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ABSTRACT
In this paper, we first present a new privacy leak in resi-
dential wireless ubiquitous computing systems, and then we
propose guidelines for designing future systems to prevent
this problem. We show that we can observe private activi-
ties in the home such as cooking, showering, toileting, and
sleeping by eavesdropping on the wireless transmissions of
sensors in a home,even when all of the transmissions are
encrypted. We call this the Fingerprint and Timing-based
Snooping (FATS) attack. This attack can already be carried
out on millions of homes today, and may become more im-
portant as ubiquitous computing environments such as smart
homes and assisted living facilities become more prevalent.
In this paper, we demonstrate and evaluate the FATS attack
on eight different homes containing wireless sensors. We
also propose and evaluate a set of privacy preserving design
guidelines for future wireless ubiquitous systems and show
how these guidelines can be used in a hybrid fashion to pre-
vent against the FATS attack with low implementation costs.
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INTRODUCTION
Wireless sensors are becoming ubiquitous in homes and resi-
dential environments. Elderly monitoring and assisted living
facilities are deploying sensors to monitor the medicine cab-
inet, toilet, shower, sinks, stove, and other appliances [24].
Over 32 million homes in the US have security sensors in-
stalled on doors and windows, and motion sensors installed
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inside and/or outside the home [21]. Over 5 million homes
have X10 devices [6] and ZigBee devices such as wireless
doorbells, appliance controls, wireless smoke detectors,and
wireless light switches. These sensors are often augmented
by personal area networks (PANs) that include wireless pe-
dometers in shoes or wireless EKG sensors on people. These
sensors produce a constant record of theActivities of Daily
Living (ADLs) within a home, thereby enabling a new gen-
eration of ubiquitous computing applications such as smart
homes, elderly monitoring [24], and home security [6].

ADLs are typically very personal and private, and must be
kept secret from third parties. This is particularly true in
medical facilities where ADLs are used to infer medical con-
ditions; these facilities areobligedby HIPAA regulations [5]
to protect this information. In this paper,we present guide-
lines for designing wireless ubiquitous computing systems
in residential environments to preserve private activity in-
formation about the residents.

In the first half of the paper, we present a powerful new at-
tack that allows us to observe private activities in the home
such as cooking, showering, toileting, and sleeping by snoop-
ing on the wireless transmissions of sensors in a home, even
if all of the transmissions are fully encrypted. This attack
needs only the timestamp and thefingerprintof each radio
message, where awireless fingerprintis a set of features
of a RF waveform that are unique to a particular transmit-
ter. Thus, we call this theFingerprintAnd Timing-based
Snooping (FATS) attack. This is a new attack that has not
previously been studied or demonstrated. Wireless finger-
printing and traffic timing analysis are both well-studied tech-
niques. However, we are the first to combine these two tech-
niques to create and demonstrate a novel privacy attack in the
kind of single-hop, wireless networks common in residential
ubiquitous computing.

In the second half of the paper, we propose a suite of tech-
niques to protect against the FATS attack. For example, we
hide packet transmissions from the adversary using signal at-
tenuators, we introduce random delays on transmissions, and
we generate spurious transmissions in order to decrease the
effectiveness of the FATS attack. We find that each of these
techniques has a different tradeoff in terms of privacy pro-
tection performance, hardware costs, and application/user
costs. Based on the cost-benefit profile of each technique,
we present guidelines for applying them most effectively in
typical ubiquitous computing systems. We evaluate these

1



design guidelines and show how many of these guidelines
can be used together in a hybrid fashion to yield very high
privacy protection with minimal implementation costs.

We empirically evaluate both the FATS attack and our suite
of privacy preservation techniques by deploying ubiquitous
computing systems in eight different homes. These sys-
tems contained sensors on salient objects, including sinks,
stoves, showers, and doors, and were used to collect data for
a week or more in each home. We tested a diverse range
of homes, with different floor layouts, different sets of de-
ployed sensors, and occupied by both single and multiple
residents from different age groups and lifestyles. Our re-
sults suggest that the FATS attack is highly effective even
without knowing any prior information about the home, achiev-
ing around 80-95% accuracy on activity recognition in many
homes in the best case. The design guidelines that we pro-
pose greatly decrease the effectiveness of the FATS attack,
reducing the inference accuracy to anywhere from 0 to 15%,
while greatly reducing implementation costs.

BACKGROUND AND RELATED WORK
FATS is a type ofside channel attack, which means that it
uses information revealed by a cryptographic system other
than the ciphertext to infer either the cryptographic keys or
the original data [4]. Some well-known side channel at-
tacks include the TEMPEST attack, which uses leaked elec-
tromagnetic radiation from a computer monitor to infer the
plain text input to the system [17], and a recent study that ex-
ploits physical properties of variable bitrate encoding schemes
to infer the movie a person is watching on commercial de-
vices [23].

Wireless fingerprintingis a well-studied technique in which
physical characteristics of RF transmissions are used to dif-
ferentiate between messages from different radios, even when
those radios have the same model and manufacturer. Statis-
tical features of transient signalamplitudehave been used to
fingerprint Bluetooth devices [15] with false positive rates
of 5% and detection accuracies as high as 93%. Similar re-
sults have been observed on 802.11 WiFi radios [14] and on
sensor nodesusing the ChipCon CC1000 radio [22]. We dis-
cuss the hardware requirements for fingerprinting when we
discuss deployment details in the next section. The above
work on wireless fingerprintingis different fromsoftware-
based fingerprinting, such as recent work that identifies and
tracks users of 802.11 enabled devices by exploiting im-
plicit identifiers in 802.11 network traffic [20]. Wireless fin-
gerprinting is usually used toenhanceprivacy by enabling
hardware-based authentication [14], not to compromise it.
A recent study proposed using wireless fingerprints to com-
promise privacy in vehicular sensor networks [11], but did
not combine fingerprints with traffic timing analysis.

The FATS attack is different from most existing traffic anal-
ysis attacks. Previous work has demonstrated that Internet
traffic patterns in wired networks can be used to match a
sender with a recipient [10], and multi-hop radio traffic in
wireless sensor networks can be used to locate the sensor
source or the base station [8, 16]. The countermeasures for

these attacks require changing network flow patterns at the
routing level. The FATS attack uses fingerprints to do traf-
fic analysis in a single-hop network, and so is not affected
by such countermeasures. Yang et al [9] describe a related
traffic analysis attack in which an adversary can infer when
a network event has occurred by observing global transmis-
sion timestamps alone, but this work does not combine trans-
mission timestamps with wireless fingerprints.

Our multi-tier FATS algorithm infers activities such as cook-
ing, showering and toileting. Activity recognition in the
home setting using simple binary sensors is a hard problem
and has been well studied in the literature [24, 25]. We are
studying a simpler version of this problem here, since our
main goal is to show what the adversary can infer using only
wireless fingerprints and timing information. Also, the FATS
attack assumes a home fitted with simple wireless sensors [2]
as opposed to other approaches that use RFID tags on house-
hold objects coupled with wearable RFID readers [25]. Our
attack is more suited to awireless sensor systemthan to an
RFID-based system, since it’s easier to snoop on relatively
long range wireless transmissions than on short-range RFID
signals. We believe that both types of systems will be com-
monly used in the future.

THE FATS ATTACK
We developed the multi-tier FATS inference algorithm to in-
fer information about a home and its residents from just the
timing and fingerprints of radio transmissions. Our inference
algorithm is surprisingly robust to the diversity of homes,
people and sensed objects in our deployments and can in-
fer detailed resident activity information with high accuracy.
We now provide an overview of the FATS inference algo-
rithm. We explain our algorithm in terms of its logical view,
as depicted in Figure 1, as well its concrete operations on
real data, as depicted in Figure 2. Firstly, figure 1 shows a
Tier 0, where the adversary only has access to timestamps,
but not fingerprints. In Tier 0, the adversary can only detect
very general activities such as home occupancy or sleeping.

In Tier I , the adversary uses fingerprints to associate each
message with a unique transmitter, depicted by the black
lines in Figure 2. Then, these transmitters are grouped into
sensor clusterscorresponding to rooms in the home based
on similarities in their transmission patterns, shown by the
cluster labels on the left of Figure 2. The approximate num-
ber of residents in the home can be inferred by observing
simultaneous activity in multiple rooms, as shown in Fig-
ure 1. InTier II , specific features are first extracted from
the combined transmissions of all devices in a spatial clus-
ter, denoted by the red lines in Figure 2 beneath each cluster.
These features are passed to a classifier that identifies each
room as either a kitchen, bathroom etc. Figure 1 shows that
these room labels can be used to infer the number of times
the residents visit, for example, the kitchen or bathroom each
day. Finally, inTier III , another classifier is used to de-
termine the likelihood of a sensor being the motion sensor,
stove sensor etc. This information can be used to recognize
subtly different activities, namely cooking hot and cold food
or showering, toileting, and grooming, as shown in figure 1.
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Figure 1. The FATS Inference Algorithm

Other private medical and personal information could be in-
ferred if the adversary is able to make further assumptions,
perhaps by knowing information about the specific residents.

In the rest of this section, we describe in more detail, the de-
sign and evaluation of the four tiers in our FATS inference al-
gorithm. First, we describe the details of our wireless home
deployments on which the FATS attack was demonstrated
and evaluated. We then list the evaluation metrics necessary
to measure how well the FATS adversary infers private infor-
mation. Finally, we describe the algorithms used in the four
tiers of our inference algorithm. We follow the algorithmic
description of each tier with an evaluation of how well that
tier infers private information from our system deployments.
The evaluation of each tier assumes ideal, unrealistic condi-
tions of 100 % packet reception and 100% fingerprint accu-
racy. We evaluate our algorithm this way to see what the ad-
versary can learn in the best case. However, we do conclude
this section with an evaluation of the overall FATS inference
algorithm under practical conditions with both packet loss
and fingerprint errors.

Deployment Details
We empirically evaluate the FATS attack by collecting real
sensor data from homes containing off-the-shelf wireless X10
motion sensors and contact sensors. Motion sensors were
placed in each room and contact switches were placed on
doors, sinks, toilets, showers, refrigerators, stoves, and cab-
inets, some of which are shown in Figure 3. This type of in-
strumentation might be typical of elderly care or home mon-
itoring applications [19]. Data was collected in each home
for seven days or more.

To be sure that our evaluation is not specific to a particular
home or type of home, we deployed the X10 devices in eight
diverse homes. All homes had different floor plans, a dif-
ferent number of sensors, different items being monitored,
and a different number of residents with diverse age groups
and occupations. Some homes had three male graduate stu-
dent residents while other homes had a married couple and
mother-in-law. Layouts varied from studios to two-bedroom
apartments. A summary of the diversity of homes is shown
in table 1. Hereafter, we label the single person homes A
through D and the multi-person homes E through H.

Figure 2. The textual labels and logical groupings are derived from the
raw sensor data (black lines) by our tiered inference algorithm.

(a) Refrigerator (b) Sink

Figure 3. Examples of the sensors we deployed in eight different homes

To fingerprint radio sources, the FATS adversary could ei-
ther simply use the RSSI values [13] of radio messages,
which is less accurate, or use an antenna connected to a
high frequency oscilloscope or a commercial integrated sig-
nal analyzer with built-in fingerprinting software [1]. Even
though many of these snooping devices are currently costly
and power hungry, it is expected that cheaper devices will
be available as wireless fingerprinting matures and becomes
increasingly important for hardware-based authentication. It
is easier for an adversary to launch the FATS attack if she
has access to uninterrupted power, either from an unattended
outdoor power outlet nearby, an adjacent apartment or a dis-
tant surveillance area with powerful directional antennae.
We have performed experiments to validate that wireless mica
motes inside our office buildings can be snooped upon from
the outside. Also, X10 radios have a long radio range and
snooping on these devices is as easy as driving around with
an X10 receiver to receive unencrypted X10 camera data
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Home Number Number Number Number
of Sensors of Rooms of people of firings

A 13 3 1 5888

B 22 5 1 3074

C 16 4 1 4020

D 16 4 1 10326

E 12 4 3 14340

F 15 5 3 20534

G 14 4 2 10964

H 16 5 2 16571

Table 1. Characteristics of the eight homes used in our deployments

[3]. In our deployments, we used an X10 receiver directly
inside the home to record a timestamp and device ID for
each radio message. We do so in order to study both (i) a
best case scenario where the adversary hasperfectsnooping
capabilities, and (ii) a more realistic scenario with simulated
packet loss and fingerprinting errors.

Evaluation Metrics
Each tier of our inference algorithm will produce a set of res-
ident activity time intervalsI that are defined by a start time
and an end time. We also produce a set ofground truthac-
tivity intervals Î by hand-labeling the sensor data after data
collection is over. We use a min-cost bipartite matching al-
gorithm to pair each interval inI with an interval inÎ. Then,
we use three metrics to quantify the correctness of the infer-
ence algorithm:

1. Event Detection Rate (EDR):the percentage of intervals
in Î that were mapped to some interval inI.

2. True Positive Rate (TPR): the percentage of intervals in
I that were mapped to a real event inÎ

3. Duration Accuracy (DA): the absolute difference in du-
ration between events inI and their matched events in̂I

A EDR value of 60% would be produced if 10 cooking events
occurred but only 6 were detected. A TPR value of 60%
would be produced if the adversary detected 10 cooking events
of which 4 were false alarms. By measuring both EDR and
TPR, we ensure that the FATS algorithm does not achieve a
high EDR simply by generating a large number of spurious
events. A DA of 60% would be produced if a cooking event
takes 100 minutes, and the algorithm indicates an event of
either 60 minutes or 140 minutes.

Tier-0: General Activity Detection
An adversary can detect activity in a home even without
wireless fingerprinting simply by snooping on radio activ-
ity and correlating radio activity with human activity inside
the home. In Tier 0, we implemented a simple algorithm
that identifies silent periods during the day asawayevents,
silent periods during the night assleepevents, and all active
periods to behomeevents. To reduce the effect of spuri-
ous sensor activity, we did not count the first four transmis-
sions each hour as true radio activity. Sleep and home event
detection has 85 to 100% duration accuracy (DA) in both

single and multi-person homes, as shown in Figure 5. In
multi-person homes, only the aggregate activity can be in-
ferred, such as wheneveryonein the home was sleeping or
not. This baseline privacy leak does not require wireless fin-
gerprinting, and can already be applied today to the over 32
million homes in the US that have wireless home security
sensors [21]. In subsequent sections, we show that wireless
fingerprintingin combinationwith transmission timestamps
allows the adversary to infer much more detailed informa-
tion.

Tier-I Clustering
The goal of Tier I is to identify which sensors are in the
same rooms. It does this by assuming that sensors in the
same room fire at similar times due to human activity in the
room. Thus, we use atemporal distancecalculated between
the transmission patterns of each pair of sensors to clusterto-
gether those sensors that have small distances to each other.

We denote the set of all devices (identified using their unique
fingerprints) to beID, and the vector of all transmission
timestamps from each devicei ∈ ID to be Ti. We use
bracket notation to index into vectors, so thekth timestamp
from nodei is referred to withTi[k].

The clustering algorithm is then defined as:

forall i, j ∈ ID

for h = 1 to length(Ti)

distij [h] = ∞

for k = 1 to length(Tj)

disthk = |Ti[h] − Tj [k]|

if disthk < distij [h]

distij [h] = disthk

Dij = min(median(distij), median(distji))

D′ =SPDIST(D)

F =CMDS(D′)

CLUSTER=k-means(F, k)

For each pair of devicesi andj, we first compute the differ-
ence in time between each transmission ofi and theclosest
transmission ofj, creating a difference vectordistij with
length |Ti|. We then calculate thetemporal distanceDij

between devicesi andj to be the minimum of the median
of the time difference vectorsdistij anddistji. These dis-
tances are stored as elements of the symmetric distance ma-
trix D of size |ID| × |ID|, which holds the distances be-
tween each pair of transmitters.

Not all devices in the same room will be temporally corre-
lated; for example, the dishwasher may have a large tempo-
ral distance from the refrigerator because they are never used
together, even if both devices have small temporal distances
to something else like the sink or a motion sensor. Therefore,
we use Dijkstra’s shortest path algorithm to convert the dis-
tance matrixD to a new matrixD′ of metric distances by re-
placing each distanceDij by the shortest path distanceSPij

throughD. We then use classical non-parametric multi-
dimensional scaling (CMDS), to convert the distance matrix
D

′ into positions of the|ID| sensors in|ID|-dimensional
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Figure 4. Accuracy of clustering sensors into rooms in each of eight homes, using bothdbscan and k-means with 4 different values ofk.

space. Finally, we use thek-means clustering algorithm to
cluster together sensors that are temporally correlated, arriv-
ing at a mappingCLUSTER : ID → C, from the source
identity i ∈ ID of every device to one of thek = |C| clus-
ters. Takada et al [7] describe a related algorithm to group
co-located sensors together based on time series data; how-
ever, the underlying sensors used, the distance matrix com-
putation and the clustering algorithm used there are differ-
ent.

Tier-I Evaluation
To compute clustering accuracy, we first compute a maximal
min cost bipartite mapping between the setC of computed
clusters and the set̂C of true room clusters obtained from
the deployment plan. We define a devicei ∈ ID to becor-
rectly clusteredif i’s computed clusterc ∈ C is mapped to
a room clusterr ∈ Ĉ such that devicei is actually in room
r. We then defineclustering accuracyto be the proportion
of devices that are correctly clustered. Figure 4 shows the
clustering accuracy across homes for multiple values ofk,
and thenon-parametric db-scan clustering algorithm[12].
Maximal clustering accuracy is achieved when the value of
k matches the number of rooms in each home. However,
our overall inference algorithm does not require the exact
numberk of rooms in the home and is robust to incorrect,
larger valuesk. The parameterless db-scan algorithm per-
forms poorly in several homes where all devices are highly
correlated temporally. Thus, we need a parameterized clus-
tering technique like k-means with large enoughk to enforce
a reasonable partitioning of the sensors into clusters corre-
sponding to rooms in the home. It is important to note in fig-
ure 4b that clustering accuracy remains high inmulti-person
homesin spite of simultaneous activity in different rooms;
this is because we still get sensors firing in the same room
most of the time. Though we do not show it here, it is possi-
ble to infer the number of residents currently in the home by
tracking simultaneous activity in multiple rooms.

Tier-II Room Classification
The goal of Tier II is to identify the function of each room
as a bathroom, kitchen, bedroom, or living room. This tier
makes two assumptions: (i) different houses have similar
rooms (ii) similar rooms across homes can be identified us-
ing specific features of room usage. To identify the function
of each room, this tier passes features computed for each

room based on the the overall sensor transmissions from the
room to a bi-partite matching based classifier.

Once the devices are clustered, we generate an overall se-
ries of timestampsTc of all transmission timestamps from
all sensors in sensor clusterc ∈ C. We also generatetem-
poral activity clusters, used in the features below, by us-
ing thedb-scanalgorithm to cluster the timestamps inTc.
Each temporal activity cluster forms a continuous temporal
block from Tc with a relatively high density of sensor fir-
ings. db-scan [12] performs well here because it automati-
cally leaves out outliers and computes high-density clusters
unlike k-means. We then generate a number of features for
every room clusterc from the seriesTc listed below.

• the number of transmissions per day from the room
• the median inter-transmissions time within a room
• the median length of temporal activity clusters
• the total number of transmissions during the day
• the total number of transmissions during the night
• the cluster to transmit first after long silence periods
• a histogram of transmission, with four hour granularity

We use these features to create a feature vectorFr for ev-
ery roomr. To classify rooms in a test home, we set apart
a small number of other homes from our deployment to pro-
vide training data. We defineR to be all possible room la-
bels (e.g., bedroom, kitchen, bathroom, etc) and create a sin-
gle feature vectorFr for every labelr ∈ R by averaging the
feature vectors of all rooms in the training data with the same
label. Then, to label the rooms in a test home, we compute
a min-cost bipartitematching between the feature vectors
Fc : c ∈ C from the clusters of that home and the training
feature vectorsFr : r ∈ R. We define the cost of a match
between two feature vectors to be the sum of theEuclidean
distancesbetween corresponding individual features.

The resulting bipartite matching represents the room label-
ing. Unlike a conventional classifier, the matching process
allows us to enforce mutual exclusivity of room labelings;
for e.g., a home with three rooms cannot have two bathrooms
or three kitchens. When necessary, we can allow for multi-
ple rooms with the same label in a home by simply including
extra copies that room in the set of room labels. In our ex-
periments, we observed that all rooms were correctly labeled
across both single and multi-person homes. In this tier, we
infer the timing and duration ofbathroom and kitchen visits
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Figure 5. Overall Inference Accuracy on events detected in Tier 0, Tier II, and Tier III, using all three metrics: EDR, TPR , and DA.

by simply counting the temporal activity clusters that occur
in each room classified as the bathroom or kitchen.

Tier-II Evaluation
Assuming a best case scenario of perfect packet reception
and fingerprinting accuracy, figure 5 shows that the adver-
sary can infer the duration and timing of bathroom and kitchen
visits with 95-100% accuracy across both single and multi-
person homes using our room classification algorithm. Of
course, in multi-person homes, the variables represent how
many timesall residents in the home visited the bathroom or
kitchen in total.

Tier-III Sensor Classification
The goal of Tier III is to identify activities in the home, such
as cooking, showering, or toileting. This is a two step pro-
cess. In step 1, we classify sensors to obtain amapping
vector for each unknown sensor indicating the likelihood of
its matching with known sensors such as the stove, shower
etc. The mapping vectorMs for sensors is indexed by the
known sensor types; for example,Ms[stove] indicates the
probability that sensors is thestove sensor. In step 2, we use
these mapping vectors to classify activities based on which
sensors are likely to be active during an activity. In this tier,
we assume that we can use specific features in sensor firing
patterns observed across homes to obtain a mapping vector
for each sensor. However, we do not require the sensor clas-
sification to be 100% accurate and show here how inaccurate
mapping vectors can be used to accurately classify activities.

We calculate a feature vector for each sensor, using features
similar to those described in Tier II, obtained from temporal
characteristics of sensor firings. Due to space constraints,
we don’t discuss the exact features used here. To classify
each sensor, we pass each feature vector through a standard
linear discriminant analysis(LDA) classifier. For each of
the eight homes, we constructed this classifier using training
data obtained from a subset of the remaining seven homes
with hand-labeled sensor types. We do not assume that all
houses have exactly the same set of sensors, but we do as-
sume that all types of sensors in the test home have been ob-
served at least once in a training home. We train a separate
classifier for each room in a home: a sensor from the kitchen
cluster in Tier II will not be classified as a bathroom sensor.
Thus, the room classification results from Tier II are used to

improve the sensor classification results in Tier III. The out-
put of this classification procedure is the mapping vectorMs

for each sensors in a home. In our experiments, the map-
ping vectors were accurate for bathroom sensors, but were
not very accurate for kitchen sensors, where activities like
cooking produced similar features in several sensors, suchas
the stove and cabinet sensors. These objects are often either
misclassified as each other or partially classified as multiple
objects. However, these incorrect classifications can still be
used to recognize activities in Tier III.

To recognize activities, we calculate a feature vector of every
temporal activity clusterin every device cluster. These fea-
ture vectors include (i) start time, (ii) duration, and (iii) the
total number of times that each known sensor type transmits.
Feature (iii) is obtained by adding the mapping vectors for
every sensor firing in the activity cluster. If a device is par-
tially classified as multiple types of sensors, partial counts
are maintained in the feature vector. This ensures that sen-
sors used in the same activity (such as the pantry and stove
used in cooking) that are misclassified or partially classified
as each other do not affect the overall counts of known sen-
sor firings in feature (iii). We then classify eachtemporal
activity clusteras an activity using an LDA classifier that
was trained on other homes with hand-labeled activity la-
bels. We used this approach to recognizeshowering, wash-
ing/grooming, and toiletingactivities in the bathroom, and
to recognizecooking hot foodand preparing cold foodin
the kitchen.

Tier-III Evaluation
Figure 5 shows the activity recognition results for Tier III. In
single person homes, the average accuracy of the adversary
in inferring detailed activities is around 80%, while the accu-
racy in multi-person homes is lower, but still well above the
baseline of random guessing. The lower accuracy in multi-
person homes is due to spatial clustering errors introduced
by simultaneous activity in many rooms; for example, in
home E, an incorrect clustering of the shower sensor with the
living room prevented us from detecting showering events.
We note, however, that the high proportion of activities that
are correctly classified indicate that the simple assumptions
made by the FATS attack in Tiers I, II, and III appear to be
true across our diverse sample set of homes, and that this
attack can be used to infer private information about the res-
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Figure 6. Effect of Signal Attenuators on event detection rate (EDR) of Tier II and III events, and on duration accuracy (DA) of Tier 0 events

idents of a home simply by snooping on the radio messages
of its sensors.

FATS attack evaluation under realistic conditions
We now evaluate the FATS attack in practical, non-ideal set-
tings, where the adversary will observe both packet loss and
fingerprint errors. The evaluation in figure 6 models packet
loss as a percentage of the nodes hidden from the adversary.
Even under pessimistic scenarios such as 30% of the nodes
hidden from the adversary, the FATS attack still infers about
50% of Tier II and Tier III events and detects Tier 0 events
with about 80% DA. Tier 0 DA is unaffected by fingerprint
errors, since it simply relies on the transmission timestamps.
Figure 10 shows how fingerprint errors, modelled as a fea-
ture deviation in the x-axis and explained in detail in the
next section, affect Tier II and Tier III EDR. Under pes-
simistic feature deviations of about 50% of the total feature
space (deviations of 20 for a feature space of 40), the adver-
sary still infers upto 50% of Tier II and Tier III events in the
home. Assuming both 20% packet loss and 20% feature de-
viations, the adversary still infers Tier II and Tier III events
with 40% EDR, and Tier 0 events with 85% DA on average.

DESIGN GUIDELINES TO ENHANCE PRIVACY
In this section, we evaluate a number of techniques to thwart
the FATS attack. Each of these techniques has a different
cost-benefit profile, and we analyze how and when each tech-
nique is most effective. We present the following five guide-
lines for building wireless ubiquitous computing systems in
homes or residential environments. We justify each guide-
line in subsequent subsections. We conclude by presenting
a hybrid approach that combines many of these guidelines
to achieve very high privacy protection with very low imple-
mentation costs.

1. Signal attenuators should be deployed in a select few
rooms such as kitchens or bathrooms where many activi-
ties occur to effectively mask activities in these rooms.

2. Random delaysof the order of 15 to 20 minutes should
be added to the transmissions of sensors in the bathroom
and kitchen that are involved in short duration activities to
effectively hide these activities.

3. Periodic transmissionsshould be used on binary or low
bandwidth sensors that are typically involved in long-duration

activities, such as bedroom and living room sensors.
4. Fingerprint masking should be used on time-critical sen-

sors like fall detection sensors, where latency introduced
by random delays or periodic transmissions is unaccept-
able, or on sensors/rooms where signal attenuators are in-
feasible.

5. Spurious or fake transmissionsshould be combined with
real transmissions for sensors such as camera or micro-
phone sensors that cannot afford the high energy cost from
periodic transmissions.

Using Signal Attenuators
The most obvious approach to protect against the FATS at-
tack is to prevent the adversary from hearing messages in
the first place. There are several possible signal attenuators,
and we list three here: (i) Using very low power transmis-
sions and a multi-hop route to the base station: this incurs a
moderate hardware cost in terms of additional router nodes,
and reduces reliability (ii) Using a wired connection to the
base station: this requires quite a lot of deployment effort
and time, and (iii) Using Faraday cages: this is expensive
to set up and prevents outside communication from hidden
rooms, which is essential for eldercare applications. We rec-
ommend scheme (i) since it has the least cost among the var-
ious schemes, though it does not have the same protection
guarantees as scheme (ii).

We implement two schemes for signal attenuators in our
evaluation, namely: (i)SAA - SignalAttenuators inAll rooms,
and (ii) SABK - Signal Attenuators in theBathroom and
Kitchen only, as per design guideline #1. Figure 6 shows
the effectiveness of the FATS attack as we increase the per-
centage of nodes hidden by signal attenuators from 0-90%.
Figure 6(a) shows that signal attenuators are very effective at
reducing the EDR for Tier II and Tier III activities; with 40%
hidden nodes, EDR is reduced to about 30-35% in scheme
SAA and to 20% in scheme SABK. Thus, many of the ac-
tivities detected in Tiers II and III can be hidden effectively
by using signal attenuators in just the bathroom and kitchen.
Figure 8 shows that signal attenuators do not have a strong
effect in reducing the Tier II and Tier III DA and TPR. The
TPR actually increases as more nodes are hidden, because
the number of events detected becomes small enough that
almost no events are spurious. Figure 6(b) shows that signal
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Figure 7. Effect of random delays on event detection rate (EDR) of Tier II and III events, and on duration accuracy (DA) of T ier 0 events

attenuators, even if implemented in the entire home (SAA),
are not very effective at reducing the DA for Tier 0 informa-
tion; with 40% hidden nodes, the DA is nearly 90% in single
person homes, and is over 60% in multi-person homes. This
is because the sensors that are not hidden by the signal atten-
uators still reveal thepresenceof human activity very well.
Thus, we recommend in design guideline #1 that signal at-
tenuators be used in select rooms such as the bathroom and
kitchen (SABK) where many activities occur to reduce im-
plementation cost and hide these activities effectively.

Using Random Delays
Because all tiers of the FATS algorithm rely on transmission
timestamps, modifying the transmission time is one way of
reducing the effectiveness of the attack. Thus, we propose
adding random delays to sensor transmissions bounded by
a maximum delay parameter. We implemented two schemes
in our evaluation of random delays: (i)RDA - RandomDelays
onAll sensors, and (ii)RDBK - RandomDelays onBathroom
andKitchen sensors involved in short duration activities only,
such as cooking and toileting. Figure 7 shows that the effec-
tiveness of the FATS attack decreases as increasingly long
random delays are added to sensor transmissions. Figure 7(a)
shows that even small random delays of about 10 minutes
are highly effective at reducing the EDR for Tier III events
such as cooking and showering to about 50-60% under both
schemes RDA and RDBK. This is because random delays
introduce errors in Tiers I, II and III which use the device
transmission timestamps as input. Also, figure 8 shows that
random delays of about 30 minutes reduces both DA and
TPR of Tier II and III events to about 40%; i.e., more than
half the events detected by the adversary are false positives,
and the inferred duration of these events is highly inaccurate.
As seen in figure 7(b), longer random delays of about 3 hours
reduce Tier 0 DA to about 60% in single person homes and
a much lower 25% in multi-person homes. In multi-person
homes, there are only a few hours per day with no activity
from all residents, and 3 hour random delays ensure that al-
most no period is inactive, resulting in the larger duration
errors. However, we do not recommend such long delays of
the order of hours to hide long duration Tier 0 activities such
as home presence and sleeping.

Despite their effectiveness, random delays conflict with the

requirements of real-time sensors such as wireless light switches,
or fall detection sensors that need to transmit data immedi-
ately. Also, we need to consider if random delays of the
order of 15-30 minutes are acceptable to the end users; they
might be certainly acceptable to remote healthcare providers
who are only interested in long term trends such as a decline
in the ability of residents to perform ADLs. For other users,
we need user queries to verify if such delays are acceptable.
Given the similar performance of schemes RDA and RDBK
in protecting Tier III events, we recommend in design guide-
line #2 that random delays of the order of 15 minutes be ap-
plied to non-emergency sensors in the bathroom and kitchen
if the end users find such delays acceptable.

Using Periodic Transmission
If a sensor transmits periodically instead of only when it has
data to transmit, it makes the transmission timestamps inde-
pendent of the data, making it impossible for the adversary
to infer any information. Thus, periodic transmission on all
sensors guarantees 100% privacy. We first estimate the ex-
tra power consumed by periodic transmissions for typical
binary home sensors, using empirical power consumption
data on the telos mote with the CC2420 radio [18], a pop-
ular hardware platform in wireless sensor network research.
We assume that a mote sleeps for a latency periodP and
wakes up to transmit a large enough data payload to capture
binary event informationfor the pastP seconds, along with
the mandatory header fields. The total percent reduction in
node lifetime for different periodsP is shown in Figure 9.
As the periodP increases, the percent reduction in node life-
time decreases along with the power consumed by periodic
transmissions; this is because as the period increases, the
number of packets and the associated energy wastage from
packet overhead decreases. We note thatthe total reduction
in node lifetime for periodic transmission with a period of
8 seconds is only 8.75% of the total original lifetime of the
node; thus, periodic transmissions is an excellent solution
for binary sensors. The low power consumption here is be-
cause the network is one-hop, and nodes do not need to go
into receive mode, unlike other sensor network deployments.

Despite their effectiveness, periodic transmissions cannot be
applied to (i) real-time sensors, because of the delay limita-
tion, and (ii) high bandwidth sensors, because of the exces-
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Figure 9. Effect of period of transmission on node lifetime

sive power consumed by redundant transmissions. Thus, we
recommend in design guideline #3 that periodic transmis-
sions be used for binary, non-emergency sensors in the liv-
ing room and bedroom. This will hide Tier 0 DA with only
a negligible power cost, where the other techniques are ex-
pensive. Indeed, we implemented periodic transmissions on
bedroom and living room sensors and found that this reduced
Tier 0 DA by 17% in single person homes and a significant
71% in multi-person homes.

Using Fingerprint Masking
We can also preserve privacy throughfingerprint masking,
in which we hide the fingerprint of a transmitter. One ap-
proach to doing this might be to use potentiometers instead
of resistors for all radio circuitry, and to vary these during
each transmission. Another approach might be to wire to-
gether multiple sensors and use a common radio for all of
them, so that the individual source fingerprint is hidden. As
a variation, a sensor can also be wired to multiple radios,
each of which might have a different set of sensors assigned
to it, to further obfuscate the fingerprints. One problem with
fingerprint masking is that it creates anarms racescenario
in which the adversary and hardware designer must contin-
ually try to outsmart each other to uncover and hide new
features respectively. Because of this challenge and the need
to change existing radio hardware, we recommend in design

guideline #4 to use fingerprint masking only in sensors that
cannot tolerate any delays, such as wireless light switchesor
fall sensors and in sensors/rooms where signal attenuators
are infeasible.

For evaluation purposes, we use a simple model to simulate
various degrees of fingerprinting error. We assign a scalar
fingerprintIDi using a uniform random distribution to each
devicei such that0 < IDi < L. When a device transmits,
the adversary observes some fingerprintˆID = N (IDi, σ)

and identifies the transmitter to beargminj| ˆID − IDj |.
Thus, fingerprinting errors are likely to increase as the stan-
dard deviationσ increases. We simulate fingerprint errors
on the raw data by gradually increasingσ until it equals the
actual length of the feature spaceL, set to40 in our case.
Figure 10 shows that small fingerprint errors are effective
at reducing Tier II and III EDR. Also, figure 8 shows that
fingerprint masking has a similar effect to random delays in
terms of Tier II and III DA and TPR, causing a significant
drop in both duration accuracy and true positive rate. Intro-
ducing fingerprint errors is effective because it distorts sen-
sor clustering as devices from different rooms appear to fire
together, and also distorts the features used in our classifiers.

Introducing Spurious or Fake Transmissions
Yang et al [9] propose a countermeasure for traffic timing
analysis in which fake and real transmissions are combined
in such a way that a fixed probability distribution is main-
tained for time between transmissions. Real transmissions
are delayed to follow the probability distribution when nec-
essary. This countermeasure can be applied to our FATS
attack too. Similar to periodic transmissions, fake trans-
missions would essentially ensure 100% privacy with some
transmission delay but with a lower power consumption, since
we are only adding some fake packets rather than transmit-
ting large constant data payloads periodically. Thus, we rec-
ommend in design guideline #5 to use spurious or fake trans-
missions on high bandwidth sensors such as cameras or mi-
crophones that transmit data occasionally.

Hybrid Schemes
Based on our design guidelines, it is clear that each of our
privacy solutions is best suited to certain kinds of sensorsand
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is better at protecting certain types of information. There-
fore, many of these solutions will be used incombination
in a real home wireless system with diverse sensor types.
To demonstrate that such a hybrid approach offers excellent
privacy protection, we implemented several hybrid solutions
that include the techniques listed in our design guidelines,
namely PT - Periodic Transmissions on living and bedroom
sensors, Signal Attenuators and Random Delays (SA and
RD) on bathroom and kitchen sensors, and FM - Fingerprint
Masking. The effect of these hybrid schemes on Tier II and
Tier III EDR and Tier 0 DA is shown in figure 11. The hy-
brid schemes shown are annotated with details relating to
the extent to which each technique was applied: for exam-
ple, 40% FM refers to 40% feature deviations,RD 20 min
to a 20 minute random delay, and40% SAto 40% hidden
nodes. Based on the results shown in figure 11, schemePT +
RD 20 minshould be used effectively in homes where such
delays are acceptable to hide information from all tiers of
the FATS attack with minimal costs. For homes where such
delays are not acceptable, one of the other hybrid schemes
should be chosen based on the implementation costs afford-
able. SchemePT + 20% SA + 20% FMlooks promising,
since it requires neither extensive signal attenuation norex-
tensive fingerprint masking, but achieves excellent privacy
preservation with relatively small costs.

CONCLUSIONS
Our design guidelines to guard against the FATS attack may
become increasingly important as wireless sensors become
more ubiquitous in homes and residential environments. Mil-
lions of homes are already vulnerable to the FATS attack,
and new systems are being deployed at an ever increasing
rate. Also, we believe that the FATS attack is just one in-

stance of many potential physical-layer privacy attacks on
wireless ubiquitous systems. Other attacks could be carried
out in offices, factories, and even in urban-scale wireless net-
works. For example, a company that shares an office build-
ing with a competitor may infer a new product launch by
the competitor by observing increased traffic in certain ar-
eas. This study demonstrates the power and ease of physical-
layer wireless privacy attacks such as FATS, and our design
guidelines are a first step toward thwarting such attacks.
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