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Abstract—In smart computing, the labels of training samples
for a specific task are not always abundant. However, the labels
of samples in a relevant but different dataset are available.
As a result, researchers have relied on unsupervised domain
adaptation to leverage the labels in a dataset (the source domain)
to perform better classification in a different, unlabeled dataset
(target domain). Existing non-generative adversarial solutions for
UDA aim at achieving domain confusion through adversarial
training. The ideal scenario is that perfect domain confusion is
achieved, but this is not guaranteed to be true. To further enforce
domain confusion on top of the adversarial training, we propose a
novel UDA algorithm, E-ADDA, which uses both a novel variation
of the Mahalanobis distance loss and an out-of-distribution
detection subroutine. The Mahalanobis distance loss minimizes
the distribution-wise distance between the encoded target samples
and the distribution of the source domain, thus enforcing addi-
tional domain confusion on top of adversarial training. Then,
the OOD subroutine further eliminates samples on which the
domain confusion is unsuccessful. We have performed extensive
and comprehensive evaluations of E-ADDA in the acoustic and
computer vision modalities. In the acoustic modality, E-ADDA
outperforms several state-of-the-art UDA algorithms by up to
29.8%, measured in the f1 score. In the computer vision modality,
the evaluation results suggest that we achieve new state-of-the-
art performance on popular UDA benchmarks such as Office-
31 and Office-Home, outperforming the second best-performing
algorithms by up to 17.9%.

Index Terms—deep learning, unsupervised domain adaptation,
algorithm

I. INTRODUCTION

Domain adaptation (DA) has drawn a lot of interest [31],
[37], [39] because it deals with the problem that arises within
a core assumption of machine learning: machine learning
assumes that the testing samples are from the domain of
the training samples. This assumption often results in the
fact that the machine learning model’s testing performance is
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significantly worse than its validation performance when the
training and testing samples are from different distributions
or domains. Unsupervised Domain Adaptation (UDA) [30],
[32] is a popular sub-field of DA because it allows the target
domain to be unlabeled, which is more typical for real-life
smart computing applications as a lot of samples collected
from real environments are not labeled. However, if the labels
of samples in a relevant, but different dataset are available,
UDA can be performed to leverage the label information in
a source dataset to perform better classification in a different,
unlabeled dataset (target domain).

Among the methods developed for UDA, adversarial-based
methods are very popular. There are two types of adversarial-
based methods: generative, and non-generative. Generative
methods [14], [36], inspired by GAN [8], aim at generating
samples that aid in the task of (unsupervised) DA. For exam-
ple, Hoffman et al. [14] try to adapt the source samples in
the style of the target domain. The resulting adapted samples
can be used to train a classifier using the labels of these
adapted source samples to classify the samples in the target
domain. Non-generative methods [6], [30] aims at domain
confusion. It usually involves one or more generators/encoders,
a domain discriminator, and a category classifier [30] that does
the final classification of samples. The generator/encoder and
the discriminator engage in a mini-max game in which the
generator/encoder tries to deceive the domain discriminator,
masking the true origin (which can be the source or target) of
an incoming sample.

In this paper, we study non-generative adversarial methods
for UDA and uncover a challenge still existing in the field
of UDA: We observe that, while these methods attempt to
maximize domain confusion via adversarial training, their
effort to achieve domain confusion is implicit rather than
explicit. There still exists room for improvement on the task
of domain confusion if domain confusion can be attempted
to be achieved both implicitly via adversarial training and
explicitly. To further enforce domain confusion (explicitly)



and address the challenge, we introduce a novel variation
of the Mahalanobis distance loss. The original Mahalanobis
distance [18] measures how one sample deviates from a
distribution. The Mahalanobis distance loss is a loss function
used to train the encoder/generator, which aims at making the
encoder/generator achieve the minimization of the distribution-
wise distance between the source samples and the encoded
target samples, or vice versa.

There are two novelties in our Mahalanobis distance
loss function. First, although the idea of Mahalanobis distance
loss has been defined [33], it is defined by taking the true
values and predicted values as input. In other words, the
previously defined Mahalanobis distance loss [33] minimizes
the distance between a predicted value and the distribution of
the set of true values. Our Mahalanobis distance loss, on the
other hand, minimizes the distance between two distributions
(the source domain distribution and the masked/encoded target
domain distribution) instead of one value and one distribution,
as our goal is to make the masked/encoded target domain,
not an individual sample, closer to the distribution of the
source domain, so that domain confusion is achieved. Second,
to the best of our knowledge, we are the first to apply
the Mahalanobis distance in the field of (unsupervised) non-
generative adversarial domain adaption to achieve domain
confusion.

We also investigate if it is possible to improve the perfor-
mance of UDA tasks even further. We hypothesize that two,
instead of one, category classifiers are needed. One is trained
on the source samples and their (true) labels. The other is
trained on the target samples and their (pseudo) labels. Then,
we use an out-of-distribution (OOD) detection subroutine to
determine if an encoded sample should be classified by the
source category classifier or the target category classifier. The
out-of-distribution is facilitated once again via the original
Mahalanobis distance, as we have found studies that compare
various OOD detection approaches’ efficacy, and the Maha-
lanobis distance wins. For more details, please see Section II.

In addition to the Mahalanobis distance loss and the OOD
detection subroutine, we use the architecture of ADDA [30]
in which the source encoder (not a generator) and the source
category classifier are trained end-to-end with source samples
and their true labels. A target encoder (a generator) and a
domain discriminator engage in a mini-max game whereas the
target encoder tries to mask the incoming target samples as
source-passing to fool the domain discriminator, thus achiev-
ing domain confusion. The encoded target samples are sent
to the source category classifier for classification. Extensive
evaluations show the superiority of the improved ADDA
(we call it E-ADDA or the Enforced ADDA), Mahalanobis
distance loss-enhanced, OOD detection subroutine-enhanced,
over the vanilla ADDA and various state-of-the-art algorithms.
These solutions achieve significant improved state-of-the-art
performance on popular UDA benchmarks such as Office-31
and Office-Home.

The contributions of this paper are:
• We identify the room for improvement of existing non-

generative methods for (unsupervised) domain adaptation
because they solely rely on the adversarial training to
achieve domain confusion, which is implicitly achieved.

• We introduce a new loss function that minimizes the
distribution-wise distance between the source distribution
and the masked/encoded target distribution to further
enforce domain confusion that is experimentally superior
to adversarial training alone.

• Our solution, E-ADDA, outperforms various state-of-
the-art domain adaptation/transfer learning algorithms
on the acoustic modality in the field of domain-
adapting/transfer-learning from angry voices to speech
of verbal conflict by up to a 29.8% improvement in f1
scores.

• To further demonstrate the generalizability of E-ADDA,
we also evaluate it against various state-of-the-art domain
adaptation algorithms in the modality of computer vision.
E-ADDA outperforms the state-of-the-art algorithms by
up to 17.9% improvement in accuracy scores on popular
UDA benchmarks such as Office-31 and Office-Home.

II. RELATED WORK

A. Unsupervised Domain Adaptation

A large amount of work has been done on UDA by mini-
mizing the dissimilarity between the distributions of the source
and target domains. The common measurements of domain
dis-similarity include KL divergence, and maximum mean
discrepancy (MMD). Extensive research on transfer learning
is dedicated to minimizing the dis-similarity measurements
[39]. The minimization of dis-similarity measurements is also
used with other measurements, such as classification loss on
the source to find features that both discriminate and are
domain-invariant [31]. However, the minimization of MMD
of domains jeopardizes the locality structure of samples and
potentially reduces the effectiveness of transfer learning [37].
Also, feature discriminability is also decreased due to the
unintentional minimization of joint variance of features from
source and target sets [32].

Adversarial-based UDA has been a popular sub-field of
UDA [6], [14], [28], [30], [36]. Adversarial-based UDA can
be grouped into generative and non-generative categories.
The methods of the generative category attempt at generating
samples to aid the final classification of the target samples.
For example, CyCADA [14] adapts source samples to appear
as if they are from the target domain, and then trains a
category classifier on these adapted source images with their
true labels to classify the target data. Similarly, DM-ADA
trains the generated auxiliary images that are source-like and
the category classifier together from the embeddings of the
source and the target domains. The non-generative methods
attempt to achieve domain confusion, which usually requires a
generator/encoder and a domain label discriminator to engage
in a mini-max game. The discriminator attempts at recognizing
the domain label of a given sample, and the generator/encoder
attempts at masking the source images to be target-like, or vice
versa. For example, ADDA [30] makes the generator/encoder



on the target samples train against a domain label discrim-
inator, and the goal is to obtain a target generator/encoder
that can successfully mask the target samples as if they were
from the source domain. Consequently, a category classifier
trained on the source samples and their true labels can be used
to classify these encoded target samples. RSDA’s [9] idea on
how to achieve UDA is similar to the vanilla non-generative
idea with the mini-max game, with a twist that they define the
neural networks in the spherical feature space. Our E-ADDA
is in the non-generative category.

B. Out-Of-Distribution Detection

A lot of attention has been paid to detecting abnormal
samples so that they can be intercepted before being sent
to a neural network. Specifically, [13], [18], and [20] are
three state-of-the-art approaches to detect out-of-distribution
samples. Liang et al. [20] observe that fabricating small
perturbations into samples as well as using temperature scaling
can separate the softmax scores of in-distribution and out-of-
distribution samples. Lee et al. [18] use Mahalanobis distance
to separate in-distribution samples from out-of-distribution
ones.

Lee et al. [18] provide a comparison of the three approaches
and the performances of the three approaches are indicated
in Table I, from which we observe that the Mahalanobis
distance based approach outperforms Softmax Probability [13]
and ODIN [20]. Therefore, in the rest of the paper, we
use the Mahalanobis distance-based approach for the out-of-
distribution detection part of our solution. For details, see
Section 3.3.

Softmax Probability Mahalanobis ODIN
Acc. 85.06% 95.75% 91.08%

TABLE I
THE PERFORMANCES OF THE THREE STATE-OF-THE-ART

OUT-OF-DISTRIBUTION DETECTION ALGORITHMS. THE METRIC IS
ACCURACY. THE PERFORMANCES ARE OBTAINED WHEN TRAINING

RESNET ON CIFAR-10 AND SVHN SAMPLES ARE USED AS
OUT-OF-DISTRIBUTION SAMPLES.

There have not been enough works on incorporating out-
of-distribution detection with transfer learning or domain
adaptation. Perera et al. [24] use an out-of-distribution dataset
to improve the performance of a classifier on in-distribution
samples, which is the only work that intends to combine the
two knowledge fields. Our work, E-ADDA, is one of the
first approaches that use out-of-distribution to improve the
performance of (unsupervised) domain adaptation.

III. ENFORCED ADVERSARIAL DISCRIMINATIVE DOMAIN
ADAPTATION (E-ADDA)

A. Settings of Unsupervised Domain Adaptation

In UDA, the source samples and their labels are available.
The source data is represented as X s = {(xi

s, y
i
s)}

Ns
i=1.

Only the samples of the target domain are available; their
labels are not available. The target data is represented as

Fig. 1. The flowchart of E-ADDA: the pretraining, adversarial training, target
category classifier training and testing phases. In the pretraining phase, the
source encoder Es and the source category classifier Fs are trained end-
to-end using the source samples and their labels. In the adversarial training
phase, we freeze the source encoder Es and train the target encoder Et and the
discriminator D adversarially by engaging them in a mini-max game. To train
Et, in addition to the adversarial loss, we incorporate the new Mahalanobis
distance loss defined in Equation 4. To train the target category classifier Ft,
we freeze the adversarially trained Et and train Ft using its outputs on the
target samples. Note that Ft is trained using the pseudo-labels of the target
domain samples. During the testing phase, each sample x (in the testing set
of) the target domain, Es(x) and Et(x) are calculated to determine if the
domain confusion is successful. If the domain confusion is not successful,
Et(x) is sent to the target category classifier Ft instead of Fs.

X t = {(xi
t)}

Nt
i=1. Ns and Nt represent the sizes of the sets of

the source and target domains, respectively.

B. Adversarial Training with the New Mahalanobis Distance
Loss

Because E-ADDA is based on ADDA [30], we briefly
recap the architecture of ADDA. In ADDA, there exist four
neural networks: the source encoder/generator Es, the source
category classifier Fs, the target encoder/generator Et, and the
domain label discriminator D. Es and Fs are trained end-to-
end using the true labels of the source samples. Then, with Es

as an input, Et and D engage in a mini-max game in which
Et tries to mask the target samples to appear as if they are
(source samples that are) encoded by Es, and D tries to spot
its trick and recover the true origin (source or target) of an
encoded sample. Thus, domain confusion is achieved as Et is
able to mask the target data to appear source-like, and Fs is
then able to classify them with satisfactory performance.

In E-ADDA, we keep the four neural networks and the
framework of ADDA unchanged. One key thing added is the
new Mahalanobis distance loss function to train Et to further
enhance/enforce domain confusion. In the following equations,
we define the loss function for Es, Et, Fs, and D.

The source category classifier Fs’s loss is the standard
supervised loss. It is noted that Es and Fs are trained jointly,



which is achieved by Equation 1.

min
Es,Fs

LFs
(Xs, Ys) = E(xs,ys)∼(Xs,Ys)

−
K∑

k=1

logFs(Es(xs))1(k, ys)
(1)

The domain label discriminator D is also trained using
the standard supervised loss using Es and Et as well as
the domain information of samples in the source and target
domains, as in Equation 2.

LD(Xs,Xt, Es, Et) =− Exs∼Xs
[logD(Es(xs))]

− Ext∼Xt
[log(1−D(Et(xt)))]

(2)

In this paragraph, we describe the adversarial training loss
and the new Mahalanobis distance loss for Et, as in Equation
3. Note that we call this Mahalanobis loss “new” to distinguish
it from the Mahalanobis distance loss defined by Wen et
al. [33], who take the true values and predicted values as
input. In other words, the previously defined Mahalanobis
distance loss [33] minimizes the distance between a predicted
value and the distribution of the set of true values. Our new
Mahalanobis distance loss, on the other hand, minimizes the
distance between two distributions.

LEt(Xs,Xt, D) =−
∑

d∈{s,t}

Exd∼Xd
[
1

2
logD(Ed(xd))]

+ [
1

2
log(1−D(Ed(xd)))] + θMLM

(3)

How do we define LM , the new Mahalanobis distance
loss that minimizes the distance between two distributions?
To define it, we consider the domain confusion task to be
achieved. We want to train Et and D adversarially so that Et

encodes the target samples such that D thinks these encoded
samples were source samples encoded by Es. Therefore,
to further maximize domain confusion, we define LM as
Equation 4. µ̂s is the empirical mean of all source samples
encoded by Es defined as Equation 5, and Σ̂ is the empirical
covariance defined as Equation 6.

LM =
∑

(Et(xt)− µ̂s)
⊤Σ̂s

−1
(Et(xt)− µ̂s) (4)

µ̂s =
1

Ns

∑
Es(xs), xs ∈ Xs (5)

Σs =
1

Ns

∑
(Es(xs)− µ̂s)(Es(xs)− µ̂s)

⊤ (6)

C. (Traditional) Mahalanobis Distance Based Out-of-
Distribution Detection Subroutines

To safeguard the scenario in which domain confusion still
somehow fails despite our best effort with the new Maha-
lanobis loss, we add two OOD detection subroutines to catch
a (target) sample if the adversarial training fails to allow Et

to mask it as if it was a source sample encoded by Es. If
this happens, we send this target sample to the target category

classifier, instead of the source category classifier, for final
classification. The target classifier is trained using the target
training samples and their pseudo-labels.

To determine if a sample x is still within the distribution of
the target domain or if it is successfully encoded to look like
its origin is the source domain, we measure the Mahalanobis
distance between Es(x) and the set of Es(xs), ∀xs ∈ Xs, as
well as the Mahalanobis distance between Et(x) and the set
of Et(xt), ∀xt ∈ Xt. Note that this Mahalanobis distance has
nothing to do with the previously defined LM ; in the current
case of OOD detection subroutines, we apply the “traditional”
definition of the Mahalanobis distance, which measures how
far a value diverges from a distribution. To get the parameters
that the calculation of the traditional Mahalanobis distance
requires, we need the empirical mean and the empirical
covariance of the distribution. For the source distribution, we
have already defined the source empirical mean µ̂s in Equation
5 and the source empirical covariance Σ̂s in Equation 6.
Similarly, we define the target empirical mean µ̂t and the target
empirical covariance Σ̂t in Equations 7 and 8.

µ̂t =
1

Nt

∑
Et(xt), xt ∈ Xt (7)

Σt =
1

Nt

∑
(Et(xt)− µ̂t)(Et(xt)− µ̂t)

⊤ (8)

The traditional Mahalanobis distance between x and a
distribution is defined using an empirical mean µ̂ and empirical
covariance Σ̂ that describe the distribution, as defined in
Equation 9, in which E can be either Es or Et, depending
on if this is the source or the target distribution that we are
talking about.

M̂(x) = (E(x)− µ̂)⊤Σ̂−1(E(x)− µ̂) (9)

With the aforementioned information, we create two OOD
subroutines. The first one checks the traditional Mahalanobis
distance between Es(x) and the distribution of Es(xs), ∀xs ∈
Xs, The second one checks the Mahalanobis distance between
Et(x) and the distribution of Et(xt), ∀xt ∈ Xt. If the
Mahalanobis distance score between Es(x) and the distribu-
tion of Es(xs) is smaller than an empirically determined λs,
∀xs ∈ Xs then it is considered within the distribution of the
source domain. If the traditional Mahalanobis distance score
between Et(x) and the distribution of Et(xt), ∀xt ∈ Xt is
smaller than an empirically determined λt, then it is considered
within the distribution of the target domain.

IV. EVALUATION

A. Overview

We first evaluate E-ADDA on a domain adaptation task
on an acoustic modality: we domain-adapt from a dataset
consisting of emotional utterances to a dataset that contains
audio samples of speech in which, sometimes, the speakers
are in a verbal conflict (we map the anger emotion to conflict
and other emotions to non-conflict). Then, to demonstrate that
E-ADDA not only works on domain-adapting from the domain



of emotions to the domain of conflict speech, but also in
other fields such as computer vision, we compare E-ADDA
against various other state-of-the-art deep domain adaptation
algorithms on standard datasets and tasks of UDA in the field
of computer vision such as Office-31 and Office-Home.

B. The Domain Adaptation Task on the Acoustic Modality

1) The Source Dataset: In the following paragraphs we
describe our source dataset in the domain adaptation task on
the acoustic modality. The EMOTION dataset contains the all
samples from the following 5 public datasets: RAVDESS
[22], CREMA-D [1], EMA [19], TESS [3], and SAVEE [11].
In addition we extend these 5 datatsets with samples that are
distorted to account for environmental conditions by artificially
adding environmental distortions into the clean samples from
the original five datasets. The reverberation effect is described
by the combination of the decay factor, diffusion, and wet/dry
ratio. EMOTION consists of training and testing sets. In the
training set, there are 8,816 samples in the anger class, 8,786
samples in the happiness class, 7,742 samples in the neutral
class, 8,811 samples in the sadness class, and 5,761 samples
in the disgust/fear class. In the testing set, there are 1,942
samples in the anger class, 1,966 samples in the happiness
class, 1,696 samples in the neutral class, 1,947 samples in the
sadness class, and 1,292 samples in the fear/disgust class.

2) The Target Dataset: Our target dataset, CONFLICT, is
the dataset where we want to apply E-ADDA solution so
that the source classifier trained on EMOTION can be re-
purposed. It is collected from real home environments in which
19 couples talk (collected with approved IRB) about topics
that they previously disagree on and have their conversation
recorded. In total, there are 3027 training samples and 1009
testing samples.

3) Comparison with State-of-the-Art Baselines: In this ex-
periment, shown in Table II, we compare E-ADDA with the
scenario in which no domain adaptation or transfer learning is
used (No DA/TL) and three baselines: direct training (directly
training the model on the data from the target dataset),
two selected state-of-the-art approaches, ADDA and ADDA
with CORAL loss. Our solution, E-ADDA, outperforms var-
ious state-of-the-art domain adaptation/transfer learning al-
gorithms on the acoustic modality in the field of domain-
adapting/transfer-learning from angry voices to speeches of
verbal conflict by up to 29.8% improvement in f1 scores.

Each of the audio samples on which we test the situation
in which no DA/TL is used, the three baselines, and E-ADDA
contains environmental distortions and/or overlapped speech.
The usage of CORAL loss (in Deep CORAL) and ADDA
has garnered a lot of interest in the field of DA/TL; in this
paragraph, we briefly describe these two approaches. CORAL
loss proposes that the domain shift can be mitigated by
using linear transformations to align the second-order statistics
of the two domains. ADDA proposes to encode the target
samples to the feature space of the source and have a domain
discriminator that tries to distinguish encoded target samples

from source samples. ADDA and ADDA with CORAL loss
achieve in f1 scores of 38.29% and 63.28% respectively.

Env. Distortion F1
ADDA ✓ 38.29%

ADDA + CORAL ✓ 63.28%
No TL/DA ✓ 77.25%

Trained on target ✓ 85.82%
E-ADDA ✓ 93.10%

TABLE II
THE PERFORMANCE OF FOUR BASELINES AGAINST E-ADDA ON DATA
THAT HAS OVERLAPPED SPEECH AND ENVIRONMENTAL DISTORTIONS.

As shown in Table II, No TL/DA’s performance is 77.25%,
a value that is higher than the state-of-the-art solutions ADDA
and ADDA with CORAL loss. No TL/DA stands for that we
directly apply the source classifier on the target samples. In
the case of domain-adapting from a classifier of emotions to
conflict detection, no TL/DA suggests that we directly apply
the mood classifier on the conflict samples and the perfor-
mance is calculated based on that anger denotes conflict while
other emotions denote no conflict. ADDA performance was
38.29%, which is lower than the no TL/DA by 38.96%. ADDA
with CORAL loss achieved significantly higher performance,
63.28%. Since with have more than 7000 samples in the target
dataset, we also directly train a classifier using only the target
sample and yield an f1 score of 85.82%, which is higher than
ADDA by 47.53% and ADDA combined with CORAL loss by
22.54%. Still, it is 7.28% lower than E-ADDA’s performance.
Our E-ADDA results in an improvement over ADDA with
CORAL loss by 29.82%.

It is worth noting that the source and target domains in
this setting are distribution-wise distant because they are not
even from the same class (the source domain is about people’s
emotions and the target domain is about verbal conflict).
Therefore, the task should be more appropriately called un-
supervised transfer learning instead of unsupervised domain
adaptation. We present this task as part of our evaluation
to test if E-ADDA can really enforce domain confusion,
safeguard catching samples on which domain confusion fails,
and send these samples to their respective category classifiers.
The ADDA architecture only yields an f1 score of 38.2%,
suggesting that ADDA’s basic mechanism of domain confusion
fails. However, with the new Mahalanobis distance loss and the
OOD detection subroutine on top of the same architecture, E-
ADDA is able to achieve an f1 score of 93.1%. This indicates
that the new Mahalanobis distance loss is very effective at
enforcing, on top of the adversarial training, domain confusion.
In addition, it suggests the necessity of the OOD detection
subroutine to send samples on which domain confusion fails
to their respective category classifiers.

C. Domain Adaptation Tasks on Images

In this section, we discuss the performance of E-ADDA
against state-of-the-art baselines on popular benchmarks for
UDA such as Office-31 and Office-Home. Then, to show that
E-ADDA also achieves state-of-the-art performance on simpler



Algorithm A→W A→D D→W D→A W→A W→D Avg
ResNet-50 [12] 68.4% 68.9% 96.7% 62.5% 60.7% 99.3% 76.1%

DANN [5] 82.0% 79.7% 96.9% 68.2% 67.4% 99.1% 82.2%
MSTN [35] 91.3% 90.4% 98.9% 72.7% 65.6% 100% 86.5%

CDAN+E [23] 94.1% 92.9% 98.6% 71.0% 69.3% 100% 87.7%
DMRL [34] 90.8% 93.4% 99.0% 73.0% 71.2% 100% 87.9%

SymNets [38] 90.8% 93.9% 98.8% 74.6% 72.5% 100% 88.4%
GSDA [15] 95.7% 94.8% 99.1% 73.5% 74.9% 100% 89.7%
CAN [16] 94.5% 95.0% 99.1% 78.0% 77.0% 99.8% 90.6%

SRDC [27] 95.7% 95.8% 99.2% 76.7% 77.1% 100% 90.8%
RSDA-MSTN [9] 96.1% 95.8% 99.3% 77.4% 78.9% 100% 91.1%

E-ADDA 95.4% 96.2% 100% 95.3% 90.9% 100% 95.3%

TABLE III
THE RESULTS ON THE DOMAIN ADAPTATION TASKS AMONG THE THREE DOMAINS IN THE DATASET OFFICE-31. THE METRIC IS ACCURACY.

Algorithm Pr→Ar Ar→Pr Cl→Ar Ar→Cl Rw→Ar Ar→Rw Pr→Cl Cl→Pr Rw → Pr Pr→Rw Rw→Cl Cl→Rw Avg
ResNet-50 [12] 38.5% 50% 37.4% 34.9% 53.9% 58% 31.2% 41.9% 59.9% 60.4% 41.2% 46.2% 46.1%

DANN [5] 41.6% 59.3% 47.0% 45.6% 63.2% 70.1% 43.7% 58.5% 76.8% 68.5% 51.8% 60.9% 57.6%
CDAN [23] 55.6% 69.3% 54.4% 49.0% 68.4% 74.5% 48.3% 66.0% 80.5% 75.9% 55.4% 68.4% 63.8%
MSTN [35] 61.4% 70.3% 60.4% 49.8% 70.9% 76.3% 48.9% 68.5% 81.1% 75.7% 55.0% 69.6% 65.7%

SymNets [38] 63.6% 72.9% 64.2% 47.7% 73.8% 78.5% 47.6% 71.3% 82.6% 79.4% 50.8% 74.2% 67.2%
GSDA [15] 65.0% 76.1% 65.4% 61.3% 72.2% 79.4% 53.2% 73.3% 83.1% 80.0% 60.6% 74.3% 70.3%

GVB-GD [2] 65.2% 74.7% 64.6% 57.0% 74.6% 79.8% 55.1% 74.1% 84.3% 81.0% 59.7% 74.6% 70.4%
RSDA-MSTN [9] 67.9% 77.7% 66.4% 53.2% 75.8% 81.3% 53.0% 74.0% 85.4% 82.0% 57.8% 76.5% 70.9%

SRDC [27] 68.7% 76.3% 69.5% 52.3% 76.3% 81.0% 53.8% 76.2% 85.0% 81.7% 57.1% 78.0% 71.3%
E-ADDA 66.8% 78.6% 59.6% 61.0% 67.7% 79.7% 64.9% 79.8% 85.8% 79.2% 64.9% 70.4% 71.5%

TABLE IV
THE RESULTS ON THE DOMAIN ADAPTATION TASKS AMONG THE FOUR DOMAINS IN THE DATASET OFFICE-HOME. THE METRIC IS ACCURACY.

Algorithm MNIST → USPS SVHN → MNIST
Source only 75.2% 60.1%

Gradient Reversal [5] 77.1% 73.9%
Domain Confusion [29] 79.1% 68.1%

CoDAN [21] 91.2% did not converge
ADDA [30] 89.4% 76.0%

Associative [10] 94.1% 93.6%
DANN [6] 60.8% 76.3%

Deep Coral [26] 69.5% 76.3%
VADA [25] 90.6% 92.6%
E-ADDA 95.4% 95.4%

TABLE V
WE COMPARE OUR TECHNIQUE, E-ADDA, WITH NINE OTHER

STATE-OF-THE-ART DEEP DOMAIN ADAPTATION TECHNIQUES ON TWO
TASKS (THE PERFORMANCE IS MEASURED IN ACCURACY, PER THE
EVALUATION STANDARD OF THE COMPUTER VISION COMMUNITY).

Algorithm STL-10 → CIFAR-10
DRCN [7] 58.6%

SE [4] 64.2%
Source only 63.6%
VADA [25] 75.3%
Co-DA [17] 76.4%
DTA [17] 72.8%

ET 86.1%

TABLE VI
WE COMPARE OUR TECHNIQUE, E-ADDA, WITH FIVE OTHER

STATE-OF-THE-ART DEEP DOMAIN ADAPTATION TECHNIQUES ON THE
DOMAIN ADAPTATION TASK TO DOMAIN-ADAPT FROM STL-10 TO

CIFAR-10 (THE PERFORMANCE IS MEASURED IN ACCURACY, PER THE
EVALUATION STANDARD OF THE COMPUTER VISION COMMUNITY).

domain adaptation tasks such as MNIST → USPS, SVHN →
MNIST, as well as CIFAR-10 → STL-10, we also compare
E-ADDA’s performance against state-of-the-art baselines on
these UDA tasks.

1) Office-31: In Table III, we compare our E-ADDA
against ResNet-50 [12] and nine other state-of-the-art domain
adaptation algorithms using the dataset Office-31. Office-31
contains three subdomains: Amazon (A), Webcam (W), and

Dslr (D). Each domain contains 31 classes of everyday office
objects such as rulers or projectors. There are 4,110 images
in total in Office-31. Across the three domains, six domain
adaptation tasks can be formed, as shown in Table III. The
performance of each algorithm is measured in the accuracy
that is the percentage of samples that are correctly classified
by the algorithm out of all the samples in the testing set.

On the six domain adaptation tasks, we have achieved state-
of-the-art performance on five of them, except for the task of
A → W, where RSDA-MSTN [9] outperforms E-ADDA by
0.7%. RSDA-MSTN [9] proposes to redefine the feature space
as a spherical feature space and create a spherical classifier
and discriminator, creating a pseudo-label loss in this spherical
feature space. However, it fails to deal with the situation in
which the pseudo-labels are not very accurate and the pseudo-
label loss is very large. E-ADDA does not have that problem.

It is worth noting that RSDA-MSTN is a non-generative
adversarial algorithm whose superiority comes from the fact
that the adversarial training is defined in the spherical feature
space. As a non-generative adversarial method, RSDA-MSTN
is a perfect candidate to compare E-ADDA against. On tasks
with large domain shifts, such as W → A and D → A, we
outperform RSDA-MSTN by 17.9% and 12%, a very large
improvement. This suggests E-ADDA is better at achieving
domain confusion on UDA tasks whose source and target do-
mains are more distributionally distant while other algorithms
that aim at domain confusion fail to achieve a performance
that is as high.

2) Office-Home: In Table IV, we compare E-ADDA against
ResNet-50 and eight other state-of-the-art domain adaptation
algorithms on Office-Home. Office-Home has four subdo-
mains: Product (Pr), Art (Ar), Clipart (Cl), and Real World
(Rw). There are 15,500 images in Office-Home, each of which
is of a typical object that can be found in an office or home,



such as flowers. Twelve domain adaptation algorithms can
be formed based on the four subdomains. The performance
of each algorithm is measured in the accuracy that is the
percentage of samples that are correctly classified by the
algorithm out of all the samples in the testing set.

Out of the twelve domain adaptation tasks, we outperform
the next best-performing algorithm on six of them. On the task
of Ar → Rw, the state-of-the-art, RSDA-MSTN, outperforms
us by 1.6%. Again, RSDA fails to deal with the situation in
which the pseudo-labels are not very accurate and the pseudo-
label loss is very large. On the task Pr → Ar, the state-of-
the-art, SRDC, outperforms us by 1.9%. SRDC proposes to
alleviate the risk of damaging the intrinsic domain discrimina-
tion resulting from finding domain-aligned features. However,
the proposition to minimize the KL divergence between the
distribution of predictive labels and the distribution of aux-
iliary labels is a rather naive approach, as the authors fail to
compare their algorithm with other measurements to minimize
the Jensen–Shannon divergence.

Once again, we have observed that E-ADDA is better at
achieving domain confusion than the other non-generative ad-
versarial method, RSDA-MSTN, when domain shifts are large.
For example, on the task Ar → Cl, we outperform the second-
best-performing algorithm RSDA-MSTN by 7.7%. This sug-
gests that, when domain shifts are large, or when domain
confusion is harder, E-ADDA can still achieve good domain
confusion results, while the state-of-the-art non-generative
methods cannot.

3) MNIST → USPS and SVHN → MNIST: MNIST, USPS,
and SVHN datasets all have ten classes of hand-written digits.
The first task, which is to domain-adapt from MNIST to
USPS, is considered easier while the second task, which is
to domain-adapt from SVHN to MNIST, is considered more
challenging. This claim is supported by the observation that,
in Table V, five out of the state-of-the-art domain adaptation
algorithms and the baseline of directly using source classifier
on the target dataset results in lower performance of the second
task compared to the first task. E-ADDA achieve an accuracy
of 95.41% on the first task and 95.43% on the second. On
the first task, it outperforms the best-performing state-of-the-
art baseline, Associative, by 1.31%. On the second task, it
outperforms the best-performing state-of-the-art baseline by
2.83%. We present our evaluation results on MNIST → USPS
and SVHN → MNIST to demonstrate that E-ADDA can also
achieve state-of-the-art performance on simpler UDA tasks.

4) STL-10 → CIFAR-10: In this section, we further investi-
gate if the E-ADDA can outperform state-of-the-art baselines
on a more complicated vision task that is not digits. Therefore,
we transfer learn from STL-10 to CIFAR-10. Both CIFAR-10
and STL-10 are image datasets that contain 10 classes. We
outperform all the other five state-of-the-art deep domain adap-
tation baselines and outperform the second best-performing
algorithm, Co-DA, by 9.7%. The source classifier that we use
to train is ResNet-50 [12]. We yield the highest performance
of an accuracy score of 86.1% after we inject the E-ADDA
Cell after the fifth layer.

Note that, compared to the previous section, we choose
a different set of baselines to fully evaluate our solution,
the E-ADDA, against as many baselines as possible. The
task to domain-adapt from STL-10 to CIFAR-10, which is
more complex than domain-adapt among MNIST, SVHN, and
USPS, as these three datasets contain only digits. On the
contrary, CIFAR-10 and STL-10 contains images such as the
automobile and dog classes. Again, we present our evaluation
results on STL-10 → CIFAR-10 to demonstrate that E-ADDA
can also achieve state-of-the-art performance on simpler UDA
tasks.

V. DISCUSSION

In Section IV, we discussed E-ADDA’s performance on
two sets of tasks: the first is for verbal conflict detection,
and the second is for computer vision. Both sets of tasks are
widely used in smart computing. For example, verbal conflict
detection is part of smart health applications that monitor
mental health, and computer vision is a major component
of many smart computing applications such as autonomous
vehicles and smart health image analysis.

VI. CONCLUSION

In smart computing, researchers want to perform classifica-
tion or prediction on a set of data. However, directly training
on these data points is not always easy, because the label
information of these data is not readily available. However, if
there exists a relevant (albeit different) dataset with available
label information, then UDA can be performed to use the label
information in a dataset (the source domain) to perform better
classification in a different, unlabeled dataset (target domain).

We have discovered that there exists room for improvement
on the existing non-generative adversarial UDA algorithms
that attempt to achieve domain confusion. The challenge
lies in the observation that these algorithms do not explic-
itly minimize the distance between the distribution of the
masked/encoded target samples and the source samples; in-
stead, they let the adversarial training achieve domain confu-
sion rather implicitly. To address this challenge, we propose E-
ADDA that uses a novel variation of the Mahalanobis distance
loss to minimize the distribution-wise distance between the
masked/encoded target domain samples and the source domain
samples. Then, the OOD subroutine further eliminates samples
on which the domain confusion is unsuccessful. We have per-
formed extensive evaluations on E-ADDA on two modalities:
the acoustic modality and the computer vision modality. On
both modalities, we outperform the state-of-the-art algorithms
and achieve new state-of-the-art performance.
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