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ABSTRACT inside and/or outside the home [21]. Over 5 million homes

In this paper, we first present a new privacy leak in resi- have X10 devices [6] and ZigBee devices such as wireless
dential wireless ubiquitous computing systems, and then wedoorbells, appliance controls, wireless smoke detechors,
propose guidelines for designing future systems to preventwireless light switches. These sensors are often augmented
this problem. We show that we can observe private activi- by personal area networks (PANSs) that include wireless pe-
ties in the home such as cooking, showering, toileting, and dometers in shoes or wireless EKG sensors on people. These
sleeping by eavesdropping on the wireless transmissions ofsensors produce a constant record ofAleévities of Daily
sensors in a homeven when all of the transmissions are Living (ADLs) within a home, thereby enabling a new gen-
encrypted We call this the Fingerprint and Timing-based eration of ubiquitous computing applications such as smart
Snooping (FATS) attack. This attack can already be carried homes, elderly monitoring [24], and home security [6].

out on millions of homes today, and may become more im-

portant as ubiquitous computing environments such as smartADLs are typically very personal and private, and must be
homes and assisted living facilities become more prevalent kept secret from third parties. This is particularly true in

In this paper, we demonstrate and evaluate the FATS attackmedical facilities where ADLs are used to infer medical con-
on eight different homes containing wireless sensors. We ditions; these facilities arebligedby HIPAA regulations [5]

also propose and evaluate a set of privacy preserving desigrio protect this information. In this papewve present guide-
guidelines for future wireless ubiquitous systems and show lines for designing wireless ubiquitous computing systems
how these guidelines can be used in a hybrid fashion to pre-in residential environments to preserve private activity i
vent against the FATS attack with low implementation costs. formation about the residents.
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Wireless sensors are becoming ubiquitous in homes and resikind of single-hop, wireless networks common in residéntia
dential environments. Elderly monitoring and assisteid¢jv ubiquitous computing.
facilities are deploying sensors to monitor the medicine ca
inet, toilet, shower, sinks, stove, and other appliancd$ [2 In the second half of the paper, we propose a suite of tech-
Over 32 million homes in the US have security sensors in- niques to protect against the FATS attack. For example, we
stalled on doors and windows, and motion sensors installedhide packet transmissions from the adversary using signal a
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design guidelines and show how many of these guidelinesthese attacks require changing network flow patterns at the
can be used together in a hybrid fashion to yield very high routing level. The FATS attack uses fingerprints to do traf-
privacy protection with minimal implementation costs. fic analysis in a single-hop network, and so is not affected
by such countermeasures. Yang et al [9] describe a related
We empirically evaluate both the FATS attack and our suite traffic analysis attack in which an adversary can infer when
of privacy preservation techniques by deploying ubigqutou a network event has occurred by observing global transmis-
computing systems in eight different homes. These sys- sion timestamps alone, but this work does not combine trans-
tems contained sensors on salient objects, including sinks mission timestamps with wireless fingerprints.
stoves, showers, and doors, and were used to collect data for
a week or more in each home. We tested a diverse rangeOur multi-tier FATS algorithm infers activities such as &eo
of homes, with different floor layouts, different sets of de- ing, showering and toileting. Activity recognition in the
ployed sensors, and occupied by both single and multiple home setting using simple binary sensors is a hard problem
residents from different age groups and lifestyles. Our re- and has been well studied in the literature [24, 25]. We are
sults suggest that the FATS attack is highly effective even studying a simpler version of this problem here, since our
without knowing any prior information about the home, aghie main goal is to show what the adversary can infer using only
ing around 80-95% accuracy on activity recognition in many wireless fingerprints and timing information. Also, the FAT
homes in the best case. The design guidelines that we pro-attack assumes a home fitted with simple wireless sensors [2]
pose greatly decrease the effectiveness of the FATS attackas opposed to other approaches that use RFID tags on house-
reducing the inference accuracy to anywhere from 0 to 15%, hold objects coupled with wearable RFID readers [25]. Our
while greatly reducing implementation costs. attack is more suited to &ireless sensor systetian to an
RFID-based systensince it's easier to snoop on relatively
long range wireless transmissions than on short-range RFID

BACKGROUND AND RELATED WORK _ signals. We believe that both types of systems will be com-
FATS is a type ofside channel attackwhich means that it monly used in the future.

uses information revealed by a cryptographic system other
than the ciphertext to infer either the cryptographic keys o
the original data [4]. Some well-known side channel at- THE FATS ATTACK
tacks include the TEMPEST attack, which uses leaked elec-We developed the multi-tier FATS inference algorithm to in-
tromagnetic radiation from a computer monitor to infer the fer information about a home and its residents from just the
plain text input to the system [17], and a recent study that ex timing and fingerprints of radio transmissions. Our inferen
ploits physical properties of variable bitrate encodingesnes  algorithm is surprisingly robust to the diversity of homes,
to infer the movie a person is watching on commercial de- people and sensed objects in our deployments and can in-
vices [23]. fer detailed resident activity information with high acaay.

We now provide an overview of the FATS inference algo-
Wireless fingerprintings a well-studied technique in which  rithm. We explain our algorithm in terms of its logical view,
physical characteristics of RF transmissions are used+o di as depicted in Figure 1, as well its concrete operations on
ferentiate between messages from differentradios, evenwh real data, as depicted in Figure 2. Firstly, figure 1 shows a
those radios have the same model and manufacturer. StatisTier 0, where the adversary only has access to timestamps,
tical features of transient signainplitudehave been usedto  but not fingerprints. In Tier 0, the adversary can only detect
fingerprint Bluetooth devices [15] with false positive mte very general activities such as home occupancy or sleeping.
of 5% and detection accuracies as high as 93%. Similar re-
sults have been observed on 802.11 WiFi radios [14] and onln Tier I, the adversary uses fingerprints to associate each
sensor nodessing the ChipCon CC1000 radio [22]. We dis- message with a unique transmitter, depicted by the black
cuss the hardware requirements for fingerprinting when we lines in Figure 2. Then, these transmitters are grouped into
discuss deployment details in the next section. The abovesensor clustergorresponding to rooms in the home based
work onwireless fingerprintings different fromsoftware- on similarities in their transmission patterns, shown by th
based fingerprintingsuch as recent work that identifies and cluster labels on the left of Figure 2. The approximate num-
tracks users of 802.11 enabled devices by exploiting im- ber of residents in the home can be inferred by observing
plicit identifiers in 802.11 network traffic [20]. Wirelessf{i simultaneous activity in multiple rooms, as shown in Fig-
gerprinting is usually used tenhanceprivacy by enabling ure 1. InTier Il , specific features are first extracted from
hardware-based authentication [14], not to compromise it. the combined transmissions of all devices in a spatial clus-
A recent study proposed using wireless fingerprints to com- ter, denoted by the red lines in Figure 2 beneath each cluster
promise privacy in vehicular sensor networks [11], but did These features are passed to a classifier that identifies each
not combine fingerprints with traffic timing analysis. room as either a kitchen, bathroom etc. Figure 1 shows that

these room labels can be used to infer the number of times
The FATS attack is different from most existing traffic anal- the residents visit, for example, the kitchen or bathrooahea
ysis attacks. Previous work has demonstrated that Internetday. Finally, inTier 1l , another classifier is used to de-
traffic patterns in wired networks can be used to match a termine the likelihood of a sensor being the motion sensor,
sender with a recipient [10], and multi-hop radio traffic in stove sensor etc. This information can be used to recognize
wireless sensor networks can be used to locate the sensosubtly different activities, namely cooking hot and colddo
source or the base station [8,16]. The countermeasures foror showering, toileting, and grooming, as shown in figure 1.
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In the rest of this section, we describe in more detail, the de
sign and evaluation of the four tiers in our FATS inference al | |
gorithm. First, we describe the details of our wireless home N L1111 Hl | 1] I
deployments on which the FATS attack was demonstrated —u5roommsion
and evaluated. We then list the evaluation metrics necgssar L] I I
to measure how well the FATS adversary infers private infor- ~ mporl Clusters for Device Cluster #3
mation. Finally, we describe the algorithms used in the four  “— =+ & = 1w __ E‘Em) T
tiers of our inference algorithm. We follow the algorithmic
description of each tier with an evaluation of how well that
tier infers pr!vate Informatlon from Our_SyStem depl_oyrr_sent Figure 2. The textual labels and logical groupings are derigd from the
The evaluation of each tier assumes ideal, unrealisticieond raw sensor data (black lines) by our tiered inference algothm.
tions of 100 % packet reception and 100% fingerprint accu-
racy. We evaluate our algorithm this way to see what the ad-
versary can learn in the best case. However, we do conclude
this section with an evaluation of the overall FATS inferenc
algorithm under practical conditions with both packet loss
and fingerprint errors.
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Deployment Details
We empirically evaluate the FATS attack by CO||ePt'ng real Figure 3. Examples of the sensors we deployed in eight diffent homes
sensor data from homes containing off-the-shelf wireles3 X
motion sensors and contact sensors. Motion sensors were
placed in each room and contact switches were placed onTo fingerprint radio sources, the FATS adversary could ei-
doors, sinks, toilets, showers, refrigerators, stoved,ca- ther simply use the RSSI values [13] of radio messages,
inets, some of which are shown in Figure 3. This type of in- which is less accurate, or use an antenna connected to a
strumentation might be typical of elderly care or home mon- high frequency oscilloscope or a commercial integrated sig
itoring applications [19]. Data was collected in each home nal analyzer with built-in fingerprinting software [1]. Bve
for seven days or more. though many of these snooping devices are currently costly
and power hungry, it is expected that cheaper devices will
To be sure that our evaluation is not specific to a particular be available as wireless fingerprinting matures and becomes
home or type of home, we deployed the X10 devices in eight increasingly important for hardware-based authenticatio
diverse homes. All homes had different floor plans, a dif- is easier for an adversary to launch the FATS attack if she
ferent number of sensors, different items being monitored, has access to uninterrupted power, either from an unattende
and a different number of residents with diverse age groupsoutdoor power outlet nearby, an adjacent apartment or a dis-
and occupations. Some homes had three male graduate stuant surveillance area with powerful directional antennae
dent residents while other homes had a married couple andWe have performed experiments to validate that wirelesamic
mother-in-law. Layouts varied from studios to two-bedroom motes inside our office buildings can be snooped upon from
apartments. A summary of the diversity of homes is shown the outside. Also, X10 radios have a long radio range and
in table 1. Hereafter, we label the single person homes A snooping on these devices is as easy as driving around with
through D and the multi-person homes E through H. an X10 receiver to receive unencrypted X10 camera data



Home | Number Number | Number | Number
of Sensors| of Rooms | of people | of firings
A 13 3 1 5888
B 22 5 1 3074
C 16 4 1 4020
D 16 4 1 10326
E 12 4 3 14340
F 15 5 3 20534
G 14 4 2 10964
H 16 5 2 16571

Table 1. Characteristics of the eight homes used in our depjanents

single and multi-person homes, as shown in Figure 5. In
multi-person homes, only the aggregate activity can be in-
ferred, such as wheeveryonen the home was sleeping or
not. This baseline privacy leak does not require wireless fin
gerprinting, and can already be applied today to the over 32
million homes in the US that have wireless home security
sensors [21]. In subsequent sections, we show that wireless
fingerprintingin combinatiornwith transmission timestamps
allows the adversary to infer much more detailed informa-
tion.

Tier-1 Clustering
The goal of Tier | is to identify which sensors are in the
same rooms. It does this by assuming that sensors in the

[3]. In our deployments, we used an X10 receiver directly s5me room fire at similar times due to human activity in the
inside the home to record a timestamp and device ID for yoom Thys, we use mporal distancealculated between
each radio message. We do so in order to study both (i) aihe transmission patterns of each pair of sensors to cliaster

best case scenario where the adversaryplesg®ctsnooping
capabilities, and (ii) a more realistic scenario with siatatl
packet loss and fingerprinting errors.

Evaluation Metrics

Each tier of our inference algorithm will produce a set ofres
ident activity time intervald that are defined by a start time
and an end time. We also produce a segiund truthac-

tivity intervals I by hand-labeling the sensor data after data
collection is over. We use a min-cost bipartite matching al-

gorithm to pair each interval il with an interval inl. Then,
we use three metrics to quantify the correctness of the-infer
ence algorithm:

1. Event Detection Rate (EDR):the percentage of intervals
in I that were mapped to some intervalfin

2. True Positive Rate (TPR):the percentage of intervals in

I that were mapped to a real eventlin

Duration Accuracy (DA): the absolute difference in du-

ration between events ihand their matched events in

3.

A EDR value of 60% would be produced if 10 cooking events
occurred but only 6 were detected. A TPR value of 60%

would be produced if the adversary detected 10 cooking sven
of which 4 were false alarms. By measuring both EDR and
TPR, we ensure that the FATS algorithm does not achieve a
high EDR simply by generating a large number of spurious

events. A DA of 60% would be produced if a cooking event

takes 100 minutes, and the algorithm indicates an event of

either 60 minutes or 140 minutes.

Tier-0: General Activity Detection

An adversary can detect activity in a home even without
wireless fingerprinting simply by snooping on radio activ-
ity and correlating radio activity with human activity ids

the home. In Tier O, we implemented a simple algorithm
that identifies silent periods during the dayaasayevents,
silent periods during the night ateepevents, and all active
periods to behomeevents. To reduce the effect of spuri-
ous sensor activity, we did not count the first four transmis-

gether those sensors that have small distances to each other

We denote the set of all devices (identified using their uaiqu
fingerprints) to bel D, and the vector of all transmission
timestamps from each devicee ID to beT;. We use
bracket notation to index into vectors, so it timestamp
from nodei is referred to withT; [k].

The clustering algorithm is then defined as:

forall ¢,5 € ID
for h = 1tolength(T;)
dist;;[h] = oo
for k = 1to length(T})
distp = |T;[h] — T;[K]|
if disty, < dist;[h]
disti;[h] = distpp
D;; = min(median(dist;;), median(distj;))
D’ =SPDIST(D)
F =CMDS(D’)
CLUSTER=k-meang F, k)

For each pair of devicesandj, we first compute the differ-
ence in time between each transmission afd theclosest
fransmission ofj, creating a difference vectafist;; with
length |T;|. We then calculate theemporal distance D;;
between devicesandj to be the minimum of the median

of the time difference vectoréist;; anddist;;. These dis-
tances are stored as elements of the symmetric distance ma-
trix D of size|ID| x |ID|, which holds the distances be-
tween each pair of transmitters.

Not all devices in the same room will be temporally corre-
lated; for example, the dishwasher may have a large tempo-
ral distance from the refrigerator because they are neeet us
together, even if both devices have small temporal dis&nce
to something else like the sink or a motion sensor. Therefore
we use Dijkstra’s shortest path algorithm to convert the dis
tance matrixD to a new matrixD’ of metric distances by re-
placing each distanc®;; by the shortest path distanse”;;
through D. We then use classical non-parametric multi-

sions each hour as true radio activity. Sleep and home eventdimensional scaling (CMDS), to convert the distance matrix

detection has 85 to 100% duration accuracy (DA) in both

D’ into positions of thg7 D| sensors inID|-dimensional
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Figure 4. Accuracy of clustering sensors into rooms in eachf@ight homes, using bothdbscan and k-means with 4 different values ofk.

space. Finally, we use themeans clustering algorithm to  room based on the the overall sensor transmissions from the
cluster together sensors that are temporally correlated; a  room to a bi-partite matching based classifier.

ing at a mappin’ LUSTER : ID — C, from the source

identity i € ID of every device to one of the = |C| clus- Once the devices are clustered, we generate an overall se-
ters. Takada et al [7] describe a related algorithm to group ries of timestamp4’,. of all transmission timestamps from
co-located sensors together based on time series data; howall sensors in sensor clustere C. We also generateem-

ever, the underlying sensors used, the distance matrix com{oral activity clusters, used in the features below, by us-
putation and the clustering algorithm used there are differ ing the db-scanalgorithm to cluster the timestamps 1.

ent. Each temporal activity cluster forms a continuous temporal
block from T, with a relatively high density of sensor fir-
Tier-1 Evaluation ings. db-scan [12] performs well here because it automati-

To compute clustering accuracy, we first compute a maximal cally leaves out outliers and computes high-density ciaste
min cost bipartite mapping between the 6ebf computed ~ Unlike k-means. We then generate a number of features for
clusters and the set of true room clusters obtained from ~ €VeY room cluster from the seried’. listed below.

the deployment plan. We define a device I D to becor-
rectly clusteredf 's computed cluster € C' is mapped to
a room cluster € C such that device is actually in room
r. We then definelustering accuracyto be the proportion ISsI I ¢

of devices that are correctly clustered. Figure 4 shows the %Hg ;[:(I)ltjiltgrutrg?regnosfnari?ﬂrssr?gf?(laorqgndgugirlgntggpr)g?i%td S
clustering accuracy across homes for multiple values,of ¢ 5 histogram of transmission, with four hour granularity
and thenon-parametric db-scan clustering algorithih2].

Maximal clustering accuracy is achieved when the value of e yse these features to create a feature vectdor ev-

k matches the number of rooms in each home. However, gry roomy. To classify rooms in a test home, we set apart
our overall inference algorithm does not require the exact g small number of other homes from our deployment to pro-
numberk of rooms in the home and is robust to incorrect, yjde training data We defineR to be all possible room la-
larger valuesk. The parameterless db-scan algorithm per- pes (e.g., bedroom, kitchen, bathroom, etc) and create a si
forms poorly in several homes where all devices are highly gje feature vectoF, for every labelr € R by averaging the
correlated temporally. Thus, we need a parameterized Clus+eature vectors of all rooms in the training data with thesam
tering technique like k-means with large enouglo enforce |ape|. Then, to label the rooms in a test home, we compute
a reasonable partitioning of the sensors into Clusterseorr 5 min-cost bipartitematching between the feature vectors
sponding to rooms in the home. Itisimportantto notein fig- 7 . . ¢ ¢ from the clusters of that home and the training
ure 4b that clustering accuracy remains highlti-person  feature vectord,. : » € R. We define the cost of a match
homesin spite of simultaneous activity in different rooms; petween two feature vectors to be the sum ofEelidean

this is because we still get sensors firing in the same room gjstancedetween corresponding individual features.

most of the time. Though we do not show it here, it is possi-

ble to infer the number of residents currently in the home by The resulting bipartite matching represents the room +abel

the number of transmissions per day from the room
the median inter-transmissions time within a room
the median length of temporal activity clusters

the total number of transmissions during the day

tracking simultaneous activity in multiple rooms. ing. Unlike a conventional classifier, the matching process
allows us to enforce mutual exclusivity of room labelings;
Tier-1 Room Classification for e.g., a home with three rooms cannot have two bathrooms

The goal of Tier Il is to identify the function of each room or three kitchens. When necessary, we can allow for multi-
as a bathroom, kitchen, bedroom, or living room. This tier ple rooms with the same label in a home by simply including
makes two assumptions: (i) different houses have similar extra copies that room in the set of room labels. In our ex-
rooms (ii) similar rooms across homes can be identified us- periments, we observed that all rooms were correctly labele
ing specific features of room usage. To identify the function across both single and multi-person homes. In this tier, we
of each room, this tier passes features computed for eachinfer the timing and duration dfathroom and kitchen visits
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Figure 5. Overall Inference Accuracy on events detected ini€r O, Tier I, and Tier lll, using all three metrics: EDR, TPR , and DA.

by simply counting the temporal activity clusters that accu improve the sensor classification results in Tier lll. Théou

in each room classified as the bathroom or kitchen. put of this classification procedure is the mapping vestgr
for each sensas in a home. In our experiments, the map-
Tier-1l Evaluation ping vectors were accurate for bathroom sensors, but were

Assuming a best case scenario of perfect packet receptiornot very accurate for kitchen sensors, where activities lik
and fingerprinting accuracy, figure 5 shows that the adver- cooking produced similar features in several sensors, asich
sary can infer the duration and timing of bathroom and kitche the stove and cabinet sensors. These objects are often eithe
visits with 95-100% accuracy across both single and multi- misclassified as each other or partially classified as neltip
person homes using our room classification algorithm. Of objects. However, these incorrect classifications canbstil
course, in multi-person homes, the variables represent howused to recognize activities in Tier Il1.

many timesall residents in the home visited the bathroom or

kitchen in total. To recognize activities, we calculate a feature vector efgv
temporal activity clustem every device cluster. These fea-
Tier-1Il Sensor Classification ture vectors include (i) start time, (i) duration, and)(ithe

The goal of Tier Il is to identify activities in the home, suc  total number of times that each known sensor type transmits.
as cooking, showering, or toileting. This is a two step pro- Feature (iii) is obtained by adding the mapping vectors for
cess. In step 1, we classify sensors to obtaimapping every sensor firing in the activity cluster. If a device is-par
vector for each unknown sensor indicating the likelihood of tially classified as multiple types of sensors, partial deun
its matching with known sensors such as the stove, showerd® mamtmned in the featgr_e vector. This ensures that sen-
etc. The mapping vectaY/, for sensors is indexed by the ~ SOrs used in the same activity (such as the pantry and stove
known sensor types; for exampl&/,[stove] indicates the used in cooking) that are misclassified or partially clasdifi
probability that sensoris thestove sensor. Instep 2, we use @S €ach other do not affect the overall counts of known sen-
these mapping vectors to classify activities based on which SO firings in feature (iii). We then classify eatimporal
sensors are likely to be active during an activity. In thés, ti activity _Clusteras an activity using an LDA cla53|f|e_r _that
we assume that we can use specific features in sensor firing}g/as trained on other homes with hand-labeled activity la-
patterns observed across homes to obtain a mapping vectoP€ls. We used this approach to recogrihewering, wash-

for each sensor. However, we do not require the sensor clasiNg/grooming, and toiletingctivities in the bathroom, and
sification to be 100% accurate and show here how inaccuratel© recognizecooking hot foodand preparing cold foodin
mapping vectors can be used to accurately classify aetiviti  the kitchen.

We calculate a feature vector for each sensor, using feature Tier-1ll Evaluation

similar to those described in Tier Il, obtained from tempora Figure 5 shows the activity recognition results for Tier I
characteristics of sensor firings. Due to space constraints single person homes, the average accuracy of the adversary
we don't discuss the exact features used here. To classifyin inferring detailed activities is around 80%, while theac
each sensor, we pass each feature vector through a standamcy in multi-person homes is lower, but still well above the
linear discriminant analysi¢LDA) classifier. For each of  baseline of random guessing. The lower accuracy in multi-
the eight homes, we constructed this classifier using trgini  person homes is due to spatial clustering errors introduced
data obtained from a subset of the remaining seven homedy simultaneous activity in many rooms; for example, in
with hand-labeled sensor types. We do not assume that allhome E, an incorrect clustering of the shower sensor with the
houses have exactly the same set of sensors, but we do adiving room prevented us from detecting showering events.
sume that all types of sensors in the test home have been obWe note, however, that the high proportion of activitied tha
served at least once in a training home. We train a separateare correctly classified indicate that the simple assumptio
classifier for each room in a home: a sensor from the kitchen made by the FATS attack in Tiers I, Il, and Il appear to be
cluster in Tier Il will not be classified as a bathroom sensor. true across our diverse sample set of homes, and that this
Thus, the room classification results from Tier Il are used to attack can be used to infer private information about the res
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idents of a home simply by snooping on the radio messages activities, such as bedroom and living room sensors.
of its sensors. 4. Fingerprint masking should be used on time-critical sen-
sors like fall detection sensors, where latency introduced
FATS attack evaluation under realistic conditions by random delays or periodic transmissions is unaccept-
We now evaluate the FATS attack in practical, non-ideal set- ~ able, or on sensors/rooms where signal attenuators are in-
tings, where the adversary will observe both packet loss and feasible.
fingerprint errors. The evaluation in figure 6 models packet 5. Spurious or fake transmissionsshould be combined with
loss as a percentage of the nodes hidden from the adversary. real transmissions for sensors such as camera or micro-
Even under pessimistic scenarios such as 30% of the nodes Pphone sensors that cannot afford the high energy cost from
hidden from the adversary, the FATS attack still infers abou  periodic transmissions.
50% of Tier Il and Tier Il events and detects Tier O events
with about 80% DA. Tier 0 DA is unaffected by fingerprint Using Signal Attenuators
errors, since it simply relies on the transmission timegsm  The most obvious approach to protect against the FATS at-
Figure 10 shows how fingerprint errors, modelled as a fea- tack is to prevent the adversary from hearing messages in
ture deviation in the x-axis and explained in detail in the the first place. There are several possible signal attersjato
next section, affect Tier Il and Tier Ill EDR. Under pes- and we list three here: (i) Using very low power transmis-
simistic feature deviations of about 50% of the total featur sions and a multi-hop route to the base station: this incurs a
space (deviations of 20 for a feature space of 40), the adver-moderate hardware cost in terms of additional router nodes,
sary still infers upto 50% of Tier Il and Tier lll events in the and reduces reliability (i) Using a wired connection to the
home. Assuming both 20% packet loss and 20% feature de-base station: this requires quite a lot of deployment effort
viations, the adversary still infers Tier Il and Tier 11l ews and time, and (iii) Using Faraday cages: this is expensive
with 40% EDR, and Tier O events with 85% DA on average. to set up and prevents outside communication from hidden
rooms, which is essential for eldercare applications. We re
DESIGN GUIDELINES TO ENHANCE PRIVACY ommend scheme (i) since it has the least cost among the var-
In this section, we evaluate a number of techniques to thwartious schemes, though it does not have the same protection
the FATS attack. Each of these techniques has a differentguarantees as scheme (ii).
cost-benefit profile, and we analyze how and when each tech-
nique is most effective. We present the following five guide- We implement two schemes for signal attenuators in our
lines for building wireless ubiquitous computing systems i ~ €valuation, namely: (§5AA - SgnalAttenuators irAll rooms,
homes or residential environments. We justify each guide- and (i) SABK - Sgnal Attenuators in theBathroom and
line in subsequent subsections. We conclude by presentingfitchen only, as per design guideline #1. Figure 6 shows
ahybrid approach that combines many of these guidelines the effectiveness of the FATS attack as we increase the per-

to achieve very high privacy protection with very low imple- ~ centage of nodes hidden by signal attenuators from 0-90%.
mentation costs. Figure 6(a) shows that signal attenuators are very efteativ

reducing the EDR for Tier Il and Tier Ill activities; with 40%
Signal attenuators should be deployed in a select few hidden nodes, EDR is reduced to about 30-35% in scheme
rooms such as kitchens or bathrooms where many activi- SAA and to 20% in scheme SABK. Thus, many of the ac-
ties occur to effectively mask activities in these rooms. tivities detected in Tiers Il and Il can be hidden effeclyve
. Random delaysof the order of 15 to 20 minutes should by using signal attenuators in just the bathroom and kitchen
be added to the transmissions of sensors in the bathroonfigure 8 shows that signal attenuators do not have a strong
and kitchen that are involved in short duration activitiest ~ effect in reducing the Tier Il and Tier 11l DA and TPR. The
effectively hide these activities. TPR actually increases as more nodes are hidden, because
. Periodic transmissionsshould be used on binary or low the number of events detected becomes small enough that
bandwidth sensors that are typically involved in long-diora almost no events are spurious. Figure 6(b) shows that signal

1.
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Figure 7. Effect of random delays on event detection rate (ER) of Tier Il and Il events, and on duration accuracy (DA) of T ier 0 events

attenuators, even if implemented in the entire home (SAA), requirements of real-time sensors such as wireless lightisas,
are not very effective at reducing the DA for Tier O informa- or fall detection sensors that need to transmit data immedi-
tion; with 40% hidden nodes, the DA is nearly 90% in single ately. Also, we need to consider if random delays of the
person homes, and is over 60% in multi-person homes. Thisorder of 15-30 minutes are acceptable to the end users; they
is because the sensors that are not hidden by the signal attermight be certainly acceptable to remote healthcare proside
uators still reveal th@resenceof human activity very well. who are only interested in long term trends such as a decline
Thus, we recommend in design guideline #1 that signal at- in the ability of residents to perform ADLs. For other users,
tenuators be used in select rooms such as the bathroom and/e need user queries to verify if such delays are acceptable.
kitchen (SABK) where many activities occur to reduce im- Given the similar performance of schemes RDA and RDBK

plementation cost and hide these activities effectively. in protecting Tier Il events, we recommend in design guide-
line #2 that random delays of the order of 15 minutes be ap-
Using Random Delays plied to non-emergency sensors in the bathroom and kitchen

Because all tiers of the FATS algorithm rely on transmission if the end users find such delays acceptable.
timestamps, modifying the transmission time is one way of
reducing the effectiveness of the attack. Thus, we proposeUsing Periodic Transmission
adding random delays to sensor transmissions bounded byf a sensor transmits periodically instead of only when & ha
a maximum delay parameter. We implemented two schemesdata to transmit, it makes the transmission timestamps inde
in our evaluation of random delays:RIDA - RandonDelays pendent of the data, making it impossible for the adversary
onAll sensors, and (ilRDBK - RandonDelays orBathroom to infer any information. Thus, periodic transmission on al
andKitchen sensors involved in short duration activities only, sensors guarantees 100% privacy. We first estimate the ex-
such as cooking and toileting. Figure 7 shows that the effec-tra power consumed by periodic transmissions for typical
tiveness of the FATS attack decreases as increasingly longbinary home sensorsusing empirical power consumption
random delays are added to sensor transmissions. Figyre 7(adata on the telos mote with the CC2420 radio [18], a pop-
shows that even small random delays of about 10 minutesular hardware platform in wireless sensor network research
are highly effective at reducing the EDR for Tier Ill events We assume that a mote sleeps for a latency pefoahd
such as cooking and showering to about 50-60% under bothwakes up to transmit a large enough data payload to capture
schemes RDA and RDBK. This is because random delayshinary event informatioffor the pastP seconds, along with
introduce errors in Tiers I, 1l and 11l which use the device the mandatory header fields. The total percent reduction in
transmission timestamps as input. Also, figure 8 shows thatnode lifetime for different period® is shown in Figure 9.
random delays of about 30 minutes reduces both DA and As the periodP increases, the percent reduction in node life-
TPR of Tier Il and Il events to about 40%; i.e., more than time decreases along with the power consumed by periodic
half the events detected by the adversary are false pasitive transmissions; this is because as the period increases, the
and the inferred duration of these events is highly inadeura number of packets and the associated energy wastage from
As seenin figure 7(b), longer random delays of about 3 hours packet overhead decreases. We notettiatotal reduction
reduce Tier 0 DA to about 60% in single person homes and in node lifetime for periodic transmission with a period of
a much lower 25% in multi-person homes. In multi-person 8 seconds is only 8.75% of the total original lifetime of the
homes, there are only a few hours per day with no activity node thus, periodic transmissions is an excellent solution
from all residents, and 3 hour random delays ensure that al-for binary sensors. The low power consumption here is be-
most no period is inactive, resulting in the larger duration cause the network is one-hop, and nodes do not need to go
errors. However, we do not recommend such long delays of into receive mode, unlike other sensor network deployments
the order of hours to hide long duration Tier O activitiestsuc
as home presence and sleeping. Despite their effectiveness, periodic transmissions ctbe
applied to (i) real-time sensors, because of the delaydimit
Despite their effectiveness, random delays conflict with th tion, and (ii) high bandwidth sensors, because of the exces-



FARADAY CAGING

100 I 0% hidden nodes
[ 10% hidden nodes

100 ["150% hidden nodes

I 90% hidden nodes

80
RANDOM DELAYS

60 I 0 minute random delay
[ 5 minutes random delay
40 730 minutes random delay
I 60 minutes random delay

20 FINGERPRINT MASKING

Tier-Il and Tier-1ll DA
Tier-1l and Tier-lll TPR

I 0% fingerprint masking

0 ) )
. . ) . 10% fingerprint masking
Faraday Random Fmgerp”nt Faraday Random Fmgerp”nt [150% fingerprint masking

Caging Delays Masking Caging Delays Masking I 90% fingerprint masking
(a) Duration Accuracy (b) True Positive Rate (c) Legend

Figure 8. Effect of signal attenuators, delays, and fingergnt masking on duration accuracy (DA) and true positive rate (TPR) of Tier Il and Ill
events

guideline #4 to use fingerprint masking only in sensors that
cannot tolerate any delays, such as wireless light switches
fall sensors and in sensors/frooms where signal attenuators
are infeasible.

For evaluation purposes, we use a simple model to simulate
various degrees of fingerprinting error. We assign a scalar
fingerprint/ D; using a uniform random distribution to each
devicei such thaD < ID; < L. When a device transmits,
the adversary observes some fingerpfilt = N(ID;, o)

02 ] and identifies the transmitter to he-gmin,|ID — ID;|.

Percentage Reduction in Node lifetime

% =00 1600 1300 Thus, fingerprinting errors are likely to increase as tha-sta
Latency period in seconds dard deviatiorr increases. We simulate fingerprint errors
on the raw data by gradually increasimgintil it equals the
Figure 9. Effect of period of transmission on node lifetime actual length of the feature spaée set to40 in our case.

Figure 10 shows that small fingerprint errors are effective
at reducing Tier Il and Il EDR. Also, figure 8 shows that
sive power consumed by redundant transmissions. Thus, wWefingerprint masking has a similar effect to random delays in
recommend in design guideline #3 that periodic transmis- terms of Tier Il and Ill DA and TPR, causing a significant
sions be used for binary, non-emergency sensors in the liv-drop in both duration accuracy and true positive rate. Intro
ing room and bedroom. This will hide Tier 0 DA with only  ducing fingerprint errors is effective because it distoeis-s
a negligible power cost, where the other techniques are ex-sor clustering as devices from different rooms appear to fire

pensive. Indeed, we implemented periodic transmissions ontogether, and also distorts the features used in our clarssifi
bedroom and living room sensors and found that this reduced

Tlel’ 0 DA by 17% |n Slng|e person homeS and a S'gn'f'cant |ntr0ducing Spurious or Fake Transmissions

71% in multi-person homes. Yang et al [9] propose a countermeasure for traffic timing
analysis in which fake and real transmissions are combined
Using Fingerprint Masking in such a way that a fixed probability distribution is main-

We can also preserve privacy throufiigerprint masking tained for time between transmissions. Real transmissions
in which we hide the fingerprint of a transmitter. One ap- are delayed to follow the probability distribution when nec
proach to doing this might be to use potentiometers insteadessary. This countermeasure can be applied to our FATS
of resistors for all radio circuitry, and to vary these dgrin  attack too. Similar to periodic transmissions, fake trans-
each transmission. Another approach might be to wire to- missions would essentially ensure 100% privacy with some
gether multiple sensors and use a common radio for all of transmission delay but with a lower power consumption,esinc
them, so that the individual source fingerprint is hidden. As we are only adding some fake packets rather than transmit-
a variation, a sensor can also be wired to multiple radios, ting large constant data payloads periodically. Thus, we re
each of which might have a different set of sensors assignedommend in design guideline #5 to use spurious or fake trans-
to it, to further obfuscate the fingerprints. One problenhwit missions on high bandwidth sensors such as cameras or mi-
fingerprint masking is that it creates anms racescenario crophones that transmit data occasionally.

in which the adversary and hardware designer must contin-

ually try to outsmart each other to uncover and hide new Hybrid Schemes

features respectively. Because of this challenge and th@ ne Based on our design guidelines, it is clear that each of our
to change existing radio hardware, we recommend in designprivacy solutions is best suited to certain kinds of senands
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layer wireless privacy attacks such as FATS, and our design
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is better at protecting certain types of information. There
fore, many of these solutions will be useddombination

in a real home wireless system with diverse sensor types.
To demonstrate that such a hybrid approach offers excellent
privacy protection, we implemented several hybrid sohgio
that include the techniques listed in our design guidelines
namely PT - Periodic Transmissions on living and bedroom
sensors, Signal Attenuators and Random Delays (SA and
RD) on bathroom and kitchen sensors, and FM - Fingerprint

Masking. The effect of these hybrid schemes on Tier Il and 1°-

Tier Il EDR and Tier 0 DA is shown in figure 11. The hy-
brid schemes shown are annotated with details relating to
the extent to which each technique was applied: for exam-
ple, 40% FM refers to 40% feature deviationrRD 20 min

to a 20 minute random delay, ad@% SAto 40% hidden
nodes. Based on the results shown in figure 11, scliime

RD 20 minshould be used effectively in homes where such
delays are acceptable to hide information from all tiers of
the FATS attack with minimal costs. For homes where such
delays are not acceptable, one of the other hybrid schemes

should be chosen based on the implementation costs afford-20-
21.

able. Schem®T + 20% SA + 20% FMlooks promising,
since it requires neither extensive signal attenuatiorener
tensive fingerprint masking, but achieves excellent pyivac
preservation with relatively small costs.

CONCLUSIONS
Our design guidelines to guard against the FATS attack may

become increasingly important as wireless sensors becomezas.

more ubiquitousin homes and residential environments. Mil
lions of homes are already vulnerable to the FATS attack,
and new systems are being deployed at an ever increasing

rate. Also, we believe that the FATS attack is just one in-
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2.

SA 20% +FM 20% 8.

10.

12.

13.
14.

16.

18.

23.

guidelines are a first step toward thwarting such attacks.
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