes are deployed in a series of rooms containing varying
numbers of nodes. There were 20 nodes in DSRs 2-5, with
either 1,2,4,5,10 or 20 nodes per room. The default scenario
used is 4 nodes in 5 rooms. All nodes within a room are
within the full transmission range of the neighbouring rooms
only, with rooms arrange in a simple column, thus causing
a pessimistic case where the loss of a single room between
the source and the sink can cause an impassable network
void. This allows for single-hop communication amongst
neighbouring rooms, but requires multi-hop communication

as provided by AODV for communicating further.
Within each simulation run, there was a series of simulated

fires in a random room, which should be reported to the
operator node. All nodes constantly monitor their room for
fires, checking the value of the sensors every 5 minutes. Fires
last for a duration of 10 minutes, after which the fire is
removed as detection after this time interval is unacceptable.
All experiments within this section have an average of 590
fires. All experiments were run for 7 simulation days, and 50
trials were run. The data points in the resulting figures and
tables are the mean values over all trials.

1) Effect of Number of failures: The initial experiment
looks into how the number of failures affects the fire detection
rate of the system. Nodes have a maintenance period of
5 minutes, with the failure rate being increased from zero
failures per week to 100 failures per week. This is especially
large number of failures with a small maintenance period, and
as such presents an extreme scenario when compared to a real
world example. The number of unreported fires is recorded,
i.e. the false negative rate.
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Fig. 4. Variations in the HM period affects the number of detected fires.

Figure 4 shows how as the number of failures is increased,
more fires go undetected. As the number of failures reaches
50, the HM period of 1 hour becomes too small to repair the
nodes in time, thus HM starts missing more fires.

Failures HB RTA DA
0 0 0 0
10 7.9 0.0 0.2
20 13.1 0.2 1.2
30 17.1 1.2 3.0
40 19.6 2.0 4.6
50 21.1 2.7 5.6
60 22.5 3.9 7.0
70 22.8 4.9 8.0
80 23.2 5.8 9.1
90 23.7 6.0 9.8

100 24.2 7.0 11.0

TABLE VI
NUMBER OF MAINTENANCE DISPATCHES FOR DIFFERENT NUMBERS OF

FAILURES

HB appears to perform the best in these scenarios due to it
requesting maintenance when any nodes have failed, followed
by DA and then RTA. Table VI shows that the number of



maintenance however tells a different story. HB needs a huge
number of maintenance requests. In contrast when there are
small number of failures, DA detects similar numbers of fires,
but with much lower maintenance requests.

2) Effect of Length of HM period: To ascertain the effects
that the HM period has upon the number of detected fires more
experiments were performed. Within these experiments there
is a fixed rate of 100 failures per week and the HM period is
varied from 1 to 24 hours in increments of 4 hours and the
number of undetected fires is reported.

Figure 5 shows the results of the second experiment showing
that as the period of HM is increased the number of correctly
reported fires decreases. This is due to the HM systems being
unable to repair failed rooms in time for the next fire to be
detected. This demonstrates that for a particular deployment
the HM period would need to be chosen carefully, based upon
the failure rate and the number of maintenance dispatches
acceptable to get the desired level of assurance. DA also allows
the number of nodes that are required before maintenance is
scheduled (node threshold) to be adjusted, thus allowing DA
to have the same behaviour as HB, or at the other extreme
RTA. In this example the node threshold for DA was set to
two.
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Fig. 5. Variations in the HM period showing changes in fire detection rates

The main outcome from these experiments is that the DA
system is highly parametrisable based upon the application
requirements. For example if DA is required to behave like HB
then the number of allowed node failures within each room
can be set to zero. However an appropriate balance needs to be
reached between availability, and the number of maintenance
dispatches. The precise values would need to be tuned based
on specific safety requirements, i.e. tolerable risk of hazards
and then monetary cost of maintenance. An example physical
deployment of DSR2 comparing the three HM systems is given
in section III-D1.

Using the results from this section it can be seen that within
a more representative real-world scenario, with the HM test
running every 5 hours and 10 node failures per day, this tuning
can be beneficial. In this scenario DA achieves the same level
of fire detection as HB (0.31 missed fires out of 672), whereas
RTA misses 18% more fires. From these experiments it can

be seen that the preliminary assessment of HB and RTA with
respect to the 5 DSRs as shown in Table II was partially
correct. A revised version of the Table, with reasoning is given
in Table VII. It is noted the other HM systems were designed
with only availability in mind and thus omitted most of the
other attributes.

F. Comparison with State-of-the-art

DSR1 is covered by all three HM systems and so Figure
6 shows DSR1 in more detail and highlights the difference
between the three systems. Within Figure 6 the red dashed arcs
show where the occurrence of node failures causes a change
in system state. Red dashed nodes are critical states where the
application requirements are not being met. In the case of the
fire detection system, this state means fires cannot be detected
as there are not enough nodes left alive. Black solid arcs are
unconditional jumps and blue dotted arcs are labelled with
the particular HM system or condition required to take the
transition. Blue dotted arcs with simply HB, RTA or DA with
no probabilities are always taken. Alternatively some of the
transitions have probabilities labelled, with the values based
upon number of failures, failure rates, and maintenance rates.
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DA Risk
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n ≤ 1

HB
RTA

Maintenance
Performed

Fig. 6. Figure showing the flow of actions that are taken for DSR1

The probabilities are derived from a simulation of all three
HM approaches, with communications being assumed to be
reliable as this does not effect the overview drastically. here
the probability is N/A within the figure it indicates that the arc
can never be taken, whereas 0.00% shows that it is unlikely
to take the transition. In this case not a single transition of
this type over a 100,000 year simulation occurred. The HM
is run every day, and the maintenance occurs 24 hours later.
Nodes have a mean lifetime of 3 months, with a deviation
of 2 months, based on the inverse survival function. These
failures values are assumed to be pessimistic, with higher times
between failures simply reducing the probability of DA getting
to the at-risk state.



This clearly demonstrates that not only can our approach
perform to the high level of reliability as HM provides, but it
also does such by checking the application requirements such
as RTA does enabling the number of maintenance requests to
be reduced. Our approach not only checks that the system is
operating correctly, but it also checks that the system, should
it degrade, degrades safely with faulty nodes being reported
and failure of the entire system being monitored.

IV. CONCLUSION

As shown within the results it is possible to design a
wireless sensor network that allows the system designer to
ensure dependability to a set level in the presence of numerous
external physical effects. In this paper the concept of simulat-
ing events to test the normal working behaviour of the network
has been extended to cover a range of error cases and built
into an overall method for ensuring a dependability within
a WSN application. Dependability is provided by delivering
an available, reliable, safe and maintainable WSN, along with
integrity in the WSN, as part of an overall Cyber-Physical
system. Three DTs are the core of the DA system and
allow failures to be directly identified or easily deduced. The
particular benefits of the approach is that potential failures
are identified earlier so that service is not lost, leading to the
application being at-risk, but not that early that unnecessary
maintenances are performed. A key focus of the work was also
to deliver the dependability attributes of interest to the level
of assurance application developers desire. At the same time
the application developers must decide the level of trade-off
this requires against the number of maintenance requests.

HB RTA DA
DSR1 Incorrectly

Scheduled
Maintenance

Incorrect Scheduled
Maintenance

Identifies
Communications

Issue
DSR2 Pessimistic Optimistic Configurable from

HB to DA
DSR3 Incorrectly Raises

Alarm
Incorrectly Raises

Alarm
Correctly Schedules

Maintenance
DSR4 Incorrectly

Scheduled
Maintenance

Tolerant Tolerant

DSR5 System Fails Silent System Fails Silent Operator Alerted

TABLE VII
OVERVIEW OF THE THREE HM SYSTEMS AND HOW THEY REACT TO THE

DSRS.
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