
46

ViFin: Harness Passive Vibration to Continuous Micro Finger Writing
with a Commodity Smartwatch

WENQIANG CHEN, University of Virginia
LIN CHEN, VibInt AI Limited
MEIYI MA, University of Virginia
FARSHID SALEMI PARIZI, University of Washington
SHWETAK PATEL, University of Washington
JOHN STANKOVIC, University of Virginia

Wearable devices, such as smartwatches and head-mounted devices (HMD), demand new input devices for a natural, subtle,
and easy-to-use way to input commands and text. In this paper, we propose and investigate ViFin, a new technique for input
commands and text entry, which harness finger movement induced vibration to track continuous micro finger-level writing
with a commodity smartwatch. Inspired by the recurrent neural aligner and transfer learning, ViFin recognizes continuous
finger writing, works across different users, and achieves an accuracy of 90% and 91% for recognizing numbers and letters,
respectively. We quantify our approach’s accuracy through real-time system experiments in different arm positions, writing
speeds, and smartwatch position displacements. Finally, a real-time writing system and two user studies on real-world tasks
are implemented and assessed.
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1 INTRODUCTION
Small-sized wearable devices like smartwatches and head-mounted devices(HMD) have grown immensely popular
with today’s users. However, input for these devices remains a challenging problem since they have limited or
even no input space. This often leads to inconvenient interactions and limits device usage in mobile scenarios.
For example, today’s head-mounted devices rely on handheld controllers in one hand or both hands or require
hands to be present in the field of view of a cumbersome camera. Voice input is neither applicable in a noisy place
nor a quiet place, such as a night club or a library. As the capabilities of wearable devices continue expanding, so
too does the demand for subtle, continuous, and always-available ways to control electronics on the go.
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Fig. 1. A continuous micro finger writing system for AR/VR interaction

Input methods using hand or finger writing can satisfy this need. [35] Mid-air hand writing offers new
opportunities for such fast, subtle, and always-available interactions, especially on devices with limited or even
no input space (e.g., wearables). Similar to writing on a trackpad, using the index finger to interact with the
virtual world is a natural method to perform input.

A wide variety of approaches have been considered to enable mid-air hand writing, ranging from using smart
rings [13, 37, 59], to wearing gloves [28, 55], to using RF waves [6, 16, 29, 31, 45, 51]. Most common are systems
that use worn cameras or depth cameras [5, 10, 15, 24, 38, 42, 50] which are generally accurate at tracking fingers
spatially. However, common weaknesses across camera-based systems are the inability to detect the micro-level
finger movement and the need for bulky depth sensors. Additionally, the performance of these computer vision
methods is severely effected as hands move out of the field of the views (FOV) of the cameras. Therefore, most of
these systems require the user to hold their hand in front of the body for interactions. Finally, being able to track
micro-level finger movement is a power and computationally intensive task. Therefore, it requires a headset to
have more batteries, making them heavier, and limiting these devices’ ubiquity.
In this paper, we present ViFin (Vibration Finger), a continuous micro finger writing method using a com-

modity wrist-worn device (as shown in Figure 1). We observe that the micro finger movement causes vibrations.
When users’ index fingers write different numbers or letters, the finger produces small, but distinct vibrations,
propagating through the hand to the smartwatch. With the Inertial measurement unit (IMU) in a commodity
smartwatch we can recognize the user’s finger writing in the air through finger writing vibration. Thus, ViFin
can detect and recognize the vibration of continuous finger writing. Users can write numbers (0−9) and letters
(a−z) with their fingers in the air continuously. The text output can be sent to any displays, such as smartglasses
and smart TVs with wireless protocols.
Notably, existing IMU-based hand tacking systems can only track coarse-grained hand writing since they

required the users to move their hand in a large motion so that the smartwatch on the wrist could have enough
movement for distance calculation. In order to detect fine-grained continuous finger movement, existing systems
required on-finger sensors, such as customized rings and gloves. It is notable that commodity devices are easily
manufactured in large volumes and have become affordable. Thus, a commodity smartwatch to recognize fine-
grained finger writing is more practical and easily-accessed than are customized devices. Some existing work on
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gesture classification, which leverages machine learning for detecting input, only works for static gestures, but
not continuous gestures. ViFin requires no cumbersome instrumentation of the hands or fingers, and works with
commodity wrist-worn devices. Furthermore, ViFin achieves continuous micro finger writing. Additionally,
our system works across users with relatively small training and achieves an accuracy of 90% in recognizing
numbers and letters as shown through a real-time system evaluation with 15 participants. An demo video of
ViFin is available at https://youtu.be/Br1LcEB84XU.

In creating ViFin, we have to overcome many challenges. First, users write in the air continuously; therefore,
segmenting a single number or a letter for labeling and training is complicated. Second, different users might
write the same number or letter differently. In order for ViFin to be adopted, it needs to work across different
users without requiring the user to perform exhausting training. For example, some people write the number 8
in a cross stroke, while others write the number 8 with two circles. Third, ViFin should be robust to many real
scenarios, such as writing during walking, with different writing speeds and gestures, and be resistant to the
watch’s slippage on the wrist.

In response to these challenges, we developed a preliminary study, which implements a concrete finger writing
system to verify that different graphemes of finger writing have unique vibration features. Then, inspired by the
Recurrent Neural Aligner [39], ViFin classifies continuous finger writing numbers and letters. Furthermore, to
make ViFin work across different users, we utilize transfer learning to fine-tune different writing habits. Also,
we design a calibration and update scheme inspired by active learning to further improve the accuracy. Lastly,
ViFin incorporates five training free gestures for extra controls, such as "backspace", and "enter", which execute
in another simultaneous thread.
A real-time system experiment shows that ViFin can work well over one month duration, even though users

write graphemes with different speeds, different arm positions, and various challenging circumstances such as in
a metro and on an airplane. Also, we conducted two user studies of real-world tasks.
In summary, the major contributions of this work are:

• To the best of our knowledge, we are the first to realize continuousmicro finger level writing for a mid-air
system via vibrations with a commodity smartwatch.

• An new algorithm is developed that uses the Recurrent Neural Aligner to classify continuous finger
writing numbers and letters. A real-time system is implemented based on this solution.

• A comprehensive series of experiments evaluate accuracy for individuals and across users, and show the
effects of different training sizes, calibration, spell checking, different writing speeds, different arm positions,
various watch displacements, different environments, mobility, gesture control, and how performance
varies over one month of use.

2 RELATED WORK
In this section, we present existing literature on mid-air hand writing and text entry on wearables. To summarize
the following paragraphs, all existing works only recognize hand writing in large motions, or only recognize
static gestures, or require customized devices, while ViFin recognizes continuous,micro finger-level writing
with commodity devices.

2.1 Mid-air Hand Interactions
There have been some techniques proposed to facilitate fine-grained finger motion as inputs to wearables. A
widely used approach consists of using a body-mounted camera to sense on-body touch input. These cameras have
been placed on the head [14], shoulder [15, 42], chest [7], and wrist [19, 43]. Recognizing hand pose through depth
cameras [33, 44, 46, 47, 60] is another stream of research that investigates capturing the detailed hand posture.
Cameras have a field of view (FOV) problem and require high calculation resources. WiFi-based [6, 16, 29, 31, 45]
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and acoustic-based [34, 52] methods can also achieve micro finger writing. However, these systems also rely on
line-of-sight between the source and the sensors. And the obstacles surrounding the transmitter and receiver
influence reflections.
There has also been work in using bioimpedance [64], capacitive sensing [49, 56] and ultrasound [21] for

discrete hand gesture classification from a wristband. These methods result in discrete, gesture-based interactions,
while ViFin recognizes continuous text writing. Kim et al. used infrared illumination from a customized wrist
to track hand pose [24]. Project Soli [51] uses radio frequency signals to recognize subtle finger gestures. Pyro
enables micro thumb-tip gesture recognition with a pyroelectric passive infrared sensor [12]. Smart rings provide
an attractive form-factor for always-available subtle input. Magic Finger [58] and Light Ring [23] enables users
to interact with surfaces using optical sensors embedded in a wearable ring form factor. Researchers have also
used magnetic tracking for wrist and finger tracking [8, 9, 37]. Another approach is the use of gloves or finger
strips to estimate finger and hand pose [18, 20, 27, 35, 54, 55, 62, 63]. However, all these mid-air finger writing
systems require customized devices attached to the finger, while ViFin achieves finger writing with a commodity
smartwatch, which is more practical and easily-accessed than customized devices.

2.2 IMU Gesture Tracking and Recognition
Due to their rich sensing capability and small size, IMUs have been used to sense various human activities. Based
on the IMU displacement calculation, it is capable of tracking the hand with the IMU on the wrist. Armtrack [40]
tracked the users’ arm/hand with a smartwatch by calculating the accumulated displacement of the smartwatch.
Zhou et al. [65] utilize a kinematic chain to track human upper limb motion by placing multiple devices on
the arm. Cutti et al. [11] utilize the joint angles to track the upper limbs’ movements by placing sensors on
the chest, shoulder, arm, and wrist. AirContour [61] obtained gesture contour and recognized it as characters.
SignSpeaker [17] used IMU to recognize sign language with hand gestures. These works all required large motions
to move the arms/sensors, which may get uninvited attention and be perceived as strange by people.
On the other hand, many works use machine learning based approaches to classify hand gestures. RisQ [36]

detected smoking gestures and sessions with a wristband and used a machine learning pipeline to process
sensor data. Thomaz et al. [48] described the implementation and evaluation of an approach to infer eating
moments using a 3-axis accelerometer in a smartwatch. Xu et al. [57] build a classifier to identify users’ hand and
finger gestures utilizing the essential features of accelerometer and gyroscope data measured from a smartwatch.
Viband [26] leveraged accelerometers of a smartwatch to classify hand gestures, such as flicks, claps, scratches,
taps, and can also recognize grasped motor-powered objects. Serendipity [53] leveraged accelerometer and
gyroscope to recognize five statics discrete gestures, such as pinch, tap, rub, squeeze and wave. Shi et al. used
a finger mounted IMU to detect gesture on a surface [41]. WRIST [59] explores combining IMU data from a
smartwatch and smart ring for distal pointing and gesture interaction. However, all these machine learning based
systems only work for statics and discrete gesture recognition, which is not qualified for continuous text writing.
To summarize, all these IMU systems either calculate the IMU displacements to track the hand movement

from a large motion, or classify the static, discrete gestures based on machine learning approaches. However,
ViFin recognizes continuous and micro finger writing, which is more natural and practical than static gestures
classifications or large motion tracking.

3 PRELIMINARY STUDY

3.1 Observation
When people pronounce different words, their throats vibrate differently. These different vibrations propagate
through the air from one person’s throat to another person’s ears and that’s the way they communicate. With
microphone sensors and a speech recognition technique, machines can also understand human speech by detecting
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Fig. 2. Discrete grapheme of 1, 2, 3, c, a, r.

Fig. 3. Continuous grapheme "123", "car", "cat". The red box shows the front part of the vibrations of the words "car" and "cat".

the unique sounds in the air. We observe that when people write different graphemes in the air with their fingers,
this produces different vibrations too. Although micro finger writing movement is too week to make detectable
sounds and propagate in the air, it does propagate through the hand to the wrist. This vibration can be detected
by an inertial measurement unit (IMU) sensor in a commodity smartwatch worn on the wrist. Figure 2 and Figure
3 show the writing vibration signals of z-axis of accelerator in the smartwatch. As shown in Figure 2, a person
wearing a smartwatch writes single discrete grapheme of 1, 2, 3, c, a, r. It shows that different finger writing
graphemes have different vibration signals. However, as humans talk continuously, people also write numbers or
words by continuous finger writing. Thus, we ask the person to write continuous numbers “123". We also ask
them to write letters continuously with two words, “car" and “ cat”, as shown in Figure 3. We observe that these
three vibration signals are different. Also, the front part of the vibrations remains similar between “car" and “
cat” in the red box as shown in Figure 3. Although we can not find the specific point of transition between each
number in the continuous vibration of “123", we observe that discrete numbers 1,2,3 and continuous numbers
“123" share some common features as shown in Figure 2 and Figure 3. Thus, we think these different micro finger
vibrations may be detected and recognized as continuous text input.

In the following subsections, we verify that each finger writing vibration for a specific number or letter has
unique features and can be classified. Thus, we collect finger writing vibrations for 10 numbers (0−9) and 26
letters (a−z). When a user writes discretely, there is a short pause between graphemes. We detect each pause
(much lower magnitude) to segment each number/letter, then label each of them manually. In addition, a simple
neural network (NN) is utilized to classify the different numbers and letters.

3.2 Data Collection
The user is asked to wear a commodity smartwatch (Huawei Watch 2) on her wrist, then write numbers and
characters in the air with her index fingers. The IMU sensor in the smartwatch detects the smartwatch vibration
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Fig. 4. Combining data from six axes for segmentation based
on energy

Fig. 5. Confusion matrix of numbers

induced by finger writing. To further investigate our initial hypothesis, we asked a single user to write the
numerical numbers from "0-9" and the 26 alphabetic letters from "a-z" thirty times. During writing, a one-second
pause is required between each number or letter in order to manually segment and label the data. The user in this
study is 27 years old with 21.3 body mass index (BMI). Note that the experiments were approved by the relevant
institutes in our university.

3.3 Segmentation
After collecting the vibration signal, we segment the signals on the smartwatch. One current challenge is that
the IMU signals are too weak to be segmented, because the smartwatch is worn on the wrist instead of the
index finger directly. With ViFin, we combine 6-axes signals to improve the SNR (Signal Noise Ratio) to segment
different finger writing samples more easily. Next, our system uses an energy-based threshold approach detailed
in [30] to detect the starting point of the finger writing signals. In this example, we set the frame length as 0.2
seconds, the frame-shift as 0.01 seconds, and the energy threshold as 0.03. Figure 4 shows the results of the
segmentation for the numbers 0−9.

3.4 Aligning
Signal starting points detected by the threshold approach will inevitably have a certain deviation. The devia-
tion between different signals will increase the classification difficulty, especially when we use time-domain
information as features. If we try to calculate the distances between signals without aligning them first, we will
get inaccuracy with large distance results; this occurs even when the distance calculated is the same signal but
misaligned. In order to solve this problem, it is necessary to align the signals before classifying them. In this
work, we utilize the GCC (general cross-correlation) based algorithm [25], which is shown in Equation 1 to align
signals.

𝑟𝑥𝑦 (𝑚) =
∞∑

𝑛=−∞
𝑦 (𝑛)𝑥 (𝑛 −𝑚) (1)
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Table 1. Accuracy of discrete graphemes in different environments

Quiet office room Noise office room Subway Airplane
(44 dB) (85 dB) (65 dB) (77 dB)

96.8% 96.9% 97.2% 95.4%

Where 𝑟𝑥𝑦 (𝑚) is the cross-correlation function, x and y are two signals from the same class, and m is the parameter
of time shift.

3.5 Classification
We use an artificial neural network (ANN) based on a gradient descent method that minimizes the sum of the
squared errors between the actual and the desired output values. Before inputting the aligned vibration signals
into the classifier, the Z-score normalization [4] is used to reduce the variation of the signal. Note that we set the
number of hidden layers to 2 and the number of hidden nodes to 20.

3.6 Results
We used three-fold cross-validation to evaluate the accuracy. The accuracy of numbers and letters is 96.9% and
97.1%, respectively as Figure 5 and Figure 14 show. We also observed that the average accuracy is 97% with
aligned signals using GCC, while the accuracy is 93.5% using dynamic time warping (DTW) instead of GCC.
With neither GCC nor DTW, the accuracy is 90.9%. Thus, we proved that different numbers and letters of finger
writing have unique vibration profiles. However, to make ViFin practical for real applications, we further explore
two questions. First, real users not only write discretely, but also in a continuous fashion. How can we segment
and label a single grapheme in continuous writing? Second, different people write the same grapheme in different
ways. How can we make a finger writing system work across different users?

3.7 Resistance to Noise
To see how the environment affects finger writing, we did the same experiments, but in four different scenarios:
a quiet office environment (i.e., the control group), a noisy office with loud music, a subway, and flying on
an airplane. Note that we finished this experiment before COVID 19. These four environments are the typical
representation of our daily lives (ranging from casual noise to loud noise) in which a finger writing system could
be used. Our test scenarios represent a variety of noise levels, ranging from 44 to 85 dB. Table 1 enumerates the
average accuracy in different environments. The results demonstrate remarkably good performance comparing
to the control group in a quiet office (96.8%). It shows that the finger writing vibrations keep unique profiles in
different environments and are resistant to the surrounding noise.

4 VIFIN SOLUTION

4.1 Overview
ViFin is a real-time standalone micro finger level writing recognition system using passive vibrations, which
are detected by a commodity smartwatch. First, it allows users to write numbers and letters in both discrete
and continuous fashion using a GRU-CTC based model. However, it has two challenges. One is that it requires
exhausting initial training. Another one is that it requires every user to collect training sets because different users
write graphemes in a different fashion. In order to reduce the training time and effort required to initialize the
system for a new user, ViFin utilizes pre-training and fine-tuning on new users. Besides, we design a calibration
and update scheme to improve accuracy further. Unfortunately, a real-time text input system that only recognizes
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Fig. 6. Overview: A new user initializes ViFin with a small training set. Then ViFin fine-tunes the pre-trained model, which is
trained with a huge previous training data, to recognize finger writing. Five training free gestures are also recognized to
support extra controls.

numbers and letters does not work because it requires extra controls, such as switching input methods between
a number and a letter, backspace, enter, etc. Therefore, ViFin incorporates five training free gestures for extra
control, which execute in another simultaneous thread. Last, the results are sent to the smartglasses by using the
Bluetooth protocol.
As Figure 6 shows, a group of people collect a large amount of initial training sets for training a pre-trained

GRU-CTC model. For a new user, a small individual training set for fine-tuning the GRU-CTC model is collected.
To further improve the accuracy, ViFin has a calibration and update scheme. In another thread, ViFin recognizes
five gestures for the extra controls, such as "backspace", "enter", etc. Details for each of the main parts of our
solution are presented below.

4.2 Continuous Writing
When users write discretely, we can detect the pauses between graphemes. Thus, we can use a one-input-one-
output NN model to classify different numbers and letters. However, what should we do if there is no pause
between numbers or letters when users write continuously? Inspired by speech recognition techniques, we
can use long short term memory networks to recognize an entire continuous signal of speech by a sequence
to sequence model. Thus, for continuous writing we can use a sliding window to recognize each time-step of a
vibration with memory networks.

However, there are two challenges to use sliding windows. For example, we can use 4 windows to cover the
continuous finger writing vibration signal of the letter "a" and the letter "b." First, we don’t know where the
transition point is between the letter "a" and the letter "b". We can label the 4 windows as [a, a, b, b] or [a, b, b, b]
or [a, a, a, b]. To overcome this challenge, we can use the method of exhaustion by going through all the cases.
To be specific, we do not require an alignment between the vibration signals(input sequence X) and the labels
(output sequence Y). To get the probability of an output Y given an input X, we sum over the probability of all
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Fig. 7. GRU_CTC architecture.

possible alignments between the two. To be precise, for a single (X, Y) pair the conditional probability is shown
in Equation 2 where 𝑝𝑡 (𝑎𝑡 |𝑋 ) is the probability for a single alignment step-by-step and

∑
marginalizes over the

set of valid alignments.

𝑝 (𝑌 |𝑋 ) =
∑ 𝑇∏

𝑡=1
𝑝𝑡 (𝑎𝑡 |𝑋 ) (2)

Second, themethod of exhaustion is time consuming. Tomake it more efficient, we can do dynamic programming
using the Forward-backward algorithm in the Hidden Markov Model (HMM) [1] to get results of classification
for 4 windows, such as [a, a, b, b]. With a naive trimming, we can reduce the repeated letters and get the correct
results of [a,b]. However, users may write the same letters repeatedly. For example, there are two repeated "l" in
the word "hello." Inspired by the Recurrent Neural Aligner (RNA) [39], we add another class, labeled “∅”. RNA is a
neural network with memory. Thus, if the result of the first window is "a", the result of the second window will be
forced to be “∅” or "b" even if it may be more familiar with the writing vibration of "a". Thus, the correct result of
the four windows can be [𝑎,∅, 𝑏,∅]. For the word of "hello", the correct results can be [ℎ, 𝑒,∅,∅, 𝑙,∅, 𝑙,∅,∅, 𝑜,∅]
if there are 11 windows covering the entire word.

Neural Network Architecture. We use unidirectional Gated Recurrent Units (GRU) with an extra connectionist
temporal classification (CTC) layer [39] as shown in Figure 7. GRU is an efficient Recurrent Neural Network that
has memories, but has fewer gates (reset and update gates) than Long Short-Term Memory (LSTM). CTC aligns
the input and output with a token ”∅” and computes the loss much faster using the Forward-backward algorithm
than the method of exhaustion. To be specific, the GRU has one hidden layer and 32 neurons. We choose Adam
to optimize network training. The sliding window size (time frame) is 0.5 seconds and the moving step is 0.1
seconds. Since IMU has six axes of data, we concatenated each window’s data of six axes in series as a single
input to the GRU. We also utilize the Z-score normalization (see the section 3.5) to reduce the variation of the
signals before they are put into the GRU neural network. We use a full connected layer after GRU, following a
softmax layer and CTC loss.

The Training Set and Augmentation. To remember every transition between graphemes, we collect each pair of
numbers (00, 01, ..., 98, 99) and each pair of letters (aa, ab, ac, ..., az, ..., za, zb, zc,..., zz) as the training set. We
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require participants to pause for a second between pairs of graphemes, then we segment each pair and label it
based on energy threshold (see section 3.3). In total, there are 100 pairs (10*10) of numbers and 676 pairs (26*26)
of letters of training data which can cover all transitions between every two numbers and letters. However, RNN
training requires large training data. Thus, we further achieve data augmentation. To be specific, We combine
pairs of consecutive numbers or letters into a set of 4 graphemes as additional training samples. We add (00-01,
01-02, 02-03, ..., 98-99) into training set for numbers and (aa-ab, ab-ac, ac-ad, ..., zy-zz) for the letters, respectively.
Note that "−" is the pause (background noise) between two pairs of graphemes, which also provide information
about the finger state of rest for GRU_ CTC neural networks.

4.3 Across Different Users
One of the great challenges of the ViFin system is the ability to work between different users without exhausting
training and calibration as not only people have different writing practices, but also they have different wrist
sizes and shapes and different hand anatomy. To highlight this, take the number "1" as an example. A person can
write this as a straight vertical line while a different user may write a variant that resembles more a font-like
number, i.e., having conventional extremities rather than simply a straight vertical line. Requiring a new user
to initialize ViFin with exhausting training is impractical. The question is how to reduce the training time and
effort required to initialize for a new user. Fortunately, graphemes written by different people share common
features. Thus, it is possible to reduce the training time and effort required to initialize for a new user by learning
something from other users.

Inspired by transfer learning, ViFin generalizes the knowledge that has been learned in previous data collected
from other people to a new person. First, we use the aforementioned neural network architecture (GRU_CTC) to
generate a pre-trained model according to a large training data set built through an initial user study. Then, we
fine-tune the model with a small training data from the new user. To be specific, We first freeze the weight of the
top-layers of the model in order to preserve the knowledge learned by the previous process. Then, we train the
model with new data with a small learning rate. In this step, the model will slowly adapt to the new person’s
input and adjust to the covariate shift between previous data and new data. The convergence of this step is quick,
making fine-tuning step much faster than training from the scratch (see section 5.5).

4.4 Calibration and Update
In order to further improve the accuracy and user experience of ViFin, we add a spell check. [2] Note that an
alternative is to use a language model. The spell check function tries to choose the most likely spelling correction
for words. There is no way to know for sure (for example, should "ca" be corrected to "car" or "cat" or “cia"), which
suggests we use probabilities. We are trying to find the correction, defined as c, out of all possible candidate
corrections, that maximizes the probability that c is the intended correction, given the original word w:

𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃 (𝑐 |𝑤) (3)

By Bayes’ Theorem this is equivalent to:

𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃 (𝑐)𝑃 (𝑤 |𝑐)/𝑃 (𝑤) (4)

where P(c) is the probability that c appears as a word of English text in a specific or general application. Since
P(w) is the same for every possible candidate c, we can factor it out, giving:

𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃 (𝑐)𝑃 (𝑤 |𝑐) (5)

Based on the spell check, ViFin comes up with a small number of specific graphemes that are usually recognized
wrong. These errors might have happened because the fine-tuning model is not tuned perfectly with a small
training set, or users might not write these graphemes well. However, requiring users to write another entire
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round of training set again is time-consuming. To compensate for this limitation, we design a more efficient
update scheme with part of the entire training set. Inspired by active learning, ViFin suggests that users collect a
few pairs of graphemes of training data for graphemes that are error prone. Also, users can choose the graphemes
with poor accuracy by themselves to update the training set, especially for numbers which can not be corrected
by spell check. For example, when users find out number 1 is usually misidentified, then they can choose number
1 in the update schemes and start to collect number pairs which contain the number 1. Then this new training
data and the previous training set will be input into the fine-tuning network and produce an updated model.

4.5 Training-free Gesture Control
For a real-time standalone text input system, it is essential to have some other operations beyond writing numbers
and letters as input, such as backspace, enter, etc. Also, we need operations to wake-up ViFin and switch the
input method between numbers and letters. We seek to have these gestural inputs work across users without any
training. We leverage the gyroscope in the smartwatch for detection of these gestures.

Gyroscope Angles. The gyroscope in a smartwatch detects the rotation angles of the smartwatch for three
axes of x, y, and z, which decide the rotation angles of the smartwatch according to the relationship between
smartwatch coordinate system and geographic coordinate system. Inspired by the language of aeronautics, we
define the x-axis rotation of the smartwatch as the pitch angle, which changes when the hand is raised or lowered
based on the elbow. The pitch angle increases when a user raises their hand. Y-axis rotation of the smartwatch is
the yaw angle, which changes when the hand move left or right based on the elbow. Moving left increases the
yaw angle. Z-axis rotation is the roll angle, which changes when the wrist rotates. The roll angle becomes larger
when the wrist rotates to left. Although gyroscope produces rotation angular velocity, we calculate the value of
the angle by the following equations:

𝜃 (𝑡) =
𝑡∑
𝑖=1

𝑤 (𝑖)
𝑓

∗ 180◦

𝜋
(6)

Where𝑤 (𝑖) is the rotation angular velocity at time t, 𝜃 (𝑡) is the value of angle at time t, and f is the sampling rate.
Based on the gyroscope angle variation, we can easily detect the hand movements. For example, Figure 8 (a)

shows that the value of the pitch angle goes up then down when the hand is raised then back, while other angles
only change mildly. Figure 8 (b) shows that the value of the pitch angle goes down then back when the hand goes
down then back, while other angles only change mildly. Thus, Firgure 8 shows that by detecting which axis has a
significant half wave, we can map it to recognize different hand movements.

To be specific, we first find out the axis which has the largest variation. Then, we determine whether there is a
peak or a valley. If yes, we further determine whether the value of the angle is back to quiet (smaller than the 40%
of the absolute value of the peak or the valley). If still yes, we recognize the signal as one of the hand movements.
This training free algorithm runs in another simultaneous thread with the finger writing algorithm. When both
algorithms detect a vibration event (writing or gestures) and get results, we only output a training free gesture,
so that the gestures are not interpreted as finger writings. Also finger writing does not involve a large distinct
pattern of angle variation as shown in Figure 8. Only gestures show these patterns, so that the finger writings are
not interpreted as gestures.
Since it is difficult to rotate the hand to the left, we do not recognize this gesture. Thus, ViFin detects five

training free gestures, including rotation (the wrist rotates to the right), left (moving the hand left then back),
right (moving the hand right then back), up (moving the hand up then back), and down (moving the hand down
then back). These training free gestures can be assigned to different controls.
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Fig. 8. ViFin detects which axis of the smartwatch’s gyroscope has a significant half wave, then maps it to recognize different
hand movements.

5 EVALUATION
The evaluation mainly includes two parts. One is a baseline accuracy with off-line collected data, which studied
the detection rate of graphemes, recognition accuracy of letters and numbers, the accuracy across different
users, the accuracy with different training sizes and the accuracy with a calibration scheme. For the other one,
we further studied the accuracy of a real-time system under different conditions, including different writing
speeds, different arm positions, different watch location displacements, different environments. In this real-time
evaluation, we also evaluated the performance when users wrote during walking. In addition, we conducted an
experiment over one month, which showed temporal stability.

5.1 Implementation
We have implemented ViFin as a standalone application program on multiple commodity Android smartwatch,
including the Huawei Watch 2, ASUS ZenWatch 2, and Jeep watch. ViFin utilizes the built-in accelerometer and
gyroscope and acquires the motion readings through existing Android Wear APIs to detect the finger writing
vibration. The maximum sampling rate through the APIs is 100Hz, 200Hz, 400Hz for the Huawei Watch 2,
ASUS ZenWatch 2, and Jeep watch, respectively. Through the short time Fourier frequency spectral analysis, we
observe that the frequency features of vibration signals caused by finger writing should be below 50Hz. Thus,
we down-sampled all of the watches into a 100Hz sampling rate. We have implemented ViFin on commodity
smartwatch to recognize the micro finger writing in real-time. Finally, the results of finger writing are sent from
smartwatch to Madgaze smartglasses via Bluetooth communication with Service Discovery Protocol(SDP) and
RFCOMM Socket.

For initial data training, we developed an app, name VFC (ViFin Collection), on laptops and smartglasses. VFC
shows each pair of graphemes in order. When VFC detected a finger writing signal, it shows another pair of
graphemes. We did not have enough smartglasses for all participants so we used the screen of laptops instead. To
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connect smartwatch and laptops, we made both of the devices connect to the same WIFI, then used network
socket [3] to send collected data from the smartwatch to the laptop. After that, we trained neural network models
with Tensorflow on the laptop and sent the trained models back to the smartwatch. The laptop we used has Intel
Core i7 CPU (1.8 GHz) and 16 GB RAM. And Huawei watch 2 has a 1.2 GHz Quad-Core processor and a RAM
with 512 MB.

5.2 Data Collection
5.2.1 Participants and Protocol. Due to the quarantine caused by COVID-19, we recruited 4 supervisors to collect
data from their families. We guided them on how to collect data virtually in Zoom. 15 participants (9 males and
6 females) were recruited for this study. One of them was left-handed participant. They were in the age range
from 11 to 58. Additionally, their body mass indexes (BMIs) range from 17.13 (lean) to 30.38 (obese). They were
required to have a seat and place their elbow on the table during writing to avoid extra hand movement noise for
the training data labelling. We played a two minutes video of how to collect data, then they were required to
have a 10-minute warm up. In total, 58200 (776 pairs × 5 times × 15 participants) pairs of training graphemes
were collected. Note that all the experiments involving human subjects conformed to the relevant regulations of
our institute.

5.2.2 Training Set. In order to learn every transition between graphemes, we collected each pair of numbers (00,
01, ..., 98, 99) and each pair of letters (aa, ab, ac, ...za, zb, zc,..., zz) for training, which had 100 pairs of numbers
and 676 pairs of letters. Participants were required to repeat the training set collection five times (rounds). In
total, there were 3880 pairs (776 × 5) of graphemes in the training set for each person before data augmentation
(see section 4.2).

5.2.3 Test Set. We collected additional data for testing ViFin. To evaluate how good ViFin can detect numbers,
100 random numbers were collected for each person. These 100 numbers were split into 10 groups and participant
were required to write them continuously. The random 100 numbers were grouped as follow: [1,3,2,4,6,8,8,9,1,3]-
[2,0,5,4,7,4,8,5,9,7]- [9,9,7,1,4,0,5,3,3,0]- [7,1,8,1,3,3,3,0,2,5]- [8,7,9,6,9,5,2,9,7,4]- [8,9,5,8,7,5,5,2,3,6]- [2,1,6,1,6,8,5,2,0,6]-
[2,4,8,4,4,0,6,7,2,0]- [6,0,4,4,5,6,3,1,7,9]- [3,6,2,1,7,9,0,8,1,0]. Note that some numbers were repeated in the same line.
In order to balance each letter for evaluating the accuracy of each letter, we collected seven English sentences,
where each sentence contain 26 different letters. The first sentence was 26 letters in order from a to z. Participants
were required to write them continuously. The rest of the six sentences are called perfect pangrams and consisted
of some English words. In perfect pangrams, each letter of the alphabet occurs once and only once. Between
different words, participants are required to pause according to their writing habits. VFC showed each sentence
in order. The following letters are the ground truth of seven sentences, which contain each letter seven times
equably: [abcdefghijklmnopqrstuvwxyz]- [mr jock tv quiz phd bags few lynx]- [cwm fjord bank glyphs vext
quiz]- [blowzy night frumps vexd jack q]- [squdgy fez blank jimp crwth vox]- [tv quiz drag nymphs blew jfk
cox]- [q kelt vug dwarf combs jynx phiz].

5.3 Evaluation Metrics
For each sentence of numbers or letters, we calculated the similarity between ground truth and the recognition
results by minimum edit distance, which counts the minimum number of operations required to transform the
recognition results into the ground truth. One of the simplest sets of edit operations is defined by Levenshtein in
1966 [22], which allows deletion, insertion, and substitution. Using Levenshtein’s original operations, the edit
distance from 𝑎 = 𝑎1...𝑎𝑛 to 𝑏 = 𝑏1...𝑏𝑛 is given by 𝑑𝑛𝑚 , defined by the recurrence [22].
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Fig. 9. The average accuracy of numbers and letters.

𝑑𝑖0 =
∑𝑖

𝑘=1𝑊𝑑𝑒𝑙 (𝑎𝑘 ), for 1 ≤ 𝑖 ≤ 𝑚

𝑑0𝑗 =
∑𝑗

𝑘=1𝑊𝑖𝑛𝑠 (𝑏𝑘 ) for 1 ≤ 𝑗 ≤ 𝑛

𝑑𝑖 𝑗 =


𝑑𝑖−1, 𝑗−𝑞 for 𝑎𝑖 = 𝑏 𝑗

min


𝑑𝑖−1, 𝑗 +𝑊𝑑𝑒𝑙 (𝑎𝑖 ),
𝑑𝑖, 𝑗−1 +𝑊𝑖𝑛𝑠 (𝑏 𝑗 ),
𝑑𝑖−1, 𝑗−1 +𝑊𝑠𝑢𝑏 (𝑎𝑖 , 𝑏 𝑗 ),

for 𝑎𝑖 ≠ 𝑏 𝑗
for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

(7)

𝑊 () in equation 7 is the cost function to count the weight number of operations, where we set weight as one.
We defined the recognition accuracy as 1 − (𝑒𝑑𝑖𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑡𝑒𝑥𝑡_𝑙𝑒𝑛𝑔𝑡ℎ). According to the minimum edit

distance, we also calculated the detection rate by detecting which graphemes are inserted. Also, we obtained the
accuracy of each number or letter by detecting which graphemes are inserted and substituted.

5.4 Baseline Accuracy
In this subsection, we study the detection rate and accuracy of ViFin. In addition, we examine how the accuracy
is affected when ViFin works across different users, with varying sizes of training data, and with/without the
calibration and update scheme.

Detection Rate. For a real-time system, the recognition results are supposed to be immediately shown when
users start to write. It is important to determine how sensitive the system is to detect the users’ writing and
display the results. The detection rate shows how sensitive the system is in detecting the finger writing. According
to the minimum edit distance, the detection rate for numbers and letters was 96.5% and 97.1%, respectively.

Recognition Accuracy. We first evaluate the recognition accuracy for continuous number and letter writing by
using a GRU_CTC model. We used each person’s five-round training set to train individual GRU_CTC models
for each person. The average accuracy of 15 participants was 89.7% and 90.6% for numbers and letters with a
standard deviation of 3.2 and 3.6, respectively. The average accuracy of graphemes was 90.2%. Without data
augmentation, the average accuracy was only 78%, which shows that data augmentation contributes significantly
to the system. Figure 9 shows the average accuracy of each number and letter. We noticed that the letter "a" had
the lowest accuracy at 0.62%, which was mistakenly recognized as letter "q" most of the time, while the letter "q"
had an accuracy at 100%.

Across Different Users. Although the recognition accuracy is 90.2% with five rounds of the training set for
one person, it is difficult to ask a real user to collect five rounds (5 hours) of initial training data before using
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Fig. 10. The accuracy of pre-trained models and Fine-
tuned models for 15 participants.

Fig. 11. The accuracy of individual model increase with more
rounds of the training set.

ViFin. Thus, we used 14 out of 15 participants’ training data to train a general model then test on the data not
included in training. In this way, we repeated the training 15 times, using a different data set each time as the test
set. Figure 10 shows the results. The average accuracy is 52% . We believe that this is because different people
write the same graphemes in different fashions. Note that participant 0 has an accuracy of 0%. He is the only
left-handed participant; therefore he writes totally different from the others. Then, we used the general model
from 14 people as a pre-trained model and fine-tuned with 1 round of data from the test user. The results are also
shown in Figure 10. The average accuracy of the fine-tuned model is 86%, which is much higher than the 52%
from the pre-trained model. However, the accuracy of fine-tuned model of the left-handed participant is still only
33%. We believe that his fine-tuned model did not get much useful information from the pre-trained model. If we
do not include this extremely low accuracy of the left-handed participant, the average accuracy of fine-tuning is
90%, which is very close to the accuracy of the individual model with 5 rounds of training data (90.2%). Thus,
the fine-tuned model reduces 80 percent of the training data, but stays at the same accuracy. One implication of
these tests is that we need to train separate solutions for right and left handed people.

Different Training Sizes. To analyze how the training size will affect the recognition accuracy, we trained
models with different training sizes then obtained the recognition accuracy for each individual. Except for a
training model with 5 rounds of the training set, which includes 3880 pairs of graphemes (776 pairs × 5 rounds)
as in the last paragraph, we also trained models with 4, 3, 2 , and only 1 rounds of the training set, separately.
Figure 11 shows that the recognition accuracy decreases of individual models (GRU_CTC) when we get smaller
training sizes.

We also investigated how the different training sizes will affect the performance of the pre-trained models and
fine-tuned models. We randomly chose some numbers of user’s five-round data for a pre-trained model, then
test on another user’s test set with a fine-tuned model or without a fine-tuned model, where the number is 15,
14, 10, and 5 random users data separately. We repeat these experiments five times. As shown in figure 12, the
average accuracy of pre-trained models decreases from 51.2% to 19.4%, while the average accuracy of fine-tuned
models decreases from 84% to 41.2%. This shows that as the number of users increases (more training data for
pre-trained model), the performance of ViFin will rise.

Calibration and Update. As mentioned before, the accuracy without a spell check was 89.7% and 90.6% for num-
bers and letters, respectively. We used word-level spell checking here, which was based on Bayesian probability.
It improved the average accuracy from 90% to 98%. Since we could not use spell check for the test set of numbers,
we decided to calculate each number and letter’s accuracy based on the minimum edit operations, then chose two
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Fig. 12. The accuracy of models with different number
of persons’ training data for pre-trained models.

Fig. 13. The accuracy of ViFin keeps consistent during one
month.

numbers and two letters with the poorest accuracy to update the training sets. Then we updated the fine-tuning
model with a previous one-round training set and the new training data from another round of the training set.
The updated results without a spell check showed that the average accuracy of numbers improved from 89.7% to
95%, while the average accuracy of letters improved from 90.6% to 96%.

5.5 Real-time Evaluation
In this section, we completed a real-time finger writing system, then tested its accuracy in practice. We tested the
accuracy of five training free gestures. We also wanted to know the accuracy when users write graphemes with
different speeds and different arm positions. How does it affect the accuracy if the smartwatch slips on the wrist
or is used in different environments, such as an office or a metro? Can users write in the air during walking? How
will the accuracy change over one month? Lastly, what is the time and energy consumption of the ViFin system?

We recruited 5 participants (three males and two females) out of the previous 15 participants, in the age range
from 19 to 26. Their body mass indexes (BMIs) range from 17.16 (lean) to 29.28 (obese). To test the robustness of
ViFin, participants were asked to write the same test sets of 100 random numbers and seven English sentences in
Section 5.2.3, but write them multiple times in different conditions mentioned above. Before the test, we used
each participant’s first-round training data to fine-tune the model with a pre-trained model, which contains the
previous other 14 participants’ training data with 54320 pairs of graphemes.

Gesture Control. To evaluate the accuracy of five training free gestures, we required participants to perform
these five gestures 20 times. The result is quite positive: each gesture has average accuracy at 100%. These gestures
would be further evaluated in the user study section, where users need to perform them as ‘"wake up", "switch
input methods", "backspace" and "enter" to search movies in smartglasses. (see section 6)

Different Speeds. Participants were required to write the test set (100 random numbers and 7 English sentences)
two times with a slow speed and a faster speed. We told the participants that the slow speed means they need to
write a little slower than they normally do, and fast speed means they need to write a little faster than they writes
normally. Then, we allowed the users to decide the low speed and high speed. The accuracy for numbers and
letters with slow speed is 90% and 91%, respectively. The accuracy for numbers and letters with a faster speed is
89% and 90%, respectively. This shows that ViFin accommodates different writing speeds.

Different Arm Positions. In practice, users might have different arm positions when they are writing in the air.
To evaluate the impact of such variations, we tested ViFin under five different pose of wrist : (1) Pose 0 indicates
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Table 2. Accuracy in tough circumstances

Quiet office room Noise office room Subway Walking

90.4% 90.1% 90.2% 89.5%

the plane of the hand is parallel to the ground, (2) Pose 1 indicates that the arm rotates 45 degrees left from pose
0, (3) Pose 2 indicates that the arm rotates 45 degrees right from pose 0. (4) Pose 3 indicates that the arm rotates
45 degrees upward from pose 0. (5) Pose 4 indicates the arm rotates 45 degrees downward from pose 0. The
participants were required to write the test set with the above 5 different arm positions. The average accuracy
of arm positions 0-4 is 90%, 92%, 91%, 90%, 89%, respectively. This shows that ViFin works with different arm
positions.

Watch Displacements. We further measured the smartwatch displacement, which might impact the reliability
of ViFin. We asked participants to write a test set with 5 different smartwatch locations each. Location 0 means
participants wear the smartwatch on the wrist closest to the fingers, with a comfortable tightness. We asked
participants to write 5 rounds of the test set with 5 smartwatch locations each, which moved the smartwatch
away from the fingers by 1mm, 5mm, 10mm, 20mm, and 30mm. We observe that users can not move the watch
more than 30mm away from location 0 because the arm becomes thicker. The accuracy for 5 locations is 90%,
89%, 88%, 91%, 89% respectively, which shows that ViFin accommodates different watch displacement on the
wrist.

Mobility. To investigate how mobility affects the performance of ViFin, we asked participants to write and
walk simultaneously. The result shows the robustness of ViFin for every participant. ViFin still obtained good
performance with an average accuracy of numbers at 90% and letters at 89%. These results are summarized in
Table 2.

Different Environments. We evaluated ViFin in three scenarios: a quiet office environment (i.e., control group),
a noisy office with loud music, and a metro. Unfortunately, we did not get a chance to test ViFin again in a
flying airplane due to COVID 19. These three environments are the typical representation of our daily lives in
which ViFin could be used as we mentioned in section 3.7. Table 2 enumerates the average accuracy in different
environments. The results show invariant accuracy comparing to the control group in a quiet office (90.4% average
accuracy). It reveals that ViFin is robust and reliable in different environments.

Temporal Stability. It is crucial to verify that ViFin maintains the temporal stability (i.e., the model of a user
is trained once and the resultant system keeps operating in a stable manner over time). The experiments were
conducted spanning over a month at different time periods as shown in Figure 13. The participants were required
to write the test set 6 times at 6 different times during a month. The results showed that the accuracy remained
constant over one month, which was 85% on average over one month.

System Performance. For the current implementation, the average end-to-end latency is 100 ms from writing
the numbers or letters to the display of the input. The initial one round training data set collection lasts for one
hour. The initial pre-trained model training process in the cloud takes about 15 hours with 15 participants’ data.
The fine-tuning takes 15 minutes. The update process takes 2 minutes to update the models. We measure the
power consumption of the three models of smartwatch using “Battery Historian” from Google. Specifically, three
states are measured: 1) idle with the display on, 2) ViFin with power on but without writing input, and 3) ViFin
with power on and continuous writing input. Since the platform is only able to measure the percentage of the
battery consumption, we record the time duration for consuming 1% battery for each state. The average resulting
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time duration in each state is 216 s, 189 s, 178 s, respectively. Given the battery capacity and the working voltage,
we calculate the average resulting power consumption of each state, which is 248.2mW , 284mW, 298mW,
respectively. Thus, ViFin only consumes an additional 49.8mW of power on top of the base power consumption.
For comparison, we also conduct the measurement when running a step counting application, resulting in the
power consumption of 288mW. Thus, the power consumption of ViFin is similar to the typical application
running on a smartwatch.

6 APPLICATIONS AND USER STUDY
We applied ViFin to a wide variety of applications. In this section, we introduce four applications of ViFin, then
evaluate two user studies for real-world tasks to further study the system’s usability.

6.1 Applications
Equipment Maintenance. Nowadays, engineers in factories are starting to wear smartglasses to maintain and

fix machines. While performing their duties, they record information about their machines, such as pieces they
have replaced and/or who did it. With a hands-free ViFin system, workers can keep records with ease.

Mixed Reality Education. With the impact of AR/VR technology in education, students may now utilize
smartglasses to study 3D structures of buildings and/or biological organs. In addition, with the help of ViFin,
students can write notes or answer questions in class. For example, when using a 3D virtual heart model in a
biology class, students can point at a section of the heart and label it accordingly.

Home Theatre. ViFin can be connected to smart TV and smartglasses to search movies. For smart TV, users
can write a movie name and play the movie without a handhold controller. ViFin can also be connected to
smartglasses for movies searching by micro finger writing in the air. In this way, ViFin is more convenient than a
handhold controller since the smartglasses block the vision of the controller.

Logistical Management. Stockroom workers are also starting to wear smartglasses to scan barcodes, which
is more efficient to transport and record stock than using a handheld device. However, they may encounter
difficulties when barcodes do not work since they do not have a touchscreen to input serial numbers manually
anymore. Thus, ViFin will solve this problem by allowing employees to use finger writing instead of scanning.

6.2 User Study 1: Standard Transcription Entry
To study the performance of standard transcription entry on a real-world task, we recruited the same five
participantsmentioned in section 5.5 to write a published phrase set for text entry byMacKenzie and Soukoreff [32].
The standard transcription has 500 phrases. The phases vary from 16 to 43 characters (mean = 28.61). There are
2712 words (1163 unique) varying from 1 to 13 characters (mean = 4.46). The experiment was conducted only
with the lower case letters (no upper case letters, punctuation, or numbers). Users were required to have a seat,
place their elbow on the table, and write the transcription for two hours.

Speed and Accuracy. Text entry speed was measured in words per minute (wpm). We calculated the number
of words the participants wrote in two hours. The average text entry speed for five participants was 16.0 wpm
with a standard deviation of 4.12. The average accuracy for two hours was 81.2% with a standard deviation of 2.9.
We also calculated the average accuracy for the first hour at 86.5% with a standard deviation of 3.2. We believe
that the decreased accuracy in the second hour was because participants got tired and did sloppy writing in the
second hour. Note that we did NOT use a spell check or a language model here.
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Table 3. A questionnaire for user experience

Q1 Q2 Q3 Q4 Q5 Q6

P1 9 10 2 10 10 8
P2 10 10 2 10 10 9
P3 8 9 1 10 10 7
P4 9 9 1 10 10 9
P5 10 10 3 10 10 10

AVG 9.2 9.6 1.8 10 10 8.6

6.3 User Study 2: Movies Searching and Logistical Management
To investigate ViFin’s applications in practice, we recruited the same five participants to use ViFin in the
applications of movies searching and logistical management, which allowed users to write numbers and letters in
the air by micro finger movement. We implemented these two applications on the Mad Gaze smartwatches. One
of the applications was a movie player. Users were allowed to search for any movie by writing their names by
using their finger in the air with a smartwatch. During writing, the application would display a list of related
movies’ names with sequence numbers. Then users were allowed to write numbers to choose one from the list
and play a movie. In order to test continuous number writing, we designed another application in the smartwatch
which allowed user to write and input serial numbers for logistical management. We offered some products with
serial numbers and asked users to write using ViFin. In these applications, we use gesture rotation to wake up
ViFin. Once Vifin is awake, rotation means switching the input method between numbers and letters. Also, we
use left as “backspace" and right as “enter". ViFin sleeps if no finger writing is detected within 20 seconds. For
comparison, users were also required to experience these two applications by typing on a phone which connected
to the smartglasses. Note that the pictures on the smartglasses partially block the users’ vision on the phone
screen. Users were allowed to take off the smartglasses when they type on the phone if they want. At last, a
questionnaire was distributed.

The questionnaire asked six questions on a scale of 1 to 10, with 1 being the lowest and 10 being the highest.
1. How accurate do you feel the system is when you use ViFin to write with your finger in the air?
2. Do you feel ViFin is more convenient than the phone typing method to search for movies and write numbers
on the smartglasses?
3. How tightly do you attach the smartwatch to your wrist to write with finger movement in the air? (10 is very
tight)
4. How comfortable do you feel when you experience these two applications?
5. Are you looking forward to using the real ViFin products?
6. How acceptable is it that you have to do the initial data collection process for training before you experience
these two applications?
The results shown in Table 3 are quite positive. The average score for questions 1−6 was 9.2, 9.6, 1.8, 10, 10, 8.6 in
order.

7 FUTURE WORK

7.1 General Models
Although ViFin improves the accuracy with only one round of training set data (an hour), using pre-training
and fine-tuning, which is close to the accuracy of five rounds of the training set (five hours), one-hour initial
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training is still time-consuming. It will be more practical if ViFin can further reduce the initial training set for
new users without affecting accuracy. It is vital to look at the marginal contribution of the new data on improve
user-level accuracy and research the use of more advanced transfer learning or other algorithms. We may also
not need to collect every combination of letters by performing linguistic analysis because we may further find an
excellent trade-off between model accuracy and increased user burden. For example, some speech recognition
systems require new users to speak some words or sentences before they use them. Others allow new users to
use them directly without training processes. The latter has large speech training sets to train a general model
for any user. Fortunately, even though ViFin has inferior accuracy for the general model at this time, we observe
that the accuracy improves when the training set increases (see section 5.4). We believe that it is vital to explore
a high-performance general model for every user with large training data in the future. It is much more user
friendly to make ViFin become a training-free finger writing system for new users. To facilitate this research, we
are also planning to collect more training data and make it public.

7.2 Data Labeling
Speech recognition, which already has a high-performance general model, has a large training set while ViFin
only has 15 people for training data (5 hours/person), which is 75 hours (825 Mb) in total. It is essential to enlarge
the training set if we want to get a high-performance general model for continuous finger writing recognition.
However, collecting a big data set is not only challenging to label it, but also time and labor consuming. Base
on our experience of ViFin data collection, we found some interesting factors which might affect the quality of
training data, such as personality, payment, supervision, and period. Writing for five hours is very boring, and
we encountered many participants who quit in the middle of the experiments. We also found that the people
who complained a lot during data collection produced very poor quality data with much noise. Interestingly, we
found that playing movies during experiments would comfort them and significantly improve the rate of success.
But, we do not know whether or how watching movies would distract participants and affect data quality? Also,
we found that separating the five-hour experiments into multiple shorter times improves the data quality. Paying
another person to supervise experiments improved the data quality a lot. This significantly reduced the noise
of extra hand movements during training data collection. However, different supervisors also affected the data
quality significantly. For example, some supervisors obtained perfect training data from every participant while
some supervisors had very poor quality from every participant, thus we had to replace the latter supervisors. We
also found that how much we pay to the participants affects the data quality, which is also related to participants’
financial status. Due to the time limitation and COVID 19, we have not identified how these factors exactly
affect the data quality and what is the best ways to collect training data. Note that we do not intervene in how
participants write. We make a strong effort to get clear and accurate training data, but not test data. Since we
want to obtain a large training set, it is vital to itemize the impact of each of these factors and find the most
efficient way to collect and label training data in the future.

8 CONCLUSION
In conclusion, we develop a real-time system, ViFin, to recognize continuous micro finger writing on a com-
modity smartwatch using vibration for AR/VR interaction. We observe and prove that different finger writing
vibrations have unique profiles and can be detected and recognized by a wristband device. ViFin achieves 90%
accuracy of continuous numbers and letters recognition across different users by using a GRU_CTC fine-tuned
neural network. Five training free gestures are further designed to support extra operations for a text input
system, which achieves an accuracy of 100%. A comprehensive series of real-time evaluations and user studies
show the effects of different training sizes, calibration, spell checking, different writing speeds, different arm
positions, watch displacement, different environments, mobility, gesture control, and how performance varies
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over 1 month of use. Lastly, we discuss the future work that it is vital to further collect a large amount of data in
an efficient way and seek a general model that works for every person.
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A APPENDIX

Fig. 14. Confusion matrix of letters
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