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ABSTRACT
First responders have been observed to be at an increased
risk of cardio-vascular diseases compared to the general pop-
ulation with a high percentage of cardiac events occurring
during mission execution. Continuous physiological moni-
toring during missions can be effective in reducing the num-
ber of fatalities. Real-time physiological data such as ECG
can be collected using sensors worn on the body. This sensor
data can be processed on the body itself or can be commu-
nicated over an ad hoc wireless network to the incident com-
mand center or base station located near by. First responder
missions often take place inside building structures where
network connectivity is intermittent. Intermittent connec-
tivity can lead to loss of critical physiological data or de-
lay in that information reaching the base station. Hence,
some amount of local processing is needed in order to limit
the data that is communicated. In this paper, we intro-
duce a novel Hidden Markov Model based myocardial in-
farction detection approach. The fidelity of this approach
can be adapted based on the processing power available. We
present a peer-to-peer networking protocol for communica-
tion over disrupted networks. A low fidelity classifier is used
to perform local processing and assign priorities to the data
based on its criticality. It is complemented by a disruption-
aware epidemic forwarding protocol for transferring first re-
sponder’s physiological data to the base station. With pri-
oritized epidemic forwarding and buffer eviction policy, our
protocol increases packet delivery ratio and reduces network-
ing delay when end-to-end route disruption occurs. Finally,
we report the effect of network disruption on myocardial
infarction detection rate and latency of detection and the
improvements achieved by our protocol.
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1. INTRODUCTION
First responders have been observed to be at an increased
risk of cardio-vascular diseases compared to the general pop-
ulation with a high percentage of cardiac events occurring
during mission execution [7, 20, 23]. Continuous physiologi-
cal monitoring during missions can, therefore, be effective in
reducing the number of fatalities. One possible system archi-
tecture to enable such continuous monitoring is as follows [9].
Physiological sensors, preferably non-invasive, measure real-
time physiological data. A portable personal server, on the
first responder body, collects the various sensor readings.
The personal server performs two additional functions. It
performs preliminary sensor data processing and is also re-
sponsible for communicating the data to a remotely located
incident command center or base station. Additional pro-
cessing and decision support capability may be available at
the base station. In this paper, we address some of the chal-
lenges associated with remote physiological monitoring of
first responders.

Such a continuous physiological monitoring operation, how-
ever, presents several challenges. One challenge that arises
is due to the fact that first responder missions often take
place inside building structures where network connectivity
is intermittent. The intermittent network connectivity may
lead to the loss of critical physiological sensor data. A dis-
ruption tolerant networking solution is, therefore, necessary
to address this problem. However, it is still not guaranteed
that all transmissions will reach the base station. Moreover,
data may still incur significant latency before it reaches the
base station. To alleviate this problem, it is important that
the more critical information have a higher chance of suc-
cessfully reaching the base station and earlier. To identify
the more critical data, the personal server must be able to
perform preliminary processing on the sensor data and gauge
its importance. Cardiovascular conditions can best be de-
tected with Electrocardiography (ECG) and, therefore, the
personal server must be able to provide some diagnostic ca-
pability using ECG measurements. In this paper, we con-
sider the problem of communicating physiological data from
a first responder to a remotely located base station in such
a manner so that the latency associated with critical phys-
iological ECG data is minimized and overall probability of
detection of an abnormal condition is maximized.

The first set of relevant literature is in the area of auto-
mated ECG analysis. Techniques for automated ECG anal-
ysis have been studied for more than two decades. Most



automated ECG analysis approaches rely on machine learn-
ing techniques [5, 21, 18, 16, 17, 24] and primarily focus on
the detection or arrhythmias. ECG analysis using mobile
devices [14] has also been studied. Automatic detection of
myocardial infarction (MI) using ECG data has not received
as much attention as the detection of arrhythmias. To the
best of our knowledge, there is very little literature on MI
detection using single lead ECG. Documented results using
12 lead ECG [3] obtain results of 53% sensitivity for MI and
83% for Acute MI. Using 12 lead ECG during first responder
missions is not practically feasible.

The second set of relevant literature is in the area of De-
lay or Disruption Tolerant Networking (DTN). Fire fighter
missions may take place in challenged environments such
as building structures, tunnels, subterranean environments
where network connectivity to the base station is intermit-
tent. Without a DTN solution in place, critical physiolog-
ical data may be lost or incur significant latency. DTNs
have been studied in the context of vehicular networks [12],
fire fighter networks [22] and wildlife tracking networks [15].
Routing protocols for DTN have been proposed that utilize
the knowledge of mobility of the nodes [13] or using an epi-
demic based approach [8]. In the first responder case, it is
difficult to assume that the mobility knowledge is available.
Hence, an epidemic based forwarding approach is more suit-
able for our application.

Our contributions in this paper as follows. First, we propose
a novel automated myocardial-infarction detection approach
using ECG data. This algorithm can be used in a decision
support system located at the incident command center to
help provide real time assessment of the first responders’
health. Our approach is based on a variant of a Hidden
Markov Model (HMM) approach. Our approach uses Du-
ration Hidden Markov Models (DHMMs) which capture the
temporal characteristics of the ECG signal very well. To ac-
count for the large variability in the ECG waveform among
patients suffering from the same cardiac condition, we train
multiple DHMMs for each class. The outputs of the multiple
DHMMs are combined to together to yield one classification
result.

To evaluate our approach, training and testing was con-
ducted using data from the Physikalisch-Technische Bun-
desanstalt (PTB) database on Physionet [1] which contains
patient ECG posterior to MI. By using only lead 2 of the
ECG we obtained about 70% accuracy in detection with 0%
false positives (90% AUC by utilizing parallel DHMMs. A
crucial point to note is that patients used for testing were
completely distinct from those used in training, akin to real
life situations. This is very rarely found in ECG literature
due to the issues in addressing high variability between pa-
tients and also in severity of the condition. We also provide
a lower fidelity version of the above DHMM classifier that
can be implemented on the first responder personal server
to provide preliminary screening and identify data which is
critical.

Second, we present a delay-tolerant networking (DTN) ap-
proach to communicate ECG data from the personal server
to the base station. Data that is more likely to contain ab-
normal ECG receive higher priority for communication. In

the case of buffer overflows, lower priority data is evicted
first. To compare our approach with the baseline approach
without DTN, we conduct simulations using realistic first
responder mobility patterns. Prioritized ECG data is gen-
erated at each first responder node as the network traffic.
We observe that our approach improves the overall per-
formance in terms of higher average packet delivery ratio,
higher packet delivery ratio for the abnormal ECG data and
lower latency. We also evaluate the effect of buffer size on
the performance metrics.

The paper is organized as follows. Section 2 contains a de-
scription of the first responder physiological monitoring sys-
tem architecture. Section 3 describes the HMM based ap-
proach for MI detection. Section 4 describes our disruption-
aware forwarding protocol. Section 5 describes the experi-
mental set up. Section 6 contains the experimental results
and discussions. Finally, Section 7 contains the conclusions
and pathways for future work.

2. SYSTEM ARCHITECTURE
In this section, we describe the overall architecture of a pro-
totypical first responder physiological monitoring system.
Each first responder wears a number of physiological sen-
sors on his or her body. A vital sensor to monitor abnormal
cardiac conditions is the ECG sensor. These sensors com-
municate to a personal server also located on the body of the
first responder. The personal server can be a mobile device
with some processing and communication capabilities. The
personal server can be used to communicate over a wireless
interface to other first responders in a peer-to-peer manner
or to the incident command center (base station). Please
refer to Figure 1 for a graphical illustration of the system
architecture.

Figure 1: System architecture of a first responder
remote physiological monitoring system

The personal server collects data from the ECG sensor, per-
forms preliminary diagnosis to gauge the importance of the
data, and communicates the data along with a measure of
its importance using a disruption-aware epidemic forwarding
protocol. The incident command center or the base station
has a Decision Support System (DSS) to help further analyze
the ECG data and assess the health status of a first respon-
der. In principle, a copy of the DSS can also reside on the
personal server. However, high fidelity algorithms cannot be
run on the personal server because of its limited processing



power. The limited processing power will inject increased
latency which can be disastrous in the event that a first re-
sponder suffers a heart attack. In this paper, we describe
a novel high fidelity Hidden Markov Model (HMM) based
ECG analysis algorithm for the DSS and a lower fidelity
version of the same algorithm for preliminary diagnosis at
the personal server. These algorithms are described next in
Section 3. The disruption-aware epidemic forwarding proto-
col is described later in Section 4.

3. HMM BASED MI DETECTION
As described in the previous section, the DSS located at
the base station consists of a HMM based MI detection al-
gorithm. A lower fidelity version of the same algorithm is
located on the personal server to perform preliminary di-
agnosis. These algorithms use real time Electrocardiogram
(ECG) signals as inputs. The incoming raw ECG signal
is filtered and then processed by multiple Hidden Markov
Models (HMMs) [19]. The HMM models are trained using
real patient data obtained from the Physionet PTB dataset
[1]. The data includes ECG data of patients suffering with
Myocardial Infarction(MI) and healthy subjects.

This section is organized as follows. Section 3.1 presents a
brief overview of MI and its ECG symptoms. Section 3.2
provides an overview of conventional HMM modeling and
inference. Section 3.3 describes a generalization of the con-
ventional HMM models that includes an explicit probability
distribution for the duration of each state. This extended
model with Gaussian distribution of state durations can
model accurately the durations of each state in an ECG
signal. In Section 3.4, we provide specifics of the implemen-
tation of the HMM based classifier followed by a discussion
on adjusting the fidelity of the classifier for platform specific
use in Section 3.5. Finally, in Section 3.6, we describe pri-
ority assignment of ECG data at the personal server before
transmission.

3.1 Myocardial Infarction
The primary purpose of our classifier is to identify abnor-
malities in the ECG that are indicative of Myocardial in-
farction (MI). Commonly known as a heart-attack, MI is
the interruption of blood supply to parts of the heart. The
resulting ischemia (restriction in blood supply) and oxygen
shortage, if left untreated for a sufficient period of time, can
cause damage or death (infarction) of heart muscle tissue
(myocardium). Among the diagnostic tests available to de-
tect heart muscle damage are ECG, chest X-ray and various
blood tests. Acute, evolving or recent MI causes changes in
the ECG wave. A normal ECG wave along with its various
segments is depicted in Figure 2. MI causes distortions in
some segments such as development of pathological Q-waves
and ST segment elevation or depression [2].

3.2 Hidden Markov Models
An Hidden Markov Model (HMM) is a probabilistic model
of a temporal process where the assumption is that a se-
quence of observations is generated by an unobserved or
hidden Markovian state variable. HMMs have been widely
used for modeling and classification of time series data such
as speech [11] and ECG [19].

Figure 2: ECG waveform and its component seg-
ments

Consider a stochastic process which may be described at
any time as being in one of N distinct states, S1, S2,...,SN .
At regularly spaced discrete times, the system undergoes a
change of state according to transition probabilities associ-
ated with the current state (hence a Markovian process).
These state transition probabilities can be represented as
follows:

aij = P (qt = Sj |qt−1 = Si), 1 ≤ i, j ≤ N (1)

where qt is the state at time t, and P (qt = Sj |qt−1 = Si) is
the probability that the state at time t is Sj given that the
state at time t − 1 is Si. A probability distribution of the
observation is associated with each state Si denoted by Bi.
The set of Bi’s is denoted by B. In case the observations
are continuous (as in ECG data), the observation probabil-
ity distributions can be any continuous distribution such as
Gaussian. The probability of the initial state being Si is dis-
tributed according to the density π. The entire HMM can,
therefore, be conveniently represented as follows:

Λ := (A,B, π). (2)

Training an HMM model can be achieved by maximizing the
conditional probability P (Λ|O) where O is a set of observa-
tion sequences. The Baum-Welch algorithm [4], which is a
special case of the expectation-maximization algorithm [6],
is a well known procedure for training HMMs. Once a set
of possible models have been trained, say {Λ1,Λ2, . . .}, the
classification problem is to identify the most likely model
for a given set of observations. This is done by maximizing
P (O|Λk) over all k. The procedure for evaluating P (O|Λ) is
the Forward algorithm [19], which has linear complexity in
the number of observations and states.

3.3 Explicit-duration HMMs
A major weakness of conventional HMMs is the modeling of
state duration [19]. The inherent duration probability of a
conventional HMM to remain in a given state is an exponen-
tial distribution. This exponential state duration density is
inappropriate for most physical signals [5]. Instead, a better
choice is an HMM with explicit duration density in some an-
alytic form. In this type of HMM model the self-transition
coefficients aii are set to zero and an explicit duration den-
sity is specified. A sequence of states can be sampled from an
explicit-duration HMM according to the following sequence
of operations.



1. Chose initial state q according to the initial state dis-
tribution π.

2. Choose the duration d of the state q according to the
duration probability density pq(d).

3. Sample a set of d independent observationsO1, O2, ..., Od

according to the observation density bq.

4. Choose the next state according to the transition prob-
abilities aij where i 6= j.

The training and inference algorithms of regular HMMs are
applicable for explicit-duration HMMs. However, the com-
putational cost of these models is much higher than regular
HMMs. The time complexity is increased by a factor of D2

where D is the maximum duration within each state.

3.4 HMM classifier implementation
For the MI detection application, the hidden states chosen
are the identifiable parts or sub-parts of an ECG waveform,
namely ISO, P,PQ, Q, R1, R2, R3, S1, S2, S3, ST and T (
figure 2). A Gaussian observation distribution model Bj =
{µj ,Σj} (the mean vector and covariance matrix ) is used
to model the continuous ECG signal. Each hidden state is
associated with a different mean and variance and therefore
models a different segment of the ECG wave. We choose a
Gaussian explicit duration density since a reasonable bound
on the maximum duration can then be obtained which is a
function of the variance of the Gaussian density.

The Baum-Welch algorithm can train any unconstrained
HMM model given the set of observations. However, the
Baum-Welch algorithm is notorious for getting trapped in
local minima. Restarting from random initial values can
help only in limited way since the combinations of differ-
ent states increase exponentially in the number of hidden
states. Moreover, if the transitions are not constrained then
the number of different transitions matrices is exponential
in the square number of states. Clearly, there is a need to
constrain the number of free parameters in order to achieve
acceptable classification performance in reasonable time.

Therefore, for our implementation, we constrain our explicit-
duration HMM model to allow only transitions between sub-
sequent states, i.e. from i to i + 1 or from N to 0. Recall
that the hidden states represent known segments of a single
ECG wave such as the P ,Q,R,S,T waves . The last state
(state T ) returns to the first state (ISO) in order to begin
a new heart wave. Figure 3 depicts the HMM transitions of
our ECG model.

Figure 3: HMM states and transitions: The HMM
states correspond to the segments in ECG wave
(P ,Q,R,S,T waves and the intervals in between

To train the HMM classifier we use data from the online

PTB data set [1]. Training requires providing initial condi-
tions for the different model parameters. As shown in Fig-
ure 3, the transition probability matrix is known from the
structure of the HMM. The unknown model parameters to
be learned through training include the mean and variance
of the Gaussian duration probabilities and the mean and
variance of the Gaussian observation probabilities. Instead
of providing random initial values for the model parameters,
we use values from a single ECG heart wave. The heart wave
segments are manually extracted. For the duration proba-
bility Gaussian, we choose the duration of a segment as the
mean with variance equal to half of the mean. The mean and
variance of the ECG samples that belong to the segment are
used as the mean and variance of the observation probability
Gaussian. This training approach was observed to signifi-
cantly improve the overall training performance, as in most
cases the subsequent training on the unlabeled ECG did not
modify the model’s coefficients by considerable amount.

Now, given a test ECG wave, the HMM classifier provides
a segmentation of the signal into the different ECG compo-
nents. Please refer to Figure 4 for an example of the segmen-
tation. This is a major advantage of HMM modeling over
other classifiers such as Support Vector Machines (SVM) or
artificial Neural Networks (ANN) that cannot provide in-
sightful interpretations of the input.

Figure 4: Segmentation of ECG signal according to
the HMM states. The dashed line depicts the in-
ferred HMM states - 0 corresponds to ISO and 11
corresponds to T.

We also observed that there is a lot of variability in the
ECG from one patient to another even though they might
be suffering from the same heart condition. To account for
this, we train an HMM model for each subject in the PTB
data base. At the end of this training, we have as many
trained HMM classifiers as there are patients in the data
base. The classification decision of an unlabeled ECG sig-
nal is made according to the HMM model that provides the
highest likelihood. This scheme is similar to nearest neigh-
bor algorithms where the distance metric is the likelihood
function. If we incorporate as many HMM models as pos-



sible the accuracy will increase since the space coverage is
increased. However, each additional HMM model increases
the computational complexity and thus there is a limit to
the number of HMM models that can be evaluated in paral-
lel. Figure 5 shows the accuracy results for different number
of HMM models.

Figure 5: Receiver Operating Characteristic (ROC
curve) of the HMM classification over the PTB
dataset. Each line represents the results of a classi-
fier comprised of a different number of HMM mod-
els. For example, the yellow line represents the ROC
of a classifier that is comprised of 10 healthy subject
models (picked randomly out of 50), and 30 MI sub-
ject models (out of 148).

The factor ofD2 in the computational cost of explicit-duration
HMM inference algorithm, is the main reason why small low-
powered devices (such as PDAs) cannot process multiple
explicit-duration HMM models. Hence, to perform prelimi-
nary diagnosis on personal server, we need a classifier that
uses fewer number of explicit-duration HMM models. The
DSS at the base station on the other hand can use a greater
number of models.

3.5 Adapting classifier fidelity based on pro-
cessing power available

As shown in Figure 5, the HMM classifier performance im-
proves with increasing number of models that it is comprised
of. This improvement in performance comes at the cost of
increased computational burden. Since the DSS located at
the incident command center or base station is expected to
have adequate computational resources, a high fidelity clas-
sifier should be used there. Such a classifier, if run on the
personal server with limited resources, will add a large la-
tency to the overall decision making. Still some amount of
preliminary screening is needed at the personal server to as-
sign priority or an importance level to the data. This is
necessary because in the event of network disruptions, crit-
ical data should be given priority during transmission and
also when deciding which data to keep in the event of a
buffer overflow.

As shown in Figure 6, we build two classifiers of different fi-
delities. The lower fidelity classifier is for use on the personal
server. The higher fidelity classifier is for use in the DSS at
the base station. The difference in the two classifiers is the
number of models that they are composed of. The lower
fidelity classifier is based on just two models - normal and
abnormal. The higher fidelity classifier consists of multiple
normal and abnormal models.

Figure 6: Comparison of ROCs for Basic and high
fidelity classifiers

3.6 Priority assignment
The classifier on the personal server assigns a priority to the
data being broadcast by it. This priority reflects the chance
that the data might contain abnormal physiological mea-
surements that need to be re-interpreted by the base station
DSS. The higher the probability of abnormality the higher
the priority assigned to it. For the first responder scenarios,
the data being transmitted are segments of ECG data and
the abnormality to be detected is the occurrence of a My-
ocardial Infraction (MI). So, higher the chance of the ECG
containing an indication of MI higher the priority assigned
to it. As described in the previous section, the classifier at
the personal server consists of two models, one correspond-
ing to normal and the other to abnormal heart condition.
Given a ECG wave, the classifier outputs two likelihoods,
one is the likelihood of the ECG segment being normal and
the other is the likelihood of the ECG being indicative of MI.
The ratio of these two likelihoods, likelihood of MI over nor-
mal, called the likelihood ratio (LR) depicts a rising chance
of MI with its increase. The priority assigned to the ECG
segment needs to be an increasing function of the likelihood
ratio and for our simulation purposes we take the log of the
likelihood ratio as the priority; see Figure 7.

4. DISRUPTION-AWARE FORWARDING
As described earlier, disrupted network connectivity condi-
tions will lead to data losses, delayed updates of physio-



Figure 7: Priority calculation from ECG

logical parameters to the base station, and may seriously
threaten the first responder’s safety. The requirement of
prompt and accurate physiological parameter updates un-
der intermittent network connectivity conditions motivates
us to employ a disruption-aware epidemic forwarding proto-
col to help first responders send critical physiological event
updates to the base station as quickly as possible. Our for-
warding protocol is composed of three basic building blocks:
disruption detection, prioritized epidemic forwarding and
eviction policy.

4.1 Disruption Detection
First responders need to adjust their forwarding strategy
given different network connectivity conditions (connected,
or disrupted end-to-end forwarding path) for best packet de-
livery. Disruption of a forwarding path is caused by first re-
sponder mobility and limited communication range of their
radio devices. Disruption of end-to-end connectivity is a
knowledge that can be learned from failure/null return of
a route discovery procedure. In this paper, we do not go
into the details of disruption detection solutions; rather we
assume that all first responders’ radio devices have the ca-
pability of disruption detection, i.e., these devices are dis-
ruption aware.

4.2 Prioritized Epidemic Forwarding
When first responder’s radio devices are connected to the
base station via a multi-hop forwarding path, physiological
data can be uploaded with conventional multi-hop forward-
ing protocols. However, first responder mobility will lead
to end-to-end route disruptions. When a disruption occurs,
normally first responders will have to drop the data, or buffer
all the data until an end-to-end route is re-established at
some later point in time.

However, the conventional drop or buffer-and-wait solution
will inevitably cause the loss of important physiological data
or delay the update of critical physiological events. To alle-
viate these problems, we propose to use prioritized epidemic
forwarding when first responders experience network disrup-
tions.

When physiological data is processed locally at the personal
server, each block of data is assigned a priority. A block of
data is usually continuous in time and associated with cer-
tain physiological events. The higher the likelihood that the
data is associated with an adverse cardiac condition such
as MI, the higher the priority it gets. Data blocks marked
with priorities are buffered locally during network disrup-
tion. Meanwhile, the first responder’s radio device searches
for one-hop neighbors, selects a block of data with highest
priority, and broadcasts the data to its one-hop neighbors.

Neighbors overhearing the high priority data try to put the
data in their local DTN (Disruption-Tolerant Networking)
buffer, and upload the data later when an end-to-end route
is re-established. This process is called spray-and-wait; this
approach, high priority data is replicated and carried by
multiple forwarders, and thus the probability of delivery is
increased.

4.3 Eviction Policy
As we discussed in the previous section, each first responder
device maintains two data buffers: (i) a local data buffer
is used to store data that has already been processed by
the local HMM classifier but not yet sent to the base sta-
tion, and (ii) a DTN buffer is used to store high priority
data that is overhead from disconnected one-hop neighbors.
Since each first responder device only has a finite buffer size,
when buffers are completely filled up, certain data has to be
evicted to make room for more important ones.

Since our application is remote physiological monitoring,
what the users care most is the critical physiological events,
such as possible heart attacks. Thus our eviction policy
is also priority based, to make sure high priority data will
always get delivered. When new data arrives, the first re-
sponder node will search the buffer to find free buffer space
to accommodate the data. If no free space is found, a block
space with lowest priority data is returned. Base on the rel-
ative value of the priorities, the first responder device will
decide whether to drop the data that just arrived or evict
the low priority data block already in the buffer. In other
words, the lower priority data is evicted.

Overall, our disruption-aware forwarding protocol takes into
account the relative data priority, to make sure that data as-
sociated with critical physiological events are more likely to
get delivered when intermittent network connectivity con-
ditions occur. Our protocol also takes advantage of first
responder mobility, using epidemic forwarding to replicate
the high priority data to several one-hop neighbors, thus in-
creasing the probability of delivery and reducing the delay
of delivery for data with high priorities.

5. EXPERIMENTAL SET-UP
In this section, we describe our experimental set-up to eval-
uate the performance of the disruption-aware epidemic for-
warding protocol in conjunction with MI diagnosis using the
HMM based approach. We designed simulation experiments
to try and faithfully capture the performance of the HMM
classifier at the personal server as well as capture the net-
work disruptions as they are expected to occur during first
responder missions. This section is organized as follows. In
Section 5.1, we describe how we generate the ECG data
along with priority levels for use in simulation. In Sec-
tion 5.2, we describe how we generate representative first
responder mobility patterns along with the other specifics
of the simulations.

5.1 Prioritized data generation
To perform simulations, we need to simulate the data traf-
fic that is generated at any given node. In our case, the
data consists of ECG measurements. ECG sensors can be
assumed to generate data at a constant rate. In our case,



however, generating raw data is not sufficient. The data also
has to be associated with priority levels based on the prelim-
inary diagnosis of the HMM based classifier at the personal
server. To generate such priority assigned data, there are
two possible alternatives. The first is to use real ECG data
from online databases such as the PTB. However, the limited
data would constrain the number and time duration of the
simulations that can be run. Moreover, available real data
sets contain either healthy patients or patients who have al-
ready had a heart attack. In the event that a first responder
has a heart attack during mission, the ECG will change from
that of a healthy person to that of a person suffering from
MI. Such real data is not available. The second alternative is
to use synthetic ECG data along with a probabilistic model
of the HMM classifier performance. In this paper, we adopt
the second alternative. We now provide more details of our
approach.

First, we build a probabilistic model of the HMM classifier
performance. In other words, we estimate the probability
density of the output likelihood ratio (see Figure 7) given
that the ECG data corresponds to a healthy subject and
the probability density of the output likelihood ratio given
that the ECG data corresponds to a patient suffering from
MI. Such a model can indeed be built using the real data
available from the online PTB database. Please refer to Fig-
ure 8 for the probability distributions of the basic classifier
to be used at the personal server. These distributions are
constructed by computing the log likelihood ratio outputs
of the basic classifier for all the available ECG samples of
both healthy subjects and MI patients from the PTB data
base. Since the log likelihood ratio is defined as the log of
the ratio of the likelihood of MI to the likelihood of normal,
one would expect that for healthy subjects the log likelihood
ratios would tend to be be less than zero and for MI patients
the log likelihood ratios would tend to be greater than zero.
This is indeed the case as can be seen from Figure 8.

Given that a sample ECG wave comes from a healthy pa-
tient, one could sample from the distribution shown in Fig-
ure 8 (top) to get a value of the basic classifier output. Like-
wise, given the subject has had MI, one could sample from
the distribution shown in Figure 8 (bottom).

Figure 8: Likelihood ratio distributions

For each first responder node, we generate random synthetic
data traffic at the rate of 10 KB per second. This is consis-
tent with that of a prototypical 2 lead ECG sensor operating
at 200 Hz. For every contiguous 1 minute interval of data,
we also generate the ground truth - a binary number signify-
ing whether the person is healthy or has had MI. Given the
ground truth, one can sample from the appropriate distri-
bution in Figure 8 to get the likelihood ratio or priority level
for the 1 minute segment. Thus, we can generate surrogate
data traffic along with priority level.

5.2 First responder scenario set-up
We generate first responder mobility traces using the CORPS
mobility model [10]. CORPS stands for Cooperation, Orga-
nization, and Responsive in Public Safety. This model has
been developed specifically to capture the unique character-
istics of first responder (FR) missions. The model is event-
driven - the mobilities are dictated by events such as trapped
victim and explosion. The CORPS model is more suited for
large scale incidents where tens to hundreds of FRs are in-
volved. Therefore, our simulation results included in the
next section are also representative of such incidents. In our
simulation, we generate mobility traces for 30 minute first
responder missions involving 18 first responders. We assume
that one of the first responders suffers a heart attack 15 min-
utes into the mission. We repeat our experiments for three
different scenarios.

For our simulations, we consider a building of size 1000 by
1000 square units and first responder radio communication
range equal to 250 units. As shown in Figure 9, there is one
base station, node 0, placed at the entrance of the building,
node 1 though 18 represent first responder radio devices, the
solid lines indicate that two nodes are within radio commu-
nication range of each other. First responder locations and
connectivity status are updated each simulation step (1 unit
time).

Figure 9: Snapshot of First Responder’s Spatial Dis-
tributions and Connectivity Status

We assume a constant bit rate (CBR) traffic pattern for
our simulation. Data is generated every 60 time units, with



the block size of 60 data units in length and put into the
first responder’s local data buffer, each block of data is as-
signed a priority using the method introduced in Section 5.1.
Data transmission occurs every time unit, if first responder
is connected to base station, 1 unit length of data is moved
to base station from the local data buffer (if data buffer is
not empty), 1 additional unit length of data is moved from
the DTN buffer to the base station (if DTN buffer is not
empty); if the first responder is disconnected, 1 unit length
of data is broadcast to its one-hop neighbors (if it has any
one-hop neighbor), data broadcast from the data buffer will
stay in the buffer, but will be marked and will not be broad-
cast again. Neighbors overhearing the data will store the 1
unit length of data in their DTN buffer. Buffer eviction is
based on the policy introduced in Section4.

6. RESULTS AND DISCUSSIONS
We compare the performance of the baseline operation (with-
out the disruption-aware forwarding feature) with the disruption-
aware forwarding protocol with assigned data priority levels.
We compare the overall packet delivery ratios, the packet
delivery ratios for the abnormal signals (ECG event deliv-
ery ratio) and the latency between the heart attack event
and the receipt of the abnormal signals at the base station.
Connectivity ratio is defined as the fraction of the total sim-
ulation time when each firefighter has connections to Base
Station. Packet delivery ratio is the total number of non-
duplicate packets received from a firefighter over the total
number of packets generated during the mission for that
individual. Average connectivity ratio and average packet
delivery ratio are the average values of these ratios for the
18 firefighters in simulation. Finally, the heart problem de-
tection delay is the time interval between the instant when
the heart attack occurs and when an abnormal packet is first
received (this includes delays caused by data buffering, data
decomposition and reassembly). We also evaluate the effect
of buffer size on performance. The results are summarized
in Figures 10, 11 and 12. The simulations were run for four
different local and DTN buffer sizes shown in the table 1.

Table 1: Buffer assignments for different simulation
cases. Each unit of memory represents 1 minute of
ECG data.

1 2 3 4
Local 1 1 5 10
DTN 0 5 10 10

From the figures, we observe that the average packet delivery
ratio (APDR) increases when DTN buffer size is increased.
Also, the APDR increases when the local buffer size is in-
creased. The improvement plateaus beyond a certain buffer
size. This happens because the network connectivity is still
sufficient to not cause buffer overflow.

We observe a similar behavior for the ECG event delivery
ratio (EEDR) or the abnormal packet delivery ratio. But
in this case, the improvements are more pronounced. Recall
that abnormal data packets are prioritized for storage and
transmission. As local and DTN buffer sizes are increased, a
greater fraction of the buffers get occupied by high priority
data. Here also we observe a diminishing performance im-
provement with increasing buffer size which can be explained

Figure 10: Results for scenario 1

Figure 11: Results for scenario 2

Figure 12: Results for scenario 3



the same way as APDR.

Recall that the heart problem detection delay is the time
interval between the instant when the heart attack occurs
and when an abnormal packet is first received at the base
station. This ideally should only be a function of whether
DTN is enabled or not which is shown in two out of the three
cases. The reason for this is that an abnormal data can only
be evicted by another piece of abnormal data because of the
way we assign priorities. However, in practice, the classifier
is not perfect and a normal data segment may sometimes be
assigned a higher priority than an abnormal data segment.
This explains the observation in experiment 3, where the
delay decreases when the local buffer size is increased from
1 to 5.

7. CONCLUSIONS
In this paper, we have introduced a novel MI detection ap-
proach for use in a first responder physiological monitoring
application. We have also introduced a disruption aware
epidemic forwarding protocol to communicate physiological
data from first responders in the field to the base station
or incident command center. We have shown how the MI
detector can be integrated with the epidemic forwarding pro-
tocol to provide higher packet delivery ratios and lower MI
detection times in the face of network disruptions. Intelli-
gent integration of physiological monitoring with networking
protocols is important for such wireless health applications
where resources such as bandwidth and processing power are
at a premium.

The results included in this paper are encouraging but are
still only the first steps towards providing a robust disrup-
tion tolerant remote physiological monitoring solution for
first responders. The protocols and algorithms introduced
in this paper need testing in more realistic environments.
For example, the ECG used for this study was collected in
hospital environments and did not include motion artifacts
expected to present in ambulatory ECG monitoring. Also,
for the purpose of the network simulations, we assumed a
simplified range based model for one-hop connectivity. In
real indoor environments, this is seldom the case with many
more complex effects such as multi-path fading coming into
play. These effects need to be considered for better evalua-
tion of our approach and are part of our future work plan.
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