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Abstract— Since sensor nodes normally have limited re-
sources in terms of energy, bandwidth and computation capabil-
ity, efficiency is a key design goal in sensor network research.
As one of techniques to achieve efficiency, data aggregation
has been extensively investigated in recent literature. Previous
research on data aggregation has demonstrated its effectiveness
in reducing traffic, easing congestion and decreasing the energy
consumption. However few are actually designed for a real-
world application and implemented in a running system. This
paper describes our design and implementation of a physical
tracking system, using an aggressive data aggregation archi-
tecture as one of building blocks. This architecture can be
generally applied to other sensor systems, where communication
efficiency is a paramount concern and networking resources are
limited.1

I. INTRODUCTION

Traditional military surveillance systems, using long-
range cameras/radars, are effective in the open terrains where
direct line-of-sight is available. While in the urban areas and
forests, the effectiveness of these solutions is affected by the
obstacles such as tall buildings and trees. To address this
issue, the military starts to use wireless sensor networks as
an effective surveillance instrument to deal with the non-line-
of-sight (NLOS) situations, because that sensor nodes can be
deployed anywhere around an environment to provide ubiq-
uitous surveillance. Due to the stealthiness requirement of the
military surveillance systems, a tiny form factor is essential.
Consequently, sensor nodes have very limited resources,
suffering the bandwidth, energy and memory constraints that
limit the amount of information that could be transferred.
These factors are coupled with unpredictable traffic patterns
and dynamic network topologies, making the task of data
delivery for such networks difficult. Theoretically, for a given
energy budget available in the network, the total amount of
bits that can be transmitted is limited. It is desirable to have
the capability to deliver more information with the same
amount of bits over the air. It is often the case that the
data represented by these bits is redundant. For example, a
series of sensing readings with same values can be concisely
described by an average with a zero standard deviation. As
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one type of data aggregation techniques, this parameterized
description of the data distribution can effectively reduce the
amount of data transmitted. Since data aggregation can re-
duce transmissions while still distributing information about
the events of interests, it is deemed as a very effective resort
to balance the communication needs and energy constraints.

This paper addresses the research challenges related to
the data aggregation technique in real-time surveillance ap-
plications. We identify the fundamental tradeoffs that can
balance the performance within a three-dimensional design
space: namely the timeliness, the energy consumption and the
information availability. Ideally, we desire to deliver enough
information in real-time with minimal energy consumption.
Unfortunately, these performance goals are often at odds
with each other. For example, a swift delivery prevents a
node accumulating sufficient data for energy-efficient data
aggregation. It is an interesting research problem to identify
a performance surface within this three-dimensional space,
so that a system designer can make guided decisions to trade
off among the energy, time and data availability, according
to the application requirements and system configurations.

To demonstrate our approach to achieve this goal, we
employ a typical sensor tracking system, called VigilNet,
as a case study. We introduce the data aggregation architec-
ture designed, implemented and integrated in VigilNet and
identify the tradeoffs VigilNet provides. Since VigilNet is a
typical sensor network system, we believe our studies can
render insights for the system designers of similar systems.

The contribution of this work lies in the following aspects:
1) Unlike the previous approaches that mainly focus on the
simulation study, we demonstrate how various data aggrega-
tion techniques can be designed and implemented practically
in a real world application. 2) We reveal the impact of data
aggregation on the quality of surveillance, the timeliness and
the related overheads. Such an analysis can guide system
designers to flexibly change the system configurations in
order to accommodate various kinds of operation scenarios.
3) Compared with the solutions without data aggregation,
we demonstrate analytically that our approach significantly
reduces the amounts of energy consumed.



II. RELATED WORK

In this paper, we focus on the data aggregation techniques
applicable to the wireless sensor tracking systems. We divide
our discussion into two categories: data aggregation tech-
niques and sensor tracking systems in general.

A. Data Aggregation Approach

Data aggregation techniques have been widely used in
wireless sensor networks. In [13], Intanagonwiwat proposes
several basic forms of data aggregation methods, including
1) the Center at the Nearest Source method (CNS), where
the source nearest to the destination aggregates the data from
other nodes; 2) The shortest Path Trees (SPT) method, where
data aggregation happens at the intermediate nodes within
a shortest path tree rooted at the sink; and 3) the greedy
Incremental Trees (GIT) method, where an aggregation tree
is constructed by connecting each destination sequentially to
the existing tree via a shortest path. GIT assumes a com-
plete knowledge of global topology information; therefore
it provides more opportunities for data aggregation. TAG
provides a hierarchical data aggregation scheme at a data
collection phase. Using an acquisitional query processor for
data collection, TinyDB [17] optimizes the query process
to aggregate data with a low energy overhead. Directed
Diffusion [14], as a popular data-centric architecture for
data acquisition, can be augmented by aggregating data
along the reinforced paths from the sources to the sinks.
Another type of data aggregation techniques focuses on
the data placement of caching services. Bhattacharya et
al. [1] investigate the optimal placement of caches between
multiple sensor sources and sinks. These caches aggregate
the updates from the source nodes and distribute data to
leaf sink nodes with minimal requested rates. Since all
aforementioned approaches are designed for the systems with
no stringent time requirement, the designers of these systems
naturally treat the timeliness as a less important issue related
to the data aggregation. The closest research related to this
work is the AIDA protocol [8]. AIDA takes the timely
delivery of messages as well as the protocol overhead into
account to adaptively adjust aggregation strategies in accor-
dance with assessed traffic conditions and expected sensor
network requirements. Through simulations, it demonstrates
the feasibility to reduce the energy consumption and the
end-to-end communication delay simultaneously. Our work
presented here differs from aforementioned approaches in
several aspects: First, this work deals with the real-time issue
along with the data aggregation. Second, this work introduces
not only the usage of multiple aggregation techniques, but
also how these techniques can be intergraded within a tiered
architecture. Third, our work is not a simulation study.
Instead it is designed for a realistic tracking application with
a running implementation.

B. Research on Sensor-based Surveillance and Tracking

Traditional surveillance systems are widely used for
decades. Due to space constraints, we only name a few
directly related ones. The ASDE system [3] and Secure
Perimeter Area Network (SPAN) [4], normally use long-
range cameras/radars with a 360-degree view of an area as
the instruments for the detection. While these infrastructure
protection systems are effective, they are subject to several
limitations: First, they can not be emplaced swiftly without
infrastructure, which makes such system not suitable for
spontaneous military deployment in the remote areas. Sec-
ond, the large form factor of these systems makes them easily
detectable and evadable. Third, the number of surveillance
points is small, which makes systems vulnerable to attack.
To overcome these limitations, sensor networks is pursued
recently by [2], [10], [11], [20], [19] as a more efficient
mechanism to accomplish the remote unmanned surveillance
missions. Feng et al. [20] design a surveillance and tracking
system using a distributed Bayesian estimation technique.
Brook et al. [2] propose a distributed surveillance system
based on extended Kalman filter techniques. These solutions
provide very nice features to improve the surveillance per-
formance in one aspect or another, however ignoring other
performance goals. For example, some systems provide high
performance at cost of the system lifetime - a critical per-
formance metric for long-term surveillance. The difference
between our proposed work and aforementioned approaches
is that we adopt our solution in a multiple-dimensional design
space, where we consider not only the tracking performance,
communication efficiency through data aggregation, but also
the timeliness in delivery. This requires a balanced and
flexible system design. Another highlight of our approach is
the system implementation, which addresses many practical
issues hard to capture in the simulated tracking scenarios.

III. DATA AGGREGATION REQUIREMENTS IN VIGILNET

The VigilNet is an online surveillance system, which
consists of hundreds of tiny sensor nodes. These nodes
detect, track and classify incoming targets in a timely and
energy efficient manner. The final results are reported to
a remote back-end via a long-haul bandwidth-constrained
satellite links. In the current hardware platform, each node
is equipped with three types of sensors. Magnetic sensors
can detect the changes in the magnetic field caused by the
movement of ferrous objects. Motion sensors can detect the
changes in the infrared radiation caused by warm objects
such as personnel. The acoustic sensors detect sound waves.
Target signatures can be identified in VigilNet by sampling
aforementioned three sensors at the particular rates (e.g.
10bits data at 1000HZ from acoustic sensors). Suppose 100
sensors participate in a tracking process, VigilNet could
generate 1Mbit data in one second by using the acoustic
sensor alone. The total amount of data to be transmitted
multiplies with the number of hops over the network. Given
the fact that the current long-haul satellite link only provides
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Fig. 1. Four Tier Data Aggregation Architecture

a 1200bps data rate, VigilNet can only send approximately
1-bit aggregated data out of every 1,000 bits of raw sensor
readings generated from the network. This requires us to de-
sign an aggressive data aggregation architecture in VigilNet.

IV. FOUR-TIER DATA AGGREGATION ARCHITECTURE

Normally, data aggregation ratio for a given system is
simply the size of the original data divided by the size
of the aggregated data. Based on our experience, a single
data aggregation strategy is neither sufficient nor flexible to
achieve an aggressive a 1000:1 data aggregation ratio. If data
aggregation is only done at the node level, information could
be lost too early to be useful. If data aggregation is only
done at a central site, a sensor network spends too much
energy in transmitting the data and possibly suffers severe
network congestion and message losses. To balance energy
efficiency and data availability, we design and implement a
four-tier data aggregation architecture in VigilNet as shown
in figure 1.

1) The first layer (T1) is the raw data aggregation layer,
which takes the sensor readings form the individual
sensors and converts them to the detection confidences,
values between zero and one, indicating how confident
a detection algorithm of the individual sensor is about
the existence of the target. The data aggregation ratio
at this layer is largely determined by the slowest raw
sampling rate and the frequency in generating the
confidence values. VigilNet can achieve approximately
a 50 ∼ 100 : 1 ratio at this layer.

2) At the second layer (T2), a node takes the detection
confidence values from different sensors to form a
single classification vector, which indicates the target
type and the corresponding confidence values. With
three sensors, this layer achieves a 3:1 aggregation
ratio.

3) At the third layer (T3), all nodes that detect the same
target join the same logic group to track the target.
Each group is represented by a leader to maintain the
status of the target by aggregating all the reports from
the member nodes. The leader node aggregates not
only the location of reporting nodes as well as their
confidence vectors together. Periodically, the leader
node sends a report, consisting of a time stamp, an
aggregation location and a confidence vector, to the

base. The sensing density determines the aggregation
ratio. In the VigilNet case, we expect an aggregation
ratio between 3:1 and 10:1.

4) The fourth layer of aggregation (T4) happens at the
base. A base aggregates the individual reports form the
same logic group (a group that tracks the same target)
together to generate a final report which contains the
target type, bearing, speed and detection time-stamp.
The aggregation ratio in this layer is determined by the
tracking history length. Normally an aggregation ratio
between 2:1 and 10:1 can be achieved.

In the next several sections, we give more detail on each
layer, and provide the analysis that reflects the tradeoffs
between energy efficiency and other properties of the system
such as the timeliness.

V. T1: SENSOR-LEVEL DATA AGGREGATION

The sensor data is the raw input to the network’s computa-
tion work flow. It provides the foundation of the information
processing for tracking events in the network. Data aggrega-
tion at this layer should meet following requirements.

• Meet real-time constraints: Because the system deals
with transient events, such as fast-moving targets, in
the network, the sensor data needs to be processed in a
timely manner. If the processing latency is too long, a
target would move out of the sensing range before the
detection finishes

• Deal with a large volume of inputs: Endeavoring to
accomplish reliable, timely, and quality sensing and
tracking, a surveillance application often uses multiple
sensors and samples them at very high rates. As a result,
the combined sampling rate is high, especially, when
the acoustic sensing is employed, and the volume of
the sensor data input is large.

In the rest of this section, we first introduce different
types of sensors and sensor data in the VigilNet, then
discuss possible aggregation methods, and finally evaluate
the aggregation method used in this layer.

A. Sensors and sensor data

VigilNet uses the ExScal motes as sensor nodes. Based on
the Mica2 [5] mote design, the ExScal mote, shown in Fig. 2,
is designed by CrossBow Inc. and Ohio State University
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for large-scale surveillance WSNs [6]. The major difference
between the ExScal mote and the Berkeley Mica2 mote
is that the former integrates a magnetometer (Honeywell
HMC1052[12]), a microphone, and 4 PIR sensors on the
same circuit board as the processor’s.

Fig. 2. ExScal mote

Compared to sensors used in
other applications, such as the tem-
perature sensors (e.g., the Panasonic
ERTJ1VR103J thermistor used on
Mica sensor board) and light sen-
sors (e.g., the Clairex CL9P4L
photo sensor), the PIR sensors and
microphone on ExScal motes track
target signals with a relatively high
frequency. For example, the micro-
phone can potentially detect a wave-

form of 16KHz. This leads to a high degree of data availabil-
ity at the sensor layer. More specifically, we list the sensor
and the sensor data used in the following table.

TABLE I
SYSTEM PARAMETERS

Sensor Type Sampling rate Note
Magnetometer DC 32 8-bit POT 2-axis
PIR AC 50
Microphone AC 1000

B. Aggregation methods

We call the sensor reading at a specific time on a specific
sensor on a specific node a sample point. When a sensor
network starts operation, each sensor on each node in the
network produces a sequence of sample points. All the
sample points produced by the network form a set and we
call it the global sample set.

The global sample set is the complete information about
what happens in the network. If all the nodes report their
sample points to a base, the base can collect the global
sample set and perform computation with it. However, as
mentioned in Section 1, due to resource and energy limit,
we prefer to deliver same information with fewer bits.

Let’s first compute the amount of raw bits generated
on one sensor. They correspond to all the sample points
generated on one sensor. The magnetic sensor has two axes,
each sampling at 32Hz, and the ADC output has 10 bits
which are represented by two bytes in the software. Since
the ADC values are the relative readings to the reference,
one additional 8-bit potentiometer value is needed to record
the reference value. Therefore, it takes 24 bits to record one
sample point. In each second, 64 sample points are generated,
and are represented with 1,536 bits, or 192 bytes. Suppose a
sensor node keeps awake for one minute when some events
of interest happen. The total number of data for this event
is 92,160 bits, or 11,520 bytes. Similarly, we can compute
the data generated by the PIR sensor has 48,000 bits, or

6,000 bytes, and the acoustic sensor generates 960,000 bits,
or 120,000 bytes. In total, one event generates 1,100,160 bits,
or 137,520 bytes.

As we can see, even one event generates a relatively large
volume of sensor data. One potential method of aggregate
the sensor data is to merge identical data and send out a
“summary”. However, with noise existing, the ADC seldom
generates identical data even with a constant input. Hence,
such merging is not effective.

Another way is to compute the differences between con-
secutive sample points, and record the difference, which is
usually in a smaller range and can be represented by fewer
bits. This leads to, virtually, a compression scheme. To assess
the effectiveness of such compression, we use compression
tools on PC to compress the sensor data, and examine the
compression ratio. Experiments reveal that the compression
ratio on DC signals by using gzip 1.3.3 is 100:37, and
100:31 with bzip2 1.0.2. Hence, even for DC signals, which
is a simpler case, on a high-power platform with plenty of
resources, the performance of the aggregation using such a
method can hardly be satisfactory – it reduces approximately
2/3 of the data, but the remaining volume is still too large for
sensor networks. Obviously, there are three key limitations
for us to employ a traditional compression techniques: First,
the transportation of 1/3 of the global sample set consumes
an exorbitant amount of energy; Second, sensor nodes do
not sufficient memory to accomplish these compression
operations. Third, the latency to collecting and compressing
these sample points is too long for a system that must react
to the events in real-time.

Therefore, to enhance aggregation’s performance to the
level we desired, we design and implement a semantics
based aggregation. By analyzing sensor data to retrieve its
semantics, we achieves a highly efficient aggregation, as we
will discuss next.

C. Evaluation of the semantic based aggregation

The reason for collecting sensor data is to form tracking
knowledge. Hence, the semantics of the sensor data is the
probability of the existence of specific targets. The VigilNet
detects four types of targets. Hence, we use a 4-element vec-
tor (BV, SV, PF, PS), called confidence vector, to represent
the semantics of the sensor data.

In the confidence vector, the elements BV , SV , PF and
PS correspond to the four types of targets – big vehicle,
small vehicle, person with ferrous objects, and person. The
numeric value of these elements are the relative probability
of the existence of a target being of the specific type. By
using sensor level sensing and classification algorithms, we
transform sensor data into confidence vectors [7].

The tracking report rate is a configurable parameter in the
VigilNet. Suppose this rate is 2 reports per second, which
is a common setting in some deployed systems. We can
evaluate the aggregation performance of such a semantics
based approach. Each element of the confidence vector is
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represented by one byte, hence the confidence vector contains
4 bytes. In each second, at most two (zero in case of no even
detection) confidence vectors are needed for two tracking
reports. Hence, aggregation ratio for the magnetometer is
25:1, for the PIR sensor is 25:2, and for the acoustic sensor
is 250:1. Overall, the aggregation ratio for all the sensors is
100:1. Obviously, the semantics based aggregation is highly
efficient.

VI. T2: NODE-LEVEL DATA AGGREGATION

Each sensor node has four PIR sensors, one magnetometer
with two axes, and one microphone. The node performs fur-
ther aggregation after collecting confidence vectors from the
sensors. It computes the averages of the sensors’ confidence
vectors and form a single node-level confidence vector.

Because the three types of sensors form their own con-
fidence vectors per type, the input of the node-level sens-
ing and classification module are three confidence vectors.
Hence, the aggregation ratio is 3:1. Combined with the 100:1
aggregation ratio accomplished at the sensor level, the overall
node-level aggregation ratio is 300:1.

A. Delay/Energy Analysis w/wo aggregation

To retrieve semantics from sensor data and aggregate
sensor level confidence vectors, the sensing algorithms and
the node-level classification module need to buffer sensor
data for a period of time and then perform their specific
processing. This introduces delay into the network. Hence,
we need to examine the length of the latency and verify that
they are within a reasonable limit.

The delay introduced by the magnetometer is minimal –
it buffers only one sample point and updates the confidence
vector for each sample point. Hence, there is no delay
introduce except for the mandatory sampling interval, which
is about 16 milliseconds. Similarly, the PIR sensor introduces
little delay because it buffers only a very small set of sample
points. The delay introduced is still at the millisecond level.
The acoustic sensor, however, buffers sensing data for about
1.2 seconds for processing. Hence, it introduces a latency of
1.2 seconds plus the sampling interval which is negligible
in this case. Overall, the latency for accomplishing the best
sensing and detection result is the maximum of the three
sensors’ latencies, i.e., 1.2 seconds.

The benefit, on the other hand, is obvious – with an ag-
gregation ratio of 300:1, we reduces 99.67% of the commu-
nication payload. Though the semantics retrieval consumes
CPU time and energy, it is a known fact that communication
imposes orders of magnitude more energy overhead than
computation in a sensor device. Hence, our estimation of
energy saving due to data aggregation is still close to 99%.

VII. GROUP-LEVEL DATA AGGREGATION

After forming node-level detection results, VigilNet starts
to estimate the current position of the tracked target as well

as uniquely and identically represent the target in a logical
space. Estimation of target positions is usually done by
calculating the weighted average of the locations of nodes
reporting detections, using their individual detection confi-
dence values as weights. However, there is a design decision
to be made on when and where to conduct such calculations.
Representation of targets, as a traditional topic in target
tracking, has been widely addressed by either centralized or
distributed temporal and spatial correlation algorithms. Our
system borrows the distributed group management algorithm
from EnviroSuite [15], an programming middleware for
tracking and monitoring applications in sensor networks. In
the following subsections, we describe in more detail the
group aggregation algorithm used in the system and provide
a theoretical analysis of how it trades off among information
quality, delay and energy consumption.

A. Description of Group Based Data Aggregation

As stated above, tracking of a target consists of two
main parts: position estimation and target representation.
A simple way to tackle these problems would be to send
the detection results and locations of individual nodes that
detect targets to a centralized base station. Based on these
received node positions [9], [18] , the base is able to estimate
current positions of targets, and assign and maintain unique
and consistent identities for targets by running temporal and
spatial correlation algorithms. However, such a centralized
scheme is inefficient both in energy and latency. It incurs
excessive power consumption due to communicating multi-
ple reports to a centralized base and may unduly increase
latency, especially when targets are far away from the base.
In addition, this centralized scheme can easily propagate the
false alarms occurred in one part of the network to the base,
which could overwhelm the base when the false alarm rate
is high.

To avoid these limitations, we adopted a lightweight,
distributed solution proposed in our previous work Enviro-
Suite [15]. Different from centralized solutions, EnviroSuite
chooses to process data at or near the location where a target
is detected, and sends only aggregates to the base for further
processing. Specifically, EnviroSuite contains a set of group
management algorithms to 1) instantiate globally addressable
objects for targets as their logical representatives, 2)maintain
a unique mapping between objects and targets, 3) guarantee
the consistency of the mapping despite of target movements,
and 4)suppress the false alarms locally.

Original EnviroSuite is completely dynamic, where nodes
in the vicinity of a target is dynamically organized into one
group, in which, a leader node is dynamically elected to host
a corresponding object for the target. Though the dynamics
of EnviroSuite enhances its robustness to failures including
both message loss and node failures, it suffers a prolonged
delay due to the long latency during the leader election,
which is undesirable. To address this issue, our system uses
a more static version of EnviroSuite, called Lightweight
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EnviroSuite [16], where groups are still dynamically formed
while leaders are pre-elected in an initialization phase.

The following part explains Lightweight EnviroSuite in
more details through a step-by-step description. Note that
to be concise, we review only features relevant to this
paper. Concrete descriptions of detailed algorithms on leader
election and object maintenance can be found in [16]. In
the initialization phase, a subset of nodes are elected to
be potential leaders with the guarantee that they provide
100% sensing coverage. Later on in the tracking phase,
when a target gets detected by local nodes, these nodes
immediately report their locations and detection results to
their corresponding potential leaders (A potential leader L
is claimed to be one of node’s potential leaders if and only
if L is within 2 times sensing range from that node). These
reports are kept by the potential leaders until one of them
have collected enough reports and is sensing the target.
This potential leader then becomes a real leader, estimates
the current position of the target and sends an aggregate
report (containing position estimation as well as aggregated
confidence vectors) to the base. Upon the reception of the
aggregate report, other potential leaders drop their collected
data and start over from the beginning again.

B. Delay/Energy Analysis w/wo Aggregation

To aggregate, the leader running EnviroSuite waits for
enough reports from members. A configurable parameter
DOA (Degree of Aggregation) is introduced to measure
whether there are enough member reports. All potential
leaders withhold their aggregate reports to the base until the
number of collected member reports reaches DOA.

Intuitively it is expected that setting DOA to a very
small value (e.g., 1) would minimize delays, which, however,
is proved incorrect in a realistic, noisy environment the
system operates on. Field experiments reveal that in such
an environment, false positives of individual nodes are so
frequent that, without filtering, excessive traffics between
these nodes and the base tend to congest the network and
impose large latency to other traffics that contain meaningful
data. Therefore, it is critical to use a big DOA to filter out the
false alarms of individual nodes, which not only improves
the quality of information but also has positive affects on
latency. Besides, energy consumption is also reduced due
to less traffic towards the base. On the other hand, setting
DOA to a high value (e.g., 5) is not desirable either, since a
high DOA inevitably introduces longer delay. A DOA value
higher than the number of nodes within a sensing range
should be avoid, otherwise no report will be generated by
the leader node. These tradeoffs between information quality,
energy consumption and latency require that DOA has to be
carefully chosen to satisfy these various aspects of design
requirements. Analytical models on energy consumption and
group aggregation delay as functions of DOA are built below
to provide guidelines for system designers.
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Fig. 3. The Detection Area

1) Energy Gain with Data Aggregation: It is extremely
challenging to analyze realistic systems complicated by
various factors, e.g., sensing range, target motion model,
and node density. However, a rough approximation can be
derived by making several simplified assumptions, including
circular sensing range (Rs), straight target trajectory with
velocity Vt, and uniformly distributed nodes with density
d. This approximation gives us some insight on the system
performance in general.

Assuming that a target enters the monitored field and
moves for time duration Tt as shown in Figure 3, we
compares energy consumption with/without aggregation as
below. Since all the node that can detect the target are located
within the gray rectangle or semi-circle as shown in Figure 3,
the total number of reporting nodes is:

d(πR2

s/2 + 2RsVtTt) (1)

Without group-level aggregation, each node directly sends
its detection result to the base, where the expected energy
consumption without aggregation(Ewo aggr) is:

Ewo aggr = d(πR2

s/2 + 2RsVtTt)En̄ (2)

where E represents the energy consumed to send a one-hop
message and n̄ represents the average hop count between
these detection nodes and the base.

With aggregation, each node sends its detection result
only locally and, for every DOA detection nodes, there is
an aggregate report sent to the base. Therefore, the expected
energy consumption with aggregation (Ew aggr) becomes:

Ew aggr = d(πR2

s/2 + 2RsVtTt)E +

d(πR2

s/2 + 2RsVtTt)

DOA
E(n̄ − 1) (3)

Based on these equations, the percentage of conserved
energy (P ) due to group aggregation can be calculated as:

P = 1 −
Ew aggr

Ewo aggr

= 1 −
1

n̄
−

1

DOA
(4)

when n̄ ≥ 2 and DOA ≥ 2. These equations reveal the
relation between energy consumption and DOA. As an ex-
ample, when DOA is set to be 3 and the base is 3 hops away
on average, group-level aggregation consumes approximately
33% less energy compared with the no-aggregation scheme.
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2) Delay Introduced by Aggregation: This section ana-
lyzes how tracking report latency is affected by DOA set-
tings. Figure 4 depicts the movement of a target during time
period Tt. The white circular and grey circular represent,
respectively, the detection area of the target before and after
the movement. Nodes located in the diagonally lined area are
new detectors of the target and send out member reports for
aggregation during this time period, assuming that they have
a common potential leader. Let’s assume that an aggregate
report has been sent out just before the depicted movement,
which means that a new aggregate report is not to be sent
until the number of reports sent by these new detectors
reaches DOA. Therefore, we have the expected delay caused
by group-level aggregation Tg:

Tg =
DOA

2RsVtd
(5)

This equation shows quantitatively the tradeoffs between
delay and DOA (indication of information quality). To be
more concrete, Figure 5 illustrates different group aggre-
gation delays for varied target velocities and DOA values
(setting sensing range to be 10 m and node density to be 1
per 100 m2).
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Fig. 5. Group aggregation delays for varied DOA values and target
velocities

We note here that as one part of the tier-architecture,
the group-level aggregation is not simply another method
to further reduce energy consumption. With the inputs from
multiple nodes, the group-level aggregation can eliminate the
false alarms due to the faulty nodes and improve data quality,
which can not be achieved by the node-level aggregation.

VIII. T4: BASE-LEVEL DATA AGGREGATION

After receiving the reports from individual leader nodes,
the base needs to aggregate the information further, an
operation to serve three main objectives:

• Flow control: The long-haul link to the remote back-end
could be the bottle neck of the system. A base is re-
quired to address the bandwidth mismatch between the
sensor network output and the long-haul link capability.
This is more likely to happen when the system tracks
multiple objects simultaneously.

• Filtering: A base needs to prevent sending the duplicate
reports as well as the false alarms to the back-end. To
filter out the false alarms, a system needs to correlate the
spatiotemporal properties of consecutive reports. Since
the base is the only place in the network that has the
complete global knowledge of a tracked target, it is at
a better position than in-network nodes to filter out the
system-wide false alarms.

• Consolidated View: End users is more interested in a
consolidated view of the tracked targets instead of the
individual sensing reports from the sensor network. Al-
though the group-level aggregation does provide some
persistent information such as object ID, it is not
effective to keep a long trace history of a target through
a sequence of hand-over operations among the leader
nodes. To improve the efficiency, a base should be used
to create a consolidated view instead.

A. Description of Base-Level Data Aggregation

The base bridges the system back-end and the sensor
network. Its aggregation functionalities can be summarized
as follows. First, the base takes the input from the in-network
group leaders, and creates logical targets according to the
spatiotemporal correlations of the input reports. Second,
according to the information of the logic targets, the base
filters out duplicate reports, messages with long delays,
and false alarms, and provides flow control to match the
bandwidth of the upstream link. Third, the base makes use of
the incoming messages to provide extra information for the
logic targets, such as target velocity and target classification
information.

More specifically, when the base received a detection
report from a certain location, it tries to associate the report
with the closest logical target created recently. If the distance
from the location of the report to that of the logical target
exceeds a predefined threshold, a new logic target is created
for the report. If the distance is below the threshold, the
report is added into the history of the logical target and
the location of the logical target is updated according to
the report. An exception is that if the location of the report
is the same as one of the last few locations in the history,
the report is dropped as a duplicate report. A logical target
expires after a certain amount of time if there has been no
new report that is added into its history. By this approach
the reports are categorized into logical targets based on
their spatiotemporal correlations. When the base creates
a new logical target, it needs to differentiate valid target
reports from false alarms. This is done by accumulating
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Fig. 6. Velocity Calculation from Reported Locations

spatiotemporal correlated reports up to a certain length before
confirming the detection.

Another value that the base-level aggregation adds into the
system is velocity calculation for the logical target. Since
each message from the network includes a location and a
time-stamp, we can use the locations and time-stamps in the
logical target’s history to infer the velocity of the target. We
use a standard linear regression procedure to calculate the
velocity. The formula for calculation of the x-axis component
of the velocity is

vx =

∑N

i=1
(xi − x̄)(ti − t̄)

∑N

i=1
(ti − t̄)2

(6)

in which xi is the x component of the ith location, and ti is
the ith time-stamp. The x component of the latest location is
denoted by x1, and that of the one right before it is x2, etc. N
denotes the number of reports and time-stamps used for the
calculation. The vy calculation is similar to the Equation 6.
As shown in Figure 6, vy is the slope of the fitting straight
line (the thick dashed line shown in Figure 6(b) ).

To deal with the bandwidth limit to the system back-
end, a flow rate parameter is set during the initial phase of
the network operation. The flow rate parameter can be used
to calculate the minimum interval between two consecutive
reports of a logical target from the base: Dbase = 1/Nr,
in which N is the maximum allowable logical targets in
the system and r is the flow rate. Obviously, the worst
case delay introduced by the base-level aggregation is Dbase.
Supposing the reporting rate of each leader node is R, the
aggregation ratio at the base is NR/r. We note that a naive
solution is to do flow control at the group-level by setting the
reporting rate of each leader node to r/N and the base relays
every report to the back-end. In this naive design, a system
could save more energy, however less data is available to
create a consolidated target view. For example, the velocity
estimation becomes less accurate and less fresh with fewer
reports.

In summary, the base-level aggregation is essential and
can not be replaced or eliminated by the aggregation at other
layers, because of its ability to correlate the system-wide
reports and resolve the flow rate mismatch between a sensor
network and the link to back-end system.

IX. CONCLUSION

In this paper, we describe a multi-tier data aggregation
architecture for target tracking applications. Due to space

constraints, we omit the evaluation on this architecture.
Details on its performance can be found at [10]. Since
sensing data has different semantics at different layers, the
pure in-network aggregation leads to low data availability
for the high-level aggregation, while the pure centralized ag-
gregation leads to excessive energy consumption. In contrast,
the architecture proposed in the work can flexibly achieve the
balance between energy, timeliness and data availability.
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