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Abstract—Many applications in wireless sensor networks re-
quire communication performance that is both consistent and
high quality. Unfortunately, performance of current network
protocols can vary significantly because of various interferences
and environmental changes. Current protocols estimate link
quality based on the reception of probe packets over a short
time period is neither efficient nor accurate enough to capture
the dramatic variations of link quality. Therefore, we propose
a link metric called competence that characterizes links over a
longer period of time. We combine competence with current short
term estimations in routing algorithm designs. To further improve
network performance we have designed a distributed route
maintenance framework based on feedback control solutions. In
real system evaluations with 48 T-Motes, our overall solution
improves end-to-end packet delivery ratio over existing solutions
by up to 40%, while reducing energy consumption by up to 22%.
Importantly, our solution also achieves more stable and better
transient performance than current approaches.

I. INTRODUCTION

Extensive studies [1][15][22][3]suggest that predictable

end-to-end reliability and latency are critical for many wireless

sensor network applications, such as surveillance and emer-

gency response, to meet performance guarantees. However,

these wireless sensor networks are exposed to various interfer-

ences from their environments, which causes the network per-

formance to vary dramatically and unpredictably. Therefore,

it is both important and challenging to provide good network

performance consistently.

In wireless sensor networks, current network protocols

estimate link quality based on recent probe packets over a

short time period, for example, the widely used ETX met-

ric [2][10][35]. These solutions can achieve high reliability

as long as the estimations accurately reflect the link quality

when a packet is actually transmitted. Unfortunately, short

term estimations may not accurately reflect the performance in

indoor environments [13][34]. In our experiments on an indoor

test-bed, we have observed two types of links, which we have

called stable and unstable links. While the link quality of stable

links stays at certain levels constantly; the quality of unstable

links often change dramatically within a few seconds or a few

minutes. Current short term link estimations are not effective in

differentiating these two types of links, as both may maintain

good qualities over a short time period. Moreover, current short

term estimations are not efficient for unstable links, as the

high frequency of link measurement that they require leads

to increased energy consumption and interferences. Further,

such links may not be accurate and when selected for routing,

they may not be discarded the moment their qualities drop

dramatically. As a result, end-to-end (E2E) communication

quality drops and energy consumption on retransmission in-

creases. Furthermore, the network may experience cascading

route changes: newly selected routes introduce interference to

other nearby routes, triggering even more packet loss, energy

consumption, and route changes. The cascading route changes

can result in significant E2E quality variations and energy

consumption.

To address this problem, it is essential to differentiate

between stable and unstable links, and give preference to stable

links. We notice that these two types of links have different

qualities over a long term period, e.g. tens of minutes. There-

fore, we propose a new link metric competence to characterize

the long term link quality. The competence metric can help

choose those good and stable links for routing, and drop

those currently good, but unstable ones. However, a system

using only long term estimations would react too slowly to

link quality changes. To react quickly and provide stable

performance, we combine competence with current short term

estimations in novel routing algorithm designs, selecting links

that are good in both the short and the long term.

To assist in achieving stable network performance, we also

design a route maintenance framework based on competence.

Our framework integrates feedback control solutions at both

the link and network layers. In the link layer maintenance,

nodes use per-link transmission power control and retransmis-

sion control. Under certain dynamics, they help unstable links

achieve stable performances at a specified level, and stable

links to become more robust. The per-link performance level

requirement is injected by the network layer maintenance. The

network layer maintenance uses a feedback loop along an

active path to translate a given E2E performance specification

into per-link requirements, in order to minimize total trans-

mission energy consumption along the path. This loop also

distributes these requirements to link layer control modules at

each node.

We evaluate this system on an indoor test-bed with 48 T-

Motes and show our solution improves packet delivery ratios

over existing solutions by up to 40%, and reduces power con-

sumption by up to 22%. In addition, real system experiments

demonstrate more stable performance with less variance and

better transient performance than existing solutions.

The contributions of our work are as follows:

• We have established that long term link estimation is

important to achieve stable and efficient networking in



Fig. 1: The Test-bed Network Layout

the presence of interference and environmental changes.

We propose the competence metric to characterize the

long term quality of links for wireless sensor networks.

• We demonstrate that with a control based design, re-

liability of existing solutions can be further improved,

and more stable and better transient performance can be

achieved.

We present the competence metric design with an empirical

study in Section II. In Section III, we describe the competence

enhanced routing. In Section IV, we describe our feedback

control framework design. In Section V, we evaluate this

system on an indoor wireless test-bed. The related work

is explained in Section VI, and conclusions are drawn in

Section VII.

II. THE Competence METRIC FOR QUALIFYING LONG

TERM QUALITY

We built a wireless test-bed in our computer science build-

ing, as shown in Figure 1. It consists of 48 T-Motes with

Chipcon CC2420 low-power radios. For sensing purposes, we

placed these nodes at various heights along the wall. Some of

them are close to the doors, and some of them are on the top

of the office cubicles.

In the first experiment, we programmed three source nodes

to broadcast at a rate of 20 packets per second, while all

the other nodes just listened and recorded the packets they

received. We scheduled transmissions to avoid collisions. The

link level retransmission and acknowledgement were disabled.

We have three observations based on these experiments:

• There are two kinds of links in the deployed system:

stable links and unstable links. An example of such links

is shown in Figure 2.

• There are three main causes for the link quality vari-

ations of unstable links. We distinguished these causes

in the test-bed through successfully reproducing patterns

of packet reception ratios (PDR) in different scenarios.

These patterns are shown as small fluctuation (Figure 3

(a)), large disturbance (Figure 3 (b)), and continuous

large fluctuation (Figure 3 (c)). The small fluctuations,

Figures 3 (a), are mainly caused by multi-path fading of

wireless signals. The large disturbances in Figure 3 (b) are

caused by shadowing effect of humans, doors, and other

objects. The continuous large fluctuations in Figure 3 (c)

are caused by Wi-Fi interference. The variance in link

qualities is largely due to a combination of instances of

these three patterns.
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(b) An Unstable Link

Fig. 2: Stable Link vs. Unstable Link

• We also identify that there are temporal and spatial

impacts of human-related activities on link quality. The

quality of links in an office decreased in the morning

when people walked in and started using Wi-Fi. The

quality of links in the lounge demonstrated a noticeable

variation at noon when people had lunch. Moreover, very

similar trends were observed from links situated near

each other, because human-related activities have impact

on these link qualities at the same time. However, the

degree of impact is different, depended on many factors,

such as the distance to the interference source. Similar

results were observed in indoor [13][34] and outdoor

environments [15][31].

These experiments motivated us to study the stability and

transient performance for wireless sensor networks in the

presence of significant and rapid (sometimes within a matter

of seconds) changes in communication quality. Stability and

transient performance are two of the main foci of control

theory, so we review the metrics in control theory before

presenting our design.

Figure 4 presents the basic metrics for studying transient

performance in control theory. When a certain change occurs

in the system, the controlled variable deviates from the refer-

ence value. The reference value defines the level at which the

controlled variable is expected to stabilize. The system is in

a ”steady state” when the controlled variable lies within the

range between reference ± steady state error. Otherwise, the

system is in a ”transient state”. Another important metric is

”settling time”, which defines the amount of time the system

takes to stabilize to a steady state when disturbances occur.

The values of reference, steady state error, and settling time

are specified as the control goals of the system.

These concepts and metrics are foundations of stability

and transient performance analysis. However, directly applying

these metrics are not reasonable because the distributed wire-

less network system is open and involves many uncertainties.

For example, classic control systems adjust the control variable

to converge to a single reference value, within the bounds
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Fig. 4: Transient Performance Metric in Control Theory

defined by a very small steady state error, e.g. 2% of refer-

ence value is a reasonable design for a closed, well-modeled

control system. For wireless communication quality, however,

a single reference value with a very small steady range is

not feasible, because fading of wireless signal can cause the

packet reception ratio to vary more than 20% (Figures 3 (a)).

Therefore, we need a different way to quantify stability in

wireless sensor networks.

We formally define a performance metric competence. Com-

petence is a long-term performance metric, which is based on

a short term performance measure s. s is a binary function

indicating whether the current signal is within a desired range.

The metric c(t) for competence value at time t is defined in

Equation 1.

c(t) = α · c(t − 1) + (1 − α) · s , 1 > α > 0 (1)

s =

{

1 if y(t) ∈ [Tlower, Tupper]
0 otherwise

We define Tupper and Tlower as the upper and lower bounds

that specify a desired range for a network performance mea-

sure, such as communication quality. An exponential weighted

moving average (EWMA) filter is used on the binary function

s that indicates whether the current communication quality

is within the specified range or not. α is a smoothing factor

indicating the weight of history when calculating the current

value. y(t) is the currently observed communication quality,

like packet delivery ratio. The value of c(t) is between 0 and

1. If the communication quality always falls into a specified

range, the value of c(t) is always 1.

There is a number of research works on link quality estima-

tions, using filter design [19] and other indications [10]. These

works provide valuable results for network protocol designs.

However, as the communication quality may vary significantly
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Fig. 5: Link Distribution on Link Competence

within seconds, it is not effective or energy-efficient to use

more probes for a more accurate estimation. The competence

metric is new in focusing on characterizing long term stability

of the communication quality at a desired level. It is a

complementary technique to previous link estimations. Given

the different spatial and temporal patterns of different links, it

is beneficial to use the long term characterization of communi-

cation qualities. The long term characterization is represented

by a large smoothing factor, e.g. α = 0.9, in the EWMA

filter. We note that EWMA is just one of various mathematical

techniques [25] to emphasize long term quality. On the other

hand, because wireless communication quality can be highly

variable, competence uses two bounds [Tlower, Tupper] to

specify a desired performance level, allowing small variation

of the signal between specified bounds. In other words, this

range eliminates any insignificant changes of quality.

The distribution of links from our first experiment on the

competence metric is plotted in Figure 5, with a specified link

quality range [80%,100%] and α = 0.9. 30.5% of the links

are competent (competence ≥ 0.8) and 69.5% of the links

are not. These competent links have stable qualities within

the specified bounds.

We also employ settling time, another important metric

adopted from classical control, to quantify transient perfor-

mance for wireless sensor networks. Settling time represents

the amount of time a performance measure takes to deviate

from and then return to a desired performance level. It

quantifies a system’s capacity to react to changes and return

to normal performance level in the time dimension, especially

when feedback control designs are applied. We use reliability

as an example to demonstrate how settling time st is calculated

in Equation 2.
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Fig. 6: Performance Evaluation of MultihopLQI over 24 Hours

st = t2 − t1, t2 > t1
y(t1), y(t2) ∈ [Tlower, Tupper ]
∧∀t ∈ [t1, t2], y(t) /∈ [Tlower, Tupper]

(2)

The β factor [34] is a recent metric to quantify the cor-

relations among successes and failures of transmissions at

packet level. Different from the β factor, settling time focuses

on performance resilience at a desired level with unexpected

disturbances.

In order to explain the importance of stability and transient

performance, we consider the example of VigilNet [14], a

military surveillance system deployed on battlefields. In this

application, data packets are required to be delivered to a base

station with a bounded reliability, say [80%, 100%]. This range

is much bigger than the range defined by steady state error

in classic control theory, and this range is required by the

application. The lower PDR bound is chosen for guaranteeing

a specified surveillance quality. For tracking mobile targets,

data packets must be delivered above a certain rate. If the

PDR is less than a lower bound, say 80%, important traces of

the target may be missing. Moreover, missing important traces

may lead to the inability to distinguish two targets moving

closely together. Though the upper PDR bound can be set as

100%, most of multi-hop communication paths in this applica-

tion are set lower for the sake of energy efficiency. Achieving

perfect quality consumes significantly more energy than a

reasonable communication quality (95%), due to significantly

increased control overhead. In this scenario, a reasonably good

communication quality meets the application goals. Similar

idea applies for a number of environmental data collection ap-

plications [11] [31]. Generally, perfect communication quality

is unnecessary for these applications, so long as constant good

performance quality is achieved. An acceptable settling time

is also required for VigilNet to successfully capture the traces

of a target, in case the system performance is compromised

or disturbed. If the settling time is too long, a high speed

target on the edge of the surveillance area may pass across

without being detected. In other applications, the settling time

is also an important measure of how consistently the system

can perform under significant changes.

We conducted another set of experiments to study the

performance of existing protocol MultihopLQI [26] under the

presence of unstable links. We ran the default configuration

of MultihopLQI on our indoor test-bed for 24 hours. There

were 8 source nodes, each generating 1 packet per 10 seconds.

These packets were sent to a base station via multi-hop paths.

As suggested by previous studies [27] [20], this traffic load

should not cause packet loss due to queue overflow.

We make three observations from this experiment:

• The end-to-end PDR varies significantly, especially dur-

ing the daytime, as shown in Figure 6 (a). The plotted

data represents the E2E PDR from a source to the sink.

In this example, we observed that E2E PDR is around

90/

• The total number of parent switches increases signifi-

cantly during the day, as shown in Figure 6 (b). This

result implies that nodes do not stick to the good and

stable links, but often choose unstable links. When the

qualities of unstable links drop, the number of parent

switches increases. Furthermore, cascading route changes

occur: new routes can cause interference with other

nearby routes, triggering even more packet losses, energy

consumption, and route changes. Such route changes do

not improve but degrade the end-to-end PDR. These

cascading route changes should be avoided in network

protocol design for highly dynamic networks. Figure 6 (c)

presents the total number of retransmissions. As a result

of selecting unstable links and cascading route changes,

the number of retransmissions required during daytime

increases substantially, which consumes more energy.

• There were 27 times that this E2E PDR deviated from the

desired range. For example, a drop of E2E PDR occurs

between 1pm and 2pm which lasts for about 60 minutes.

Overall, the stability and transient performance of current

protocol is not satisfactory.

III. COMPETENCE ENHANCED ROUTING

In this section, we explain how we adapted the distance vec-

tor algorithm to exploit the competence metric for improved

route performance in highly dynamic environments. First, we

review the distance vector algorithm. The distance vector

algorithm is based on a cost function, describing the resource

needed to perform an operation, such as energy. Let us denote

the cost of a link from node i to node j as Aij , and the cost

of the minimum cost route from node i to the destination as

Bi. The distance vector algorithm can efficiently calculate Bi

for all nodes by first having all nodes i calculate Aij for all

neighbors j. Then, each node chooses its parent node to be

the neighbor k that minimizes that value Bi = Aik +Bk. The

distance vector algorithm can be performed in a distributed

fashion by having each node i broadcast its own estimate of



Bi every time it changes. The algorithm starts when the sink

node broadcasts the value Bsink = 0. All neighbors of the

sink estimate their own values of Bi, and the process repeats

until the values at all nodes converge. If we define Aij to be

the ETX on the link from i to j, then Bi is the cost of the

route from node i to the base station with the smallest number

of expected transmissions.

The distance vector algorithm can easily be adapted to

exploit the competence metric. We propose two solutions: 1)

a node can choose its parent k as the node with the most

competent link from among all nodes j with low values Bj ; or

2) a node can choose its parent k as the node with lowest value

of Bj from among all nodes j to which it has a competent link.

The choice between these schemes depends on application

requirements, as well as the quality of links and the dynamics

of the environment.

In scheme 1, a node periodically selects a neighbor k to be

its parent node. This neighbor is selected via two steps. First,

the node selects the lowest value B̂ from among the values of

all neighbor nodes. It then selects the set of all neighbors j
with values close to the lowest value: j : Bj ≤ R · B̂, where

R is a specified range parameter such as 120%. Second, the

node selects the neighbor with the highest competence value

among this set of neighbors as the forwarding node.

In scheme 2, a node first periodically selects the highest

competence value of all its neighbor nodes. It then selects the

set of all neighbors j with competence values close to the high-

est one: j : Competencej ≥ T · Competencelowest, where

T is a specified range parameter, such as 80%. Subsequently,

the node selects its parent to be the neighbor with the lowest

value Bj from among all nodes j in this set.

Routing scheme 1 uses the competence metric to break

ties between routes that are otherwise equivalent in terms of

cost and performance. The definition of a tie is defined by

the parameter R. This algorithm allows the routing scheme

to tolerate small variations as specified by the competence

bounds, but reacts to big variations via parent switches. This

scheme should be used when performance is more important

than robustness to network dynamics. This would likely be

true in networks where network dynamics affect the routing

algorithm, but do not overwhelm it.

Routing scheme 2 chooses routes that are the least sus-

ceptible to network dynamics, and breaks ties using the cost

metric ETX. The definition of a tie is defined by the parameter

T , and can be used to find cheap routes as long as they

have competence levels similar to the best route. This scheme

should be used when competence is more important than

routing cost. Such would be the case in highly dynamic

networks, or when guaranteeing performance at all times is

more important than maximizing performance.

There are other factors that may influence the performance

gain of our routing design, such as the network density. In

a sparse network, nodes may not have many competent links

available to choose from among the low cost links, but even in

the worst case, the performance will be similar to the original

algorithm without competence consideration.

/01234567804
69:567804

;04<34=7:>0?0@A940=0:1BCDEFGEHIJKD LGJMNGE
OGPND LGJMNGE OGPNDQGHRDNDJKDQGJNEGSSDETEIJUHMUUMGJCGVDEQGJNEGSSDEODNEIJUHMUUMGJQGJNEGSSDE

WDMXYZGE TIZSD[MJ\ QGHRDNDJKDLGJMNGE
]̂_̀abcdefg hijkfgflmf niolpq rstuvwxyzx{|

}s~{|~�tx�s�~~|~�f��i�j�lmf ������������������������efg��gf
Fig. 7: Control Architecture

IV. ROUTE MAINTENANCE FRAMEWORK

In a sparse highly dynamic network, the number of com-

petent links can be limited. The routing structure needs

to use some other links. Efficiently making use of these

links is the key to reduce unnecessary route changes and

improve reliability. With link quality improvement tech-

niques [21] [28] [4] [18] some links can become competent

links or more competent than before. However, those tech-

niques have their cost in terms of energy consumption and

overhead. We found that the cost is associated with long

term quality of links at a specified level. Due to the high

overhead to deal with variations, maintaining a stable link

within certain bounds costs less than maintaining an unstable

link within the same bounds. Actually, maintaining a stable

link within high bounds can costs less than maintaining an

unstable link within low bounds. Therefore, we propose a route

maintenance framework based on competence to maintain

routes and optimize maintenance cost. Given a selected path,

this framework globally assigns different performance levels

to links along an active path, and locally maintains assigned

performance levels. This two level maintenance design is both

necessary and efficient. It is because that a single link layer

solution would lead to (i) local non-optimal decisions, (ii)

unbalanced cost at different links, and (iii) fluctuating end-to-

end performance due to uncoordinated control along a path.

In competence enhanced routing, we use values of the

competence metric as a routing metric; while in the route

maintenance framework, we use the bounds of the competence

metric as parameters for end-to-end performance control.

The architecture of this maintenance framework is shown

in Figure 7. The control modules are located at two layers:

the network layer and the link layer. At the network layer,

there are a performance monitor with specified requirements,

a competence controller and a route monitor. At the link layer,

there are a link monitor and controllers. We focus on reliability

as the performance requirement in this work. The performance

requirement consists of specified competence bounds on E2E



PDR. Given the specified bounds, the performance monitor

calculates competence based on observed E2E PDR. When

competence drops below a certain threshold, E2E PDR error

is passed to the route controller. With an end-to-end feedback

loop along this path, the route controller collects costs from

each link and allocates the stable link performance require-

ments in order to optimize energy consumption. Then the link

performance requirements are injected to link control modules

along this path. At the link layer, both the transmission power

control and the retransmission control are used to enforce the

link performance requirements, which are adaptive and low-

cost solutions to control single link reliability.

A. Link Layer Competence Maintenance

We use power control and retransmission control as two

general techniques for the link layer maintenance design.

The link layer control design is shown in Figure 8. The

controlled variables are the transmission power level and the

number of link level retransmissions. These two controllers

work independently. The link competence monitor measures

PDR competence. If PDR competence drops below a certain

threshold, control actions are triggered. The set points and

bounds for PDR are specified by network level maintenance.

PDR(x) = 1 − [1 − p]x (3)

urt(t) = urt(t − 1) +
log eP DR(t − 1)

log(1 − p(t − 1))
(4)

The retransmission control model is based on Equation 3.

The p stands for the probability of successful transmission for

a single attempt. We assume that the success probabilities of

transmissions are independent of each other. The input x is the

maximum number of retransmissions. The controller form is

derived from Equation 3 and shown in Equation 4. urt(t) is the

representation of the maximum number of retransmissions x.

This controller takes PDR error ePDR(t) as input, and adjusts

the number of retransmissions urt(t) as output.

RSS = βTP + γ (5)

The goal of transmission power control is to achieve high

p(t) while saving transmission energy. A control model de-

signed in [21] is shown in Equation 5. The RSS refers to the

signal strength of the link; TP represents the transmission

power level applied at the transmitter of the link; β and

γ are link specific time-varying parameters dependent on

environment.

utp(t) = utp(t − 1) + Kp[es(t) − es(t − 1)]
+Kies(t) + Kd[es(t) − 2es(t − 1) + es(t − 2)]

(6)

Based on this adaptive control model, we extend it using a

PID control shown in Equation 6. This controller takes signal

strength error es(t) as input, and adjusts transmission power

level utp. Kp, Ki, and Kd are proportional, integral, and

derivative gains of the controller. To obtain the lowest settling

time and highest reliability, we tuned this PID controller on

different unstable links during unstable periods in the daytime

and stable periods in the nighttime. We obtained two different

sets of gain values in these two periods. The integral gain

tuned for the unstable periods is noticeably larger than that

 

Fig. 8: Link Layer Maintenance

of the stable periods, which compensates for the quality fluc-

tuations and optimizes settling time. The Transmission power

controller uses a gain scheduling approach. The switches of

gain values are triggered by the link competence monitor.

When competence measure becomes lower than the setpoint,

the controller starts using the gains for the unstable period.

When competence measure becomes higher than the setpoint,

the controller employs the gains for the stable period. We also

use a conservative threshold for robust link quality estimation

in the indoor environment suggested by [13] [33].

B. Network Layer Competence Maintenance

For the good and stable links, high and stable performance

is maintained with a very small cost using the link layer

maintenance. However, maintaining equally high performance

for the unstable links is costly due to control overhead.

To maintain end-to-end performance while optimizing total

transmission energy consumption, our algorithm assigns com-

petence bounds to links along an end-to-end path.

E2EPDR(k) =
k

Y

i=1

PDR(xi) (7)

The relation between end-to-end PDR and link PDR along

a k-hop path is presented in Equation 7. xi represents the

number of transmissions at hop i. This equation also indicates

the relation between the bounds of end-to-end competence and

link level competence.

Cost(xi) = ctp ·
xi
∑

i=1

i · (1 − p)(i−1) · p (8)

In Equation 8, the expected energy consumption of the link

layer control at link i is represented as a cost function of the

transmission power level and the number of retransmissions

xi. We note that ctp is a constant for an attempt of transmission

(including multiple retransmissions). The value of ctp depends

on the transmission power level used.

k
X

i=1

(Cost(xi) + overheadi) (9)

The total transmission energy consumption of an end-to-

end path is presented in Equation 9. There are two types of

costs for each link. The Cost(xi) is the energy consumption

for transmission on link i given the number of transmission

xi, as shown in Equation 8. The overheadi is the energy

consumption for control overhead on link i, such as energy

consumption for feedback packets, which can be measured at

each link.

Our goal is to minimize the total cost along a path while

meeting the specified performance level. When the path is
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Fig. 9: Approximate Linear Relation

first established, we give every link on the path the same

competence bounds. To optimize total energy consumption,

high competent links should have high bounds, and low

competent links should have low bounds. Mathematically, this

problem is presented as follows.

min
k
∑

i=1

(Cost(xi) + overheadi)

s.t. E2EPDR(k) ≥ F
0 ≤ pi ≤ 1, xi ∈ N

(10)

F specifies the desired end-to-end PDR. This is a non-

linear optimization problem, which can be approached by

KKT conditions. We skip the construction and calculation

details. However, the complexity of this problem after applying

KKT is still exponential. Fortunately, we find that functions

PDR(x) and Cost(x) have an approximate linear relation

in their small range. We plot the relations in Figure 9. Each

curve in this figure represents the relation between PDR and

Cost at a fixed p. So we can use a linear model as shown

in Equation 11 to describe this relation, especially when p is

larger than 0.5, which is the range of link qualities of the most

useful links.

Cost(xi) = ai · PDR(xi) + bi (11)

In this linear model, ai and bi are functions of pi. Given

pi, values of ai and bi are fixed using a least square approx-

imation. Based on this linear model, the complexity of this

optimization problem is now linear, rather than exponential.

As a result, we can tell that when ai · PDR(xi) are equal to

each other, the total cost is minimized. The minimal cost is
k

v

u

u

tF

k
Q

i=1

ai

k
. And the correspondingly,

PDR(xi) =

k

s

F
k

Q

i=1

ai

ai

(12)

Based on this Equation 12, nodes can calculate their new

bounds: desired PDR. In order to do this, every node needs

to know its ai and
k
∏

i=1

ai. ai is obtained from a local table

storing values of a and b, given p. The latter can be calculated

and delivered to nodes via a feedback loop, as shown in

Figure 10. In this feedback loop, a control packet is sent from

source node to sink node periodically. This packet is used

 

Fig. 10: E2E Feedback Loop

to calculate
k
∏

i=1

ai hop by hop. The performance monitor at

the sink node monitors the end-to-end PDR, and compares

it with the specified PDR level. If there is an error, the

performance monitor notifies the competence controller about

the current error. The competence controller takes
k
∏

i=1

ai and

the path length as inputs and calculates k

s

F
k

Q

i=1

ai. This value

is then sent back as feedback to every node along the path

via control packets. Nodes then calculate desired PDR bounds

according to Equation 12. Finally, link control maintenance

can calculate the maximum number of transmissions xi based

on Equation 12. Our control based design has limitations. For

instance, control contention may affect system performance.

However, the control contention rarely happens when traffic

load is low, which is the case for many wireless sensor

network applications. Our evaluation demonstrates that the

control based approach works well in real systems. To address

another potential concern, although distributed control con-

sumes resources and introduces delay in large scale networks,

in most existing wireless sensor networks, the number of nodes

reporting to the same base station is less than a few hundreds.

When multiple routes pass through the same link, the link and

network layer’s maintenance keep the parameters for every

route.

V. EVALUATION

The most widely used link metric is the expected number

of transmissions (ETX) [2][35][10][26]. Many popular data

collection protocols combine the distance vector algorithm

with link estimation techniques for wireless sensor networks.

For example, the Mintroute [35] algorithm uses eavesdrop-

ping and an EWMA operator to estimate the probability of

successful transmission over each link. It then translates these

probabilities into ETX values and uses a distance vector to

find routes that minimize the end-to-end ETX. The Collection

Tree Protocol [9] augments Mintroute with explicit beacon

messages to estimate link quality even when traffic rates

are low. MultihopLQI uses the link quality indicator (LQI)

defined by IEEE 802.15.4 [16] as an instantaneous link quality

estimate, helping it react more quickly to changes in link

quality [26]. In [10], a hybrid estimator integrates routing

feedbacks and link estimates together to achieve high relia-

bility. These protocols are currently state of the art in data

collection for wireless sensor networks, and have been shown

in empirical studies to have very high packet delivery ratios.



Fig. 11: Experimental Topology

Based on distance vector routing protocols, such as Mul-

tihop LQI or MintRoute [35], we have implemented a DV

routing algorithm as the baseline, a competence enhanced

DV routing (C-DV), and a DV routing (MC-DV) that is

both competence enhanced and maintained. The DV routing

algorithm adopts an ETX based link estimator using the

EWMA filter, which is widely used in existing protocols. C-

DV adopts the routing scheme 1 described in Section III. In

MC-DV, the end-to-end PDR bounds are set as [80% 100%].

The decay factor α for competence calculation is 0.9. The

implementation of MC-DV takes 22772B ROM and 4238B

RAM.

We have conducted controlled experiments at night with

4 nodes. The topologies of these experiments are shown in

Figure 11. Node 1 sends 1000 packets to base station 4 at

a rate of 1 pkt/sec. First we ran three algorithms when there

was no interference or human activity in this area, as shown

in Figure 11 (a). Then we ran another test with intentional

interference near node 2, as shown in Figure 11 (b). Node 2

is hanging 4.5 feet high on the top of a cubicle and beside

an office door. A student used Wi-Fi to download files in the

cubicle and walked in and out using the office door from time

to time.

The E2E PDRs are shown in Figure 12. From this figure we

can see that in the stable periods when there is no interference

or human activity, the three algorithms have almost the same

PDR. The E2E PDR of path 1-2-4 is 99.3% and the E2E

PDR of path 1-3-4 is 96.2%. All three algorithms select the

path 1-2-4 all the time, which had constant good communi-

cation quality. In this case, the use of long term estimation

and maintenance do not make a difference. However, in the

unstable periods three algorithms have different PDRs. This

is because with interference and shadowing, the E2E PDR of

path 1-2-4 was highly variable, ranging from 100% to 20%.

While the E2E PDR of path 1-3-4 has a little variation (around

4%) due to weak interference (nodes 2 and 3 are located at the

opposite sides of an office). DV keeps oscillating between the

routing path 1-2-4 and 1-3-4, due to the short term estimation.

As a result, when path 1-2-4 was selected and interference

occurred near node 2, packets were lost. The routing path of

C-DV converged at 1-3-4 after a few oscillations, and then

the PDR settles around 94.2%. In the MC-DV experiment,

when path 1-2-4 was selected, the route maintenance increased

transmission powers and number of retransmissions at nodes

Fig. 12: Experimental Result

1 and 2. However, the PDR was still bad when interference

occurred close by. Then, after MC-DV switched to path 1-

3-4, its PDR was improved when transmission powers and

retries were increased at nodes 1 and 3. And the routing path

converged to 1-3-4 quickly and the E2E PDR settles at around

99%. From this controlled experiment, we conclude that 1) the

long term estimation used in competence helps choose stable

links and improves PDR, 2) route maintenance helps improve

PDR on links that are weakly interfered or shadowed, and 3)

in networks with only stable links or only strongly interfered

unstable links, the benefit of long term estimation and route

maintenance is limited.

We also conducted nine multihop experiments in the test-

bed with 48 T-Motes, each experiment lasting 24 hours. We

used three kinds of periodic traffic loads for communications

from sources to a sink, which are typical for environmental

monitoring: in traffic load 1 (L1) there were 3 source nodes,

each of them sending a data packet every 20 seconds. In traffic

load 2 (L2) there were 8 source nodes, each of them sending a

data packet every 20 seconds. In traffic load 3 (L3) there were

8 sources, each sending a packet every 10 seconds. We note

that such traffic loads do not cause message queue overflow.

In this experiment, we focus on studying the performance

difference between stable periods in the night and unstable

periods in the day. We divided the data obtained in each

24-hour experiments into 2 parts, corresponding to a stable

network period from 8PM to 8AM and an unstable network

period from 8AM to 8PM, and plotted them in Figure 13,

Figure 14, Figure 15, and Figure 16.

In Figure 13 (a) and Figure 14 (a), we have plotted the

observed average end-to-end PDR. We have also plotted

corresponding standard deviations over 12 hours. We have

drawn four main observations from these figures: first, DV

has a much higher E2E PDR and a smaller standard deviation

in the stable periods than the unstable periods, while the

E2E PDRs of C-DV and MC-DV demonstrate much smaller

performance differences in both stable and unstable periods.

Previous evaluations have shown that ETX based routing algo-

rithms can achieve good performances in stable networks. Our

evaluations have confirmed that. For example, the E2E PDR

of DV with traffic load L2 is 87.9% over 12 hours, including

8 continuous hours above 90%. However, E2E PDRs of DV

in the unstable periods drop significantly. This result shows

that previous solutions do not work well in highly dynamic

networks. Second, the differences between E2E PDRs of C-

DV in both stable and unstable periods and the differences
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Fig. 13: Evaluation in Stable Periods
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(c) Parent Switch

Fig. 14: Evaluation in Unstable Periods

between E2E PDRs of MC-DV in the same periods are less

than 5%. The standard deviations of C-DV and MC-DV are

also much smaller than those of DV in all the cases. This

result demonstrates that C-DV and MC-DV achieve stable and

high E2E PDR in highly dynamic networks, outperforming

DV. More specifically, with light traffic L1, the average end-

to-end PDR of C-DV is above 80% for more than 80% of

the time. The average end-to-end PDR of MC-DV is above

80% for over 99% of the time. Third, MC-DV outperforms

DV and C-DV with light traffic L1. This demonstrates the

benefit of route maintenance for interference-free streams.

Two factors that contribute to performance of MC-DV with

different traffic are: interference among streams and control

contention. Interference among streams affects the qualities

of links. There were three streams with L1 load, while 8

streams in L2 and L3 loads. In addition, the maintenance

introduces extra control packets at both link and network

layers. With a heavier traffic load, the links near the base

station may become unstable, while with light traffic, the

interference is free and stable links are selected. On the other

hand, control contentions may occur at streams near each

other. For example, power controllers on two parallel links

increase power alternately when their transmissions interfere,

causing degrading PDR. Four, in our experiments, we found

that not all observed end-to-end PDRs demonstrate obvious

improvement. For other sources, we have observed smaller

performance improvement than that of DV, which suggests that

the improvement of competence enhanced routing depends on

the density of competent links in the network. If a node has no

competent links that it can use, the stability of performance

will not improve much. Overall, our competence based link

characterization and feedback control based stabilization are

critical for achieving better network performances in dynamic

wireless sensor networks.

The transmission energy efficiency is presented in Figure 13

(b) and Figure 14 (b). The transmission energy is estimated

based on the total number of transmissions, the packet length,

the transmission power level used for each transmission, and

the control overhead. Several interesting observations can be

made from this Figure: first, the energy consumption per

delivered bit of all algorithms in unstable periods is higher than

stable periods because that many transmissions in unstable

periods are wasted without successfully delivering the packets.

As shown in Figure 14 (b), in unstable periods the energy

consumption per delivered bit of C-DV and MC-DV is much

lower than that of DV. This result suggests that C-DV and

MC-DV are more energy efficient than DV in both stable and

unstable periods.

We have plotted the total number of parent switches in

Figure 13 (c) and Figure 14 (c). We have two main obser-

vations: first, the numbers of parent switches of all three

algorithms are similar in stable periods. This demonstrates

that the characterization of stable links does not increase the

number of parent switches in stable periods. Second, in the

unstable periods the numbers of parent switches of DV are

much higher than these of C-DV and MC-DV. This result

shows that C-DV and MC-DV have successfully decreased

the traffic oscillation that DV suffers in the unstable periods.

We also note that as the traffic load increases, interference

caused by control packets in MC-DV may increase.

We have also calculated the average competence on E2E

PDR of these three algorithms in both stable periods and un-

stable periods, and plotted them in Figure 15 (a) and Figure 16

(a). The value of average competence represents how well
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Fig. 15: Evaluation in Stable Periods
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Fig. 16: Evaluation in Unstable Periods

E2E PDR stays within the specified range in the long term.

From these figures, we can see that average competence values

of all three algorithms during stable periods are higher than

corresponding ones during unstable periods. This confirms that

interference and dramatic environmental changes influence

the stability of E2E PDR within the specified range. On the

other hand, the competence values of MC-DV and C-DV are

much higher than DV during both stable periods and unstable

periods. Furthermore, decreases of competence values of MC-

DV and C-DV during unstable periods are much less than the

ones of DV. These results demonstrate that our designs achieve

more stable E2E PDR than the previous design. We have

calculated the average settling times and maximum settling

times of these algorithms, and plotted them in Figure 15 (b)

(c) and Figure 16 (b) (c). The trends of average settling times

and maximum settling times are similar. From these figures,

the settling times are almost twice as long during unstable

periods as they were during stable periods. Both C-DV and

MC-DV have a much lower average settling time than does

DV in all experiments.

VI. RELATED WORK

There are a number of wireless networking protocols that

use various techniques to deal with the dynamics of wireless

communication quality. At the MAC layer, short term link

quality estimation [19] [35] [10] [36] [24]is critical, but

we established that the long term link quality estimation

is also important when link qualities can vary dramatically.

We propose a metric competence to quantify long term link

quality and help design routing algorithms and a framework

to achieve stable E2E performance. In [19], the authors use

statistical results to choose the best link estimation filter

dynamically for mobile systems. In our work, competence

metric focuses on the long term link estimation, which is

used alongside the short term link estimation. We also use

it in control designs to achieve stable network performance.

Authors of [34] propose a β factor to quantify the short term

correlations among successes and failures of transmissions.

Competence is different because it emphasizes the long term

communication quality.

At the network layer, the existing routing protocols [12]

[35] [17] [29] [8] [5] have developed mechanisms to select

good links when link quality changes. In this work, we

have demonstrated that selection of long term good links

is also critical for high reliability and reducing cascading

route changes. In our routing algorithm design, we use the

competence metric in addition to previous link metrics to

achieve better performance.

Many control based designs have been proposed for E2E

quality of service in computing systems. These studies present

elegant designs in different systems with their specific con-

straints, such as data servers [1], distributed real-time embed-

ded systems [23] [32] [22], wireless sensor networks [15] [6],

and Internet protocol design [30] [7]. Our control design is

unique in its coordination of pairwise control at the link layer

and E2E control at the network layer, based on reliability and

energy constraints in wireless sensor networks.

VII. CONCLUSIONS

This paper presents a competence metric to characterize

the long term communication quality. To achieve stable per-

formance in end-to-end communication, we incorporate the

competence metric into routing protocol designs. We also

propose a feedback control framework that addresses dynamics



at both the link and network layers. Our evaluations with 48 T-

Motes have demonstrated that our design achieves satisfactory

and stable network performance over time, outperforming

existing protocols.
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