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Abstract

Recurrent Neural Networks (RNNs) have made great achievements for sequential
prediction tasks. In practice, the target sequence often follows certain model
properties or patterns (e.g., reasonable ranges, consecutive changes, resource
constraint, temporal correlations between multiple variables, existence, unusual
cases, etc.). However, RNNs cannot guarantee their learned distributions satisfy
these properties. It is even more challenging for the prediction of large-scale and
complex Cyber-Physical Systems. Failure to produce outcomes that meet these
properties will result in inaccurate and even meaningless results. In this paper, we
develop a new temporal logic-based learning framework, STLnet, which guides
the RNN learning process with auxiliary knowledge of model properties, and
produces a more robust model for improved future predictions. Our framework
can be applied to general sequential deep learning models, and trained in an end-
to-end manner with back-propagation. We evaluate the performance of STLnet
using large-scale real-world city data. The experimental results show STLnet not
only improves the accuracy of predictions, but importantly also guarantees the
satisfaction of model properties and increases the robustness of RNNs.

1 Introduction

Deep Neural Networks (DNNs), especially Recurrent Neural Networks (RNNs) have great achieve-
ments for sequential prediction tasks and are broadly applied to support the decision making of
Cyber-Physical Systems (CPSs) [6, 15, 26]. Usually, in CPSs, RNNs are applied to predict the
changing of system states or their environment. Systems take actions based on the prediction to
guarantee the safety and performance of the system. For example, the power plant predicts the usages
of energy in the next few days and decides how much energy to generate. An event service predicts
the population and traffic for a big concert and allocates police and security resources. Training
RNNs for complex CPSs (i.e., creating a prediction model) such as for Smart Cities is difficult [17].
The models are not always robust, often subject to anomalies, and subject to erroneous predictions,
especially when the predictions are projected into the future (errors grow over time).

On the other hand, the target sequence often follows specific model properties or patterns, which
should also be followed by the predicted sequence. For example, power plants have maximum and
minimum limits of energy that can be generated per day, and the changing of air quality is relevant
to the changing of traffic volume in the past hour. However, RNNs have no way to guarantee that
their estimated distributions satisfy these model properties, especially for the properties with multiple
variables and temporal features. Failure to follow these model properties can result in inaccurate and
even meaningless results, e.g., predicted traffic volume exceeding the road capacity and inaccurate
population estimation due to ignorance of big events happening a few hours ago.

Challenges: It is very challenging to enforce multivariate RNNs to follow temporal model properties
in a sequence prediction task. The optimization mechanism of RNNs (i.e., back propagate the
loss between estimated value and target value individually in a predicted sequence at each time
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unit without comparing the temporal correlation of the two sequences, thus lack an integrated view
about the sequential predictions) causes the challenge of the networks to follow the temporal model
properties. In addition, unlike classification problems, it is more difficult to find an alternative
approximate sequence that satisfies the property for knowledge distillation.

Contributions: In this paper, we create a new temporal logic-based learning framework, called
STLnet, to guide the RNN learning process with auxiliary knowledge of model properties and to
produce a more robust model that can then be used for improved future predictions. Unlike existing
approaches, STLnet enforces the predicted multivariate sequence to follow its model properties by
treating the sequence (i.e. a trace) as a whole. We first identify six key types of model properties
and formalize them using Signal Temporal Logic (STL) [5]. Following the idea of knowledge
distillation [8], the STLnet framework is built with a teacher network and a student network. In
the teacher network, we create a STL trace generator to generate a trace that is closest to the trace
predicted by the student network and satisfies the model properties simultaneously. We also create
algorithms to efficiently generate satisfaction traces tailored to deep learning processes. We evaluate
the performance of STLnet by applying it to an LSTM [9] network and a transformer network [23] for
multivariate sequential prediction. The experimental results show that STLnet significantly increases
the satisfaction of different types model properties (by about 4 times) and further improves the
prediction accuracy (by about 18.5%).

To the best of our knowledge, our framework is the first work that integrates signal temporal logic
with deep neural networks for sequential prediction. The strength of temporal logic offers a much
stronger power to control a sequential system and a more flexible way to specify various types of
properties. Different from previous literature, our method also creates a practical way to ensure the
satisfaction of the logic rules. STLnet can be applied to general deep models to perform multivariate
time series prediction and can be trained in an end-to-end manner. STLnet increases the robustness
of the deep learning models.

2 Model Property Formalization using Signal Temporal Logic

In this paper, we refer to model properties as the inherent properties, rules, or patterns followed by the
output sequences of target models or systems. These model properties are usually already known by
the system or defined by the users before prediction, e.g., constraints by the physical world, or rules
followed by the application domains (e.g., robotics). In practice, we can also mine the properties
from the models’ historical behaviors [12]. Actively learning these model properties helps build more
robust deep neural networks.

Specification Language – Signal Temporal Logic: In order to enforce RNNs to learn the model
properties, we first formalize properties using a machine-understandable specification language. For
multivariate sequence prediction, capturing the relations between variables on the temporal domain is
the most important task. Therefore, we apply STL [5] to formalize the model properties. STL is a
very powerful formalism used to specify temporal properties of discrete and continuous signals. In
this paper, we target the properties of the outputs of RNN models, which are discrete-time signals.
The syntax of an STL formula ϕ is usually defined as follows (see Appendix for formal definition),

ϕ ::= µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦(a,b)ϕ | �(a,b)ϕ | ϕU(a,b)ϕ.

We call µ a signal predicate, which is a formula in the form of f(x) ≥ 0 with a signal variable x ∈ X
and a function f : X → R. The temporal operators �, ♦, and U denote “always", “eventually" and
“until", respectively. The bounded interval (a, b) denotes the time interval of temporal operators. U
can be expressed by � and ♦, thus we only consider � and ♦ in this work.

Model Properties and Formalization: Systems from different application domains have varied
types of model properties. Focusing on the CPSs, we identify several critical types (not necessarily
a complete list) of model properties for the key applications below. We give specific examples of
properties under each type in Table 1.

• Reasonable Range: One of the most fundamental model properties is that the value of the sequence
should always be within a reasonable range constrained by the system or physical world, such as
the road capacity of vehicles, normal ambient temperature, etc. It is not trivial for RNNs to learn
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Table 1: Examples of Model Properties and Their STL Formulas

Property Type Example STL formula
Reasonable
Range

The traffic volume on a road can never exceed the
road capacity.

�[0,24](x1 <
α1) ∧ · · · ∧�[0,24](xn < αn)

Consecutive
Changes

The number of people in a shopping mall should not
increase or decrease more than 1000 in 10 min if
exits number is less than 5.

y < 5→ �[0,10](∆x < 1000)

Resource
Constraint

The total energy distributed to all buildings should
be less than e. �[0,24]sum(x1, . . . , xn) < e

Variable and
Temporal
Correlation

For two consecutive intersections on a one-way
direction road, if there are 10 cars passing
intersection A, then there should be at least 10 cars
passing intersection B within the next 5 minutes.

(x1 > 10→ ♦[0,5](x2 >
10)) ∧ · · · ∧ (xn > 10→
♦[0,5](xn+1 > 10))

Existence There should be at least 1 patrol car around school
every day.

♦[0,24]x1 ≥
1 ∧ · · · ∧ ♦[0,24]xn ≥ 1

Unusual Cases
If there is a concert on Friday, the number of people
in the nearby shopping mall will increase at least
200 within 2 hours.

xEvent = True ∧ xDay = Fri→
♦[0,2]∆x > 200.

reasonable ranges since they could vary by variable, conditionally relate to another variable, and
dynamically change over time.

• Consecutive Changes: For most applications in CPSs and other domains, the consecutive changes
of the target model over a fixed period follow specific properties, such as pollution levels or traffic
volume levels from one time period to the next are bounded.
• Resource Constraint: The target models are often constrained by the resources, such as the available

police resources to deal with an accident, or the maximum energy allocated by several locations.
The resource constraints could also change over time in a real deployment, and are not necessarily
the same as the training data. RNNs are highly likely to produce inaccurate or wrong outcomes
without adapting the prediction results based on resource constraints.
• Variable and Temporal Correlation: There are correlations between different variables or locations

over time, some of which are already known or easily discovered before training the learning model.
These include the differences in air quality levels of adjacent locations, correlations between the
air quality levels and traffic volume in the past hour, etc.

• Existence: Existence is a prevalent property in practice, but extremely difficult for RNNs to predict.
It specifies the case that at least one of the values in the sequence (eventually) satisfies a specific
property, e.g., traffic will be back to normal within 30 min after resolving an accident.

• Unusual Cases: The outputs of CPSs are highly affected by the environment and sensitive to
uncertainties. For some unusual cases, there is a limited amount of data available in the training
set. It is necessary to specify and teach the networks to learn the properties of these unusual cases
(e.g., the influence of accidents or events on the population).

In Table 1, we present examples of these model properties and how to formalize them using STL.
As we can see from the examples, most of the properties have temporal features over a given period,
e.g., [0, 2] indicates the next 2 hours from the checking point, [0, 24] indicates the next 24 hours
(as checking every hour for the whole day). These properties describe the essential features of the
systems with complex temporal dependency among multiple variables. Traditional RNNs have no
mechanism to check or learn them explicitly.

3 Problem Formulation

With the model properties specified, we formally define the logic enforced learning problem. Let
ω = {ω1, ω2, . . . , ωm} denotes the target sequences of data with m variables over a finite discrete
time domain T such that for the kth variable, ωk[t] = xkt at any time t ∈ T. Let xk[0,i] be a prefix of
sequence ωk over the time domain {t0, ..., ti} ⊆ T, and let xk[i+1,n] be a suffix of sequence ωk over
the time domain {ti+1, ..., tn} ⊆ T, where n denotes the total time instances, thus we denote the
target sequence as ωk = xk[0,i]x

k
[i+1,n]. We have a deep learning prediction model f with parameter
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Figure 1: STLnet Framework

θ that predicts a suffix sequence with its prefix as inputs, i.e., (x̂1[i+1,n], x̂
2
[i+1,n], . . . , x̂

m
[i+1,n]) =

f((x1[0,i], x
2
[0,i], . . . , x

m
[0,i]); θ). We denote the predicted sequence as ω̂ = {ω̂1, ω̂2, . . . , ω̂m}, where

ω̂k = xk[0,i]x̂
k
[i+1,n]. Suppose the target sequence ω is drawn from a data distribution, i.e., ω ← w,

and satisfies a set of properties, i.e., ω |= ϕ1 ∧ ϕ2 ∧ ... ∧ ϕν , The goal is to find the model parameter
θ that minimizes the distance (for a predefined distance metric D) between the predicted sequence
and the target sequence, and enforces the predicted sequence follows the same properties as well, i.e.,

θ̂ = argmin
θ

Eω←w [D(ω, ω̂)]

s.t. ω̂ |= ϕ1 ∧ ϕ2 ∧ ... ∧ ϕν

4 STLnet

Our solution is STLnet which enforces multivariate RNNs to return results that follow the model
properties of the system. In this section, we first introduce the construction of STLnet in the training
phase and show how to enforce the results to guarantee the satisfaction in the testing phase. Then, we
present the STL trace generator, which is the key component of the teacher network.

4.1 STLnet Framework

Following the idea of knowledge distillation [8], the STLNet framework is built with a teacher
network and a student network (as shown in Figure 1). The main idea is that whenever the student
network fails to predict a trace (sequence) that follows the model properties, the teacher network
generates a trace that is close to the trace returned by the student network and satisfies the model
properties simultaneously. The student network then updates its parameters by learning from both the
target trace and outcome of the teacher network.

In the training phase, our goal is to teach STLnet to learn from the “correct” traces, which include
three major steps.

Step 1 - Student network construction: To start with, we build the basic student network,
i.e., a general multivariate RNN f (e.g., LSTM, GRU, Bi-LSTM, etc.). It takes the past
states as inputs and predict their future states in n time units, (x̂1[i+1,n], x̂

2
[i+1,n], . . . , x̂

m
[i+1,n]) =

f((x1[0,i], x
2
[0,i], . . . , x

m
[0,i]); θ). We denote the predicted sequence as ω̂ = {ω̂1, ω̂2, . . . , ω̂m}, where

ω̂k = xk[0,i]x̂
k
[i+1,n] (i.e., the yellow box in Figure 1).

Step 2 - Teacher network construction: Next, we construct the teacher network q(x) to generate a
trace that satisfies the model properties ϕ1∧ϕ2∧· · ·∧ϕν and has the shortest distance to the original
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Figure 2: An example of STL trace generator (ϕ = �[0,3]x ≥ 1 ∧ ♦[1,3]x ≤ 5)

prediction. We first formalize the model properties using STL. q is constructed by projecting p into a
subspace constrained by the properties. Different than the structure of the student network p, q has an
STL trace generator. The STL trace generator first checks if this trace follows the properties, if yes,
then output the trace ω′ = ω̂. If not, it generates a new trace ω′, which first follows the properties,
ω′ |= ϕ1 ∧ ϕ2 · · · ∧ ϕm and secondly, it is the closest trace to the original predicted trace ω̂. Here we
use L1 distance to measure the distance between two traces, i.e., the total amount of changes. We
present the details of STL trace generator in Section 4.2.

Step 3 - Back propagation with loss LSTL: The loss function is constructed by two parts to guide
the student network p(x) to balance between emulating the teacher’s output and predicting the target
trace. The target trace is ω, thus the first part of the loss is L(ω̂, ω), where L calculates the L-2
distance between two traces. The second part of the loss function is defined by the L-2 distance
between the predicted trace ω̂ and teacher’s output ω′, i.e., L(ω̂, ω′). Thus, the student network is
back propagated using the loss function as,

LSTL = βL(ω̂, ω) + (1− β)L(ω̂, ω′) (1)

The network is trained iteratively by repeating Steps 2 and 3 until convergence.

Similar to other distilled networks [10], in the testing phase, we can use either the distilled student
network p or the teacher network q after a final projection. Our results show that both models
substantially improve over the base network that is trained without STL specified properties. In
practice, q can guarantee the satisfaction of model properties while p is more lightweight and efficient.
We compare the performance of p and q with baseline network extensively in the evaluation.

4.2 STL Trace Generator

In this subsection, we introduce the algorithms of the key component of the teacher network, i.e., the
STL trace generator. It is easy to check if a trace satisfies a specific property, however, to train the
network, STLnet also needs to obtain the closest satisfying trace when the prediction results violate a
property. It is a very difficult and time-consuming task.

In this paper, tailoring to the deep learning process, we create a STL trace generator. The key idea
is to obtain a small Disjunctive Normal Form (DNF, a canonical normal form of a logical formula
consisting of a disjunction of conjunctions) set representing the possible satisfaction ranges of each
time on the trace before the optimization of the Deep Learning model. Then, we obtain the closest
satisfaction trace of each instance in the training and testing phase. A simplified example of STL
trace generator with a single variable is demonstrated in Figure 2.

Converting STL to DNF We first convert the STL formula into DNF and calculate the satisfaction
range for each time unit on the sequence (left part of Figure 2). A nice property of a DNF representa-
tion is that for a trace to satisfy the requirement, it is a sufficient and necessary condition for it to
match some clause φ inside ϕ. Therefore, we can check the properties in a straightforward manner
by comparing the distance of the trace to each of the clauses in formula ϕ.
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Algorithm 1 Converting STL to DNF with Calculation of Satisfaction Range

1: function CalDNF(ϕ, t, sgn)
2: Input:STL Formula ϕ, time t, sign sgn
3: Output: DNF Set ξ representing the satisfac-

tion range
4: if sgn = False then
5: switch ϕ do
6: case µ
7: return {xjt | f(xjt) < 0};
8: case ¬ϕ
9: return CalDNF(ϕ, t,True);

10: case ϕ1 ∧ ϕ2

11: return CalDNF(¬ϕ1 ∨ ¬ϕ2, t,True);
12: case ϕ1 ∨ ϕ2

13: return CalDNF(¬ϕ1 ∧ ¬ϕ2, t,True);
14: case �Tϕ
15: return CalDNF (♦T¬ϕ, t,True);
16: case ♦Tϕ
17: return CalDNF (�T¬ϕ, t,True)
18: else
19: switch ϕ do
20: case µ
21: return {xjt | f(xjt) ≥ 0};
22: case ¬ϕ
23: return CalDNF(ϕ, t,False)
24: case ϕ1 ∧ ϕ2

25: ξ ← ∅;
26: for φ1 ∈ CalDNF(ϕ1, t, sgn) do
27: for φ2 ∈ CalDNF(ϕ2, t, sgn)

do

28: ξ ← ξ ∨ (φ1 ∧ φ2);
29: end for
30: end for
31: return ξ;
32: case ϕ1 ∨ ϕ2

33: ξ1 ← CalDNF(ϕ1, t, sgn) ;
34: ξ2 ← CalDNF(ϕ2, t, sgn) ;
35: return ξ1 ∨ ξ2;
36: case �Tϕ
37: ξ ← {True}
38: for t ∈ T do
39: ξ1 ← CalDNF(ϕ1, t, sgn) ;
40: ξ2 ← ∅;
41: for φ1 ∈ ξ do
42: for φ2 ∈ ξ1 do
43: ξ2 ← ξ2 ∨ (φ1 ∧ φ2);
44: end for
45: end for
46: ξ ← ξ2;
47: end for
48: return ξ;
49: case ♦Tϕ
50: ξ ← ∅;
51: for t ∈ T do
52: ξ ← ξ ∨ CalDNF(ϕ, t, sgn);
53: end for
54: return ξ;
55: end if
56: end function

Proposition 4.1 (STL formula in DNF representation). Every STL ϕ can be represented in the DNF
formula ξ(ϕ), where ξ(ϕ) is a formula that includes several clauses φk that are connected with
the disjunction operator, and the length of φk is denoted by |φk|. Each clause φk can be further
represented by several Boolean variables li that are connected with the conjunction operator. Finally,
each Boolean variable li is the satisfaction range of a specific parameter.

ξ(ϕ) = φ1 ∨ φ2 ∨ ... ∨ φK
φk = l

(k)
1 ∧ l(k)2 ∧ .. ∧ l(k)|φk| ∀k ∈ {1, 2..K}

l
(k)
i = {xjt | f(x

j
t ) ≥ 0} where (t ∈ T ),∀i ∈ {1, 2..|φk|}

(2)

Algorithm 1 shows how to construct the DNF representation of the STL formula. The algorithm
follows a top-down recursive manner. For every operator and its corresponding sub-tree, we first
calculate the DNF formula of its children sub-trees, and then combine them with the operator.
Specifically, the negation operator causes the DNF formula to become a CNF. Therefore, here we use
De Morgan rule to sink the negation operator to the bottom level. Each clause of the DNF formula is
guaranteed to have no duplicate variables. To be noted, if the set returned is an empty set, we know
that the input requirement is unsatisfiable and we don’t progress to the next steps. The computation
time of Algorithm 1 is relevant to the number of predicates in the STL formula. We only execute it
once in the pre-processing step before the training phase, thus it tailors to deep learning processes
efficiently.

Simplifying Candidate DNF Set: In order to further obtain a smaller manageable DNF set, we
reduce the size of the DNF set by finding the overlaps between the clauses. We first define the
distance between a trace and a clause in DNF. (Note that we use L1 distance in the definition, which
can be extended to any Lp distance measure.)
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Definition 1 (L1-Distance of a trace to a clause). Let clause φ = l1 ∧ l2 ∧ .. ∧ lm. The distance
between a trace ω and clause φ is defined as

DL1(ω, φ) = min
ω′

T∑
t=1

|ω′t − ωt|,

where ω′ |= li ∀i ∈ {1, 2..m}

(3)

The return value is a non-negative real number. If a variable satisfies a constrain in a clause, the
term will be evaluated to 0; Otherwise, it will return the minimal distance over all the items in the
satisfaction of li (not necessary to be 1).

Proposition 4.2 (The order of set). For two clauses φi and φj in a DNF ξ, if ∀ω |= (φi), ω |= φj ,
and φi ⊆ φj , then we have DL1(ω, φi) ≤ DL1(ω, φj).

If the satisfaction set of one clause is the subset of the satisfaction set of another clause, the first
clause is unnecessary, as stated in Proposition 4.2. Therefore, we provide a pairwise comparison
between all clauses, and we can remove some of the clauses and obtain a smaller set of DNF before
training.

Generating the optimal trace To satisfy a DNF representation, at least one of the clauses φk needs
to be satisfied. Therefore, the best ω′ is found by a specific k, as formally stated in Proposition 4.3.

Proposition 4.3 (Shortest distance of a trace to the DNF formula). Let ω̂ be the trace that satisfy the
DNF formula ϕ = φ1 ∨ φ2 ∨ ... ∨ φK that has minimal distance to the input trace ω, then we have

k̂ = argmin
k
DL1(ω, φk) (4)

and ω̂ is the trace that minimizes DL1(ω, φk̂) by DL1(ω, ω̂) = DL1(ω, φk̂).

For each clause in the DNF set, we calculate the distance between the trace to be optimized with
the clause. The distance can be then calculated by a summation over the distance of the satisfaction
of all the Boolean variables. After the distance calculation, we return the optimal trace with the
minimal distance as our generated target trace. The returned trace is therefore guaranteed to satisfy
the requirement. In the example given in Figure 2 (right side), if the trace predicted by the student
network is ω̂ = (0, 6.1, 7.2, 0.5), then, the optimal new trace generated by the teacher network is
ω′ = (1, 6.1, 7.2, 1), which has the shortest distance to ω̂ and satisfies its model property.

5 Evaluation

We evaluate the performance of STLnet from two aspects: the capability of learning different types
of model properties and the performance in learning from a city dataset with multiple variables.

In all experiments, we evaluate the performance using three metrics, i.e., Root Mean Square Error
(RMSE), property satisfaction rate, and average STL robustness value ρ. RMSE measures the
accuracy of the prediction, property satisfaction rate shows the percentage of the predicted sequence
that satisfies the property, and STL robustness value ρ shows the degree of satisfaction (we refer
paper [5] or our supplementary materials for the definition of quantitative semantics). Briefly, if
ρ ≤ 0, the property is violated. The smaller ρ is, the more the property is violated.

To evaluate the performance of STLnet, we applied it to two networks, i.e., an LSTM network [9] and
a transformer network [23] for multivariate sequential prediction. For each model, we compare the
experimental results among three networks, i.e., general model, model with STLnet testing with the
student network (p), and model with STLnet testing with the teacher network (q). Applying STLnet-q
can guarantee the satisfaction of all model properties, so we also present the results of STLnet-p here
to show the improvement we achieved through training. To be noted, STLnet is general and can apply
to all RNNs. We use LSTM and Transformer networks as examples. The experiments are evaluated
on a server machine with 20 CPUs, each core is 2.2GHz, and 4 Nvidia GeForce RTX 2080Ti GPUs.
The operating system is Centos 7.
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Table 2: Comparison of Accuracy and Property Satisfaction among LSTM, STLnet-p and STLnet-q

LSTM LSTM STLnet-p LSTM STLnet-q
RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ

ϕ1 0.026 92.00% -0.298 0.025 98.34% -0.014 0.025 100.00% 0
ϕ2 94.304 75.61% -117.982 90.016 97.78% -1.603 90.160 100.00% 0
ϕ3 4.214 75.47% -1.589 4.209 87.69% -0.606 4.209 100.00% 0
ϕ4 0.309 56.68% -36.884 0.230 83.09% -3.906 0.229 100.00% 0
ϕ5 2.188 0.84% -463.534 1.151 75.64% -19.842 1.162 100.00% 0
ϕ6 8.603 59.54% -282.403 8.532 61.85% -282.403 7.122 100.00% 0

Table 3: Comparison of Accuracy and Property Satisfaction among Transformer Model, STLnet-p
and STLnet-q

Transformer Transformer STLnet-p Transformer STLnet-q
RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ

ϕ1 0.045 27.76% -18.808 0.031 89.48% -1.835 0.031 100.00% 0
ϕ2 105.211 49.44% -109.282 111.688 76.08% -18.874 111.655 100.00% 0
ϕ3 4.340 52.96% -3.855 4.339 60.70% -2.596 4.339 100.00% 0
ϕ4 0.124 0.36% -38.893 0.135 51.00% -5.101 0.135 100.00% 0
ϕ5 2.196 8.88% -31.172 1.805 50.20% -4.612 1.804 100.00% 0
ϕ6 8.156 20.08% -301.175 8.326 20.32% -307.165 2.657 100.00% 0

5.1 Learning Model Properties

The goal of the first set of experiments is to show that STLnet is general and robust to different types
of model properties and improves the satisfaction rate significantly. To start with, we synthesize
six sets of data that satisfy six types of model properties, respectively. Due to the page limit, the
detailed description of the synthesized data and model properties, and the datasets are provided in the
supplementary materials.

The results shown in Table 2 and Table 3 are obtained from 25 runs. From the results, we can
see that: (1) STLnet significantly improves the model property satisfaction rate for both LSTM
and Transformer. For all the property, both satisfaction rate and violation degree are improved by
STLnet. For example, property ϕ5 and ϕ4, the satisfaction rates of basic LSTM are only 0.84% and
56.68% with very high violation degrees (-463.534 and -36.884), while STLnet-p achieves 75.64%
and 83.09% satisfaction rate with violation degree dropping to -19.842 and -3.906, respectively.
STLnet-q can guarantee the satisfaction of all the model properties. (2) For ϕ1 to ϕ6, STNnet not
only improves the satisfaction rate, but also decreases the RMSE value. In general, STL-q can further
improve the accuracy. For example, property ϕ6 (property type of unusual cases), RNNs are not able
to learn the unusual cases which have a small portion of instances in the training data and lead to a
low satisfaction rate. While STLnet guides the predicted trace follow the property (in both training
and testing), it also decreases RMSE. It indicates that learning model properties can support RNNs
to build a more accurate model. Overall, the results prove the effectiveness and generalizability of
STLnet dealing with different types of model properties.

5.2 Multivariate Air Quality Prediction with Model Properties

The goal of the second set of experiments is to show how STLnet improves the accuracy and
robustness of RNNs in a real-world CPS application, especially in cases of noisy/missing sensing
data, and long term prediction. We apply STLnet to train RNN models with air quality datasets.
The dataset includes 1.3 million instances of 6 pollutants (i.e., PM2.5, PM10, CO, SO2, NO2, O3)
collected from 130 locations in Beijing every hour between 5/1/2014 and 4/30/2015 [15]. To build
the LSTM network, we regard one pollutant from one location as one variable, and concatenate
all variables from the same time unit. Next, we specify important model properties, including
reasonable ranges, consecutive changes, correlations between different pollutants, and between
different locations, etc.

The results of the comparison are presented in Figure 3. From the results, we can see that, (1) STLnet
improves both property satisfaction rate (i.e., from 20% to over 70% on average) and RMSE (i.e.,
from about 150 to 130 on average). STLnet-q outperforms STLnet-p regarding the satisfaction rate

8



(a) RMSE-prediction lengths (b) Satisfaction Rate - prediction lengths (c) RMSE -missing data % (d) Satisfaction Rate - missing data %

Figure 3: Comparison of RMSE and Satisfaction Rate among LSTM, STLnet-p and STLnet-q

and achieves a similar RMSE as STLnet-p. (2) Figure 3 (a) and (b) compare the performance with
different time lengths of prediction. When predicting future 5-time units, three networks have a very
similar RMSE value. With the prediction length increasing, the RMSE value of LSTM increases
greatly. However, with STLnet, the prediction accuracy is improved, e.g., when l = 18, RMSE drops
from 162 to 132 (18.5%). (3) Datasets with missing data affect the learning performance. We test the
model performance with different percentages of missing data. The results show that STLnet is able
to improve model accuracy by as much as 14% and property satisfaction rate by 3 to 4 times (p and q,
respectively). Overall, the results indicate the effectiveness and robustness of STLnet in a real-world
application. It also can support RNN models to perform long-term prediction with missing data.

6 Related Work

The attempts of enforcing machine learning to follow logic rules are dated to the early stage of the
development of the neural network. So-called Neural Symbolic Systems [22, 7] construct network
architectures to combine inference with logic rules. Combining logic rules with various machine
learning models has been successful [13, 27]. Breaking the black box of the neural network has
always been a popular research topic. Applying logic rules, as one typical approach to break the
black box, has attracted much attention. A direct solution is to formulate the logic rule as an
optimizable loss item. By minimizing the logic loss, soft constraints of the logic rule are proposed to
the model [25, 21, 20]. Other methods include Logistic circuits [14] and Logic Tensor Network [4]
design specific structural to incorporate logic rules. [24] generates a graph model to embed logic
rule into the prediction. Following knowledge distillation [8], [10] proposes a way to integrate rules
defined by first-order logic with knowledge distillation. Following this method, several works [11, 3]
propose ways to better train deep NLP models with some specific type of logic rules, which uses
posterior regularization to constraint the student network. However, most previous works only apply
simple and straightforward logic rules, target single variable classification problems (e.g., sentiment
classification), and only apply a soft constraint to (rather than a guarantee) the satisfaction. Different
from previous work, our work targets multivariate sequential prediction models and guides them
to learn the model properties with complex temporal features in regression tasks. Therefore, we
chose Signal Temporal Logic, a logic variant that focuses on the temporal properties, to formalize
the model properties. As a powerful specification language, STL has been broadly applied to the
model checking, specification and verification for CPS applications [1], such as robotics [19], smart
cities [16, 18], healthcare [2]. The introduction of temporal operators (e.g., always, eventually and
until) makes STL more natural, intuitive and flexible in describing dynamic systems. STL has been
applied to both continuous and discrete signals.

7 Conclusion

In order to guide Multivariate RNNs to follow the model properties of the system and produce a
more robust model for improved future predictions, we build STLnet, a new temporal logic-based
learning framework. The experimental results show that STLnet not only improves the accuracy
of predictions, but importantly also guarantees the satisfaction of model properties. The promising
results also indicate that considering model properties is very important for building deep learning
models for complex systems, and formal logic can be an effective way to enhance the robustness of
the deep learning models.
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Broader Impact

The approach created in this paper can be broadly applied to the tasks of sequence prediction using
RNN models in application domains such as smart cities, smart health, and other CPS-IoT systems.
In these systems prediction results are usually used to support monitoring and decision making
processes. The goal is to improve the prediction accuracy and, more importantly, guarantee the
satisfaction of critical properties. We envision that relevant systems and decision-makers will benefit
from this work. In this way smart cities and smart health systems can improve safety and performance,
thereby improving daily life and health for people. Failure of the system (i.e., the model produces
wrong prediction results) could affect the decisions made based on the results. In practice, even if
the prediction results are somewhat inaccurate (e.g., high RMSE), STLnet can still guarantee the
satisfaction of key properties.
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Supplementary Materials

1 Overview

In the supplementary materials for paper “STLnet: Signal Temporal Logic Enforced Multivariate Recurrent
Neural Networks”, we first introduce the preliminaries on Signal Temporal Logic in Section 2; Next, we give the
formal proofs for the three propositions we proposed in the paper (Section 3); Finally, we present more details of
evaluation (Section 4). We also include the code of STLnet and the synthesized datasets in the .zip file.

2 Preliminaries: Signal Temporal Logic

To briefly introduce the syntax and semantics of STL, we denote by X and P finite sets of real and propositional
variables. We let ω : T→ Rm × Bn be a multi-dimensional signal, where T = [0, d) ⊆ R, m = |X|, n = |P |.
Given a variable v ∈ X ∪P , we denote by πv(ω) the projection of ω on its component v. The syntax of an STL
formula ϕ is usually defined as follows,

ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | ♦(a,b)ϕ | �(a,b)ϕ | ϕU(a,b)ϕ.

We call µ a signal predicate, which is a formula in the form of f(x) ≥ 0 with a signal variable x ∈ X and
a function f : X → R. The temporal operators �, ♦, and U denote “always", “eventually" and “until",
respectively. The bounded interval (a, b) denotes the time interval of temporal operators.

Below we present the formal definition of STL Boolean semantics. To informally explain the STL operations,
formula �(a,b)ϕ is true iff ϕ is always true in the time interval (a, b). Formula ♦(a,b)ϕ is true iff ϕ is true
at sometime between a and b. Formula ϕ1U(a,b)ϕ2 is true iff ϕ1 is true until ϕ2 becomes true at sometime
between a and b.

(ω, t) |= µ ⇔ f(x) > 0
(ω, t) |= ¬ϕ ⇔ (ω, t) |= ϕ
(ω, t) |= ϕ1 ∧ ϕ2 ⇔ (ω, t) |= ϕ1 and (ω, t) |= ϕ2

(ω, t) |= �(a,b) ⇔ ∀t ∈ (a, b), (ω, t) |= ϕ
(ω, t) |= ♦(a,b) ⇔ ∃t ∈ (a, b) ∩ T, (ω, t) |= ϕ
(ω, t) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ (t+ a, t+ b) ∩ T, (ω, t′) |= ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) |= ϕ1

Next, we present the formal definition of STL quantitative semantics.

ρ(x ∼ c, ω, t) = πx(ω)[t]− c
ρ(¬ϕ, ω, t) = −ρ(ϕ, ω, t)

ρ(ϕ1 ∧ ϕ2, ω, t) = min{ρ(ϕ1, ω, t), ρ(ϕ2, ω, t)}
ρ(�Iϕ, ω, t) = min

t′∈(t,t+I)
ρ(ϕ, ω, t′)

ρ(♦Iϕ, ω, t) = max
t′∈(t,t+I)

ρ(ϕ, ω, t′)

ρ(ϕ1UIϕ2, ω, t) = sup
t′∈(t+I)∩T

(min{ρ(ϕ2, ω, t
′), inf

t′′∈[t,t′]
(ρ(ϕ1, ω, t

′′))})

The quantitative semantics (i.e., the robustness values) measure the satisfaction/violation degree of the STL
formula. In the evaluation section of the paper, we use it to measure the prediction performance on property
satisfaction.

3 Proof of Propositions

Proposition 4.1 (Restate, STL formula in DNF representation). Every STL ϕ can be represented in the DNF
formula ξ(ϕ), where ξ(ϕ) is a formula that includes several clauses φk that is connected with the disjunction
operator, and the length of φk is denoted by |φk|. Each clause φk can be further represented by several Boolean
variables li that are connected with the conjunction operator. Finally, each Boolean variable li is the satisfaction
range of a specific parameter.

ξ(ϕ) = φ1 ∨ φ2 ∨ ... ∨ φK
φk = l

(k)
1 ∧ l(k)2 ∧ .. ∧ l(k)|φk|

∀k ∈ {1, 2..K}
l
(k)
i = {xjt | f(xjt) ≥ 0} where (t ∈ T ), ∀i ∈ {1, 2..|φk|}

(5)
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Proof. We prove Proposition 4.1 by induction. We use induction on the top-layer operator:

• A single µ operator can be represented by a single l clause, where f(x0) ≥ 0.

• If the low layer operators can be represented by DNF formula, the result of ¬, ∧, and ∨ operators can
also be represented as DNF formula by the De Morgen rule.

• The always operator �(a,b)φ can be decomposed as multiple ∧ operator on the time period (a, b).
Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an additive time
shift t on every time operator in ϕ. Then the STL formula is equivalent to a DNF built by applying the
De Morgen rule on the DNFs with every t ∈ (a, b).

• The eventually operator ♦(a,b)φ can be decomposed as multiple ∨ operator on the time period (a, b).
Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an additive time
shift t on every time operator in ϕ. Then the STL formula is equivalent to a DNF built by connecting
the DNFs for every t ∈ (a, b) with ∨.

• The until operator U(a,b) by the STL definition can be represented with � and ♦ operators. Therefore
it can also be represented by a DNF.

By induction, we have Proposition 4.1 proved.

Proposition 4.2 (Restate). For two clauses φi and φj in a DNF ξ, if ∀ω |= φi, ω |= φj , and φi ⊆ φj , then we
have DL1(ω, φi) ≤ DL1(ω, φj).

Proof. Prove by contradiction. Assume DL1(ω, φi) > DL1(ω, φj). Let ω′ denotes the trace with minimal
distance to ω in φj , that is, ω′ = arg minω′′|=φj

DL1(ω, ω′′). As φi ⊆ φj , we have ω′ |= φi. Therefore,
DL1(ω, φi) = minω′′|=φi

DL1(ω, ω′′) ≤ DL1(ω, ω′), which clearly contradicts the assumption. Therefore,
DL1(ω, φi) ≤ DL1(ω, φj).

Proposition 4.3 (Restate, shortest distance of a trace to the DNF formula). Let ω̂ be the trace that satisfy the
DNF formula ϕ = φ1 ∨ φ2 ∨ ... ∨ φK that has minimal distance to the input trace ω, then we have

k̂ = arg min
k
DL1(ω, φk) (6)

and ω̂ is the trace that minimizes DL1(ω, φk̂) by DL1(ω, ω̂) = DL1(ω, φk̂).

Proof. We prove the proposition by contradiction. Assume ω̂ |= ϕ, by the definition of DNF formula, we have
∃k : ω̂ |= φk. Suppose k̂ is one of choices that ω̂ |= φk̂.

If k̂ 6= arg minkDL1(ω, φk), then there exists another k′ that DL1(ω, φk′) < DL1(ω, φk̂). By the definition
of DL1(ω, φk′), there exists a ω′ that DL1(ω, ω′) = DL1(ω, φk′) < DL1(ω, φk̂) = DL1(ω, ω̂). We also
have ω′ |= φk′ , which indicates ω′ |= ϕ. Then ω′ is closer to ω and also satisfies ϕ, which contradicts the
assumption.

If ω̂ doesn’t minimize DL1(ω, φk̂), then there exists another ω′ |= φk̂ that DL1(ω, ω′) = DL1(ω, φk̂) <
DL1(ω, ω̂). Then ω′ is closer to ω and also satisfies ϕ, which contradicts the assumption.

4 Evaluation

In Section 5.1 of the paper, we present the results of the learning model properties from six sets of synthesized
datasets to show how STLnet support RNNs to better learn model properties. Here we elaborate the details of
how we synthesized the datasets and their model properties. As we can see, all the six synthesized datasets are
abstracted from very common scenarios from CPSs applications.

For each of the six sets of experiments, we generated 50,000 instances (nd) and divided them into five subsets.
Then, for each subset, we randomly selected 95% for training and 5% for testing. We repeated it five times. At
last, we calculated the average results from these 25 runs.

Below we present STL formulas of the model properties for each set of datasets. We also explained how we
synthesized the datasets.
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• Resource constraint:
To synthesize the data with the model property of resource constraint, we use a piecewise constant
function to generate nd instances, each following:

x1(t) = x2(t) =

{
1.0− σ(t) t < d

1.005 + σ(t) t ≥ d.
(7)

where σ(t) is a small Gaussian noise, and d is pick randomly between 10 to 14. The function follows
model property ϕ1, which is used in STLnet to enhance learning,

ϕ1 = �[0,8]¬(x1 > 1) ∧�[14,19](x1 > 1) ∧�[0,8]¬(x2 > 1) ∧�[14,19](x2 > 1). (8)

• Consecutive change:
To synthesize the data with the model property of consecutive change, we use a monotonically
decreasing function to generate nd sequences, each following:

x1(t) = x1(t− 1)−min(100, 0.2x1(t− 1))

x2(t) = x2(t− 1)−min(100, 0.2x2(t− 1)).
(9)

We pick the original value x1(0) and x2(0) uniformly between the range [0, 1000). The function
follows model property ϕ2, which is used in STLnet to enhance learning,

ϕ2 = �[0,19](¬(∆x1 > 100) ∧ ¬(∆x2 > 100)). (10)

• Variable and Temporal Correlation:
To synthesize the data with the model property of variable and temporal correlation, we generate to
generate nd sequences. Each sequence consists only 0 and 1, but keep not any group of 4 consecutive
numbers to be the same. That is,

x1(t) =


0 If x1(t− 1) = 1 ∧ x1(t− 2) = 1 ∧ x1(t− 3) = 1

1 If x1(t− 1) = 0 ∧ x1(t− 2) = 0 ∧ x1(t− 3) = 0

Bernoulli(0.5) Otherwise.
(11)

The function follows model property ϕ3, which is used in STLnet to enhance learning,

ϕ3 = �[0,5]

(
♦[0,4](x1 > 0) ∧ ♦[0,4](¬(x1 > 0))

)
. (12)

• Reasonable range:
To synthesize the data with the model property of reasonable range, we use a periodic function to
generate nd sequences, each following:

x1(t) = sin(at+ b)

x2(t) = cos(at+ b).
(13)

Where a is uniformly picked from [0.77, 1.03), and b is uniformly picked from [0, 0.5). The function
follows model property ϕ4, which is used in STLnet to enhance learning,

ϕ4 = �[0,19](x1 > −1.0 ∧ ¬(x1 > 1.0) ∧ x2 > −1.0 ∧ ¬(x2 > 1.0)). (14)

• Existence:
To synthesize the data, we generate nd instances of 0 and 1. In each sequence make sure that for both
x1 and x2 it equals 1 at a single t and equals 0 at other time. The function follows model property ϕ5,
which is used in STLnet to enhance learning,

ϕ5 = ♦[0, 19](x1 > 0.99) ∧ ♦[0, 19](x2 > 0.99). (15)

• Unusual cases:
To synthesize the data with the model property of unusual cases, we generate nd instances following:

x1(t) =

{
1000 t = td
0 otherwise.

(16)

and

x2(t) =

{
10 ∃ti ∈ [1, 9], x1(t− ti) > 0

σ(t) otherwise.
(17)

where d is pick randomly between 0 to 4, and σ(t) is a small Gaussian noise.
The function follows model property ϕ6, which is used in STLnet to enhance learning,

ϕ6 = �[0,4](x1 > 500 ∨�[1,9]x2 > 9). (18)
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