
VEST: A Toolset For Constructing
and Analyzing

Component Based Operating Systems
For Embedded and Real-Time Systems

John A. Stankovic
Department of Computer Science

University of Virginia
Charlottesville, VA 22906
stankovic@cs.virginia.edu

1 Introduction

Embedded systems are proliferating at an amazing rate with no end in sight. In 1998 only
2% of all processors where used for general purpose workstations and 98% for embedded sys-
tems. The percentage of processors used for workstations is rapidly approaching 0% for the
year 2000. Success of embedded systems depends on low cost, a high degree of tailorability,
quickness to market, cost-effective variations in the product, and sometimes flexible opera-
tion of the product. The reliability of these products and the degree of configurability will
become paramount concerns. Currently, there is no efficient way to build software for these
systems. The use of component based software for constructing and tailoring these systems
has promise. However, most components are too heavyweight and don’t explicitly address
real-time, memory, power and cost constraints. What is required is a new type of component
that is lightweight and relates to the physical and real-time properties of embedded systems.

The first part of the solution is developing the new components themselves. This problem
is where most people have spent their energies. While this is a necessary step, it is the easiest
step and it ignores fully addressing how the components interact with other components or
how they fit into a component infrastructure. The second problem is that while significant
work has been done in developing CORBA [33], DCOM [22], Jini [1] components, much
less has been done with components suitable for embedded systems. Third, most tools
available for the configuration process provide little more than linking or an extended “make”
capability. It is the designer who has to know everything about the components and their
(often hidden) constraints. For example, a designer may know that the combination of 2
seemingly unrelated components leads to unpredictable delays in network protocol processing.
What is needed are tools that support the specification of embedded system requirements
followed by knowledgeable and helpful construction of the embedded system with careful
analysis of component dependencies as well as the time, memory, power, and cost constraints.
The final product must offer as many guarantees as possible along many dimensions including
correctness, performance and reliability. Our work is focusing on the development of effective
composition, configuration, and reconfiguration mechanisms, and the associated dependency

1

and non-functional analyses for real-time embedded systems. To start we are focusing on the
construction of the OS-like portion of embedded systems.

Our approach enhances the process of building reliable software for the embedded systems
revolution that is underway. We intend to apply our components, and configuration and
analysis tools to several products such as set top boxes and multimedia mobile phones as
proofs of concept. Our goal is to develop techniques that are general enough to construct
any of the following types of systems:

• a static and fixed embedded system at low cost (e.g., software for a wrist watch),

• networked and long lived embedded systems that can be made more evolvable by hot
swapping both hardware and software (e.g., air traffic control), and

• a reflective runtime environment to support a high degree of adaptability (e.g., air
traffic control or even a set top box that sometimes acts to download movies, at other
times as a PC, or to run games1).

2 State of the Art

Basically, our work is focussed on component based solutions for embedded systems. Software
engineering has worked on components for a long time. Systems such as CORBA [33], COM
[21], DCOM [22], and Jini [1] exist. These systems have many advantages including reusability
and higher reliability since the components are written by domain experts. However, CORBA
and COM tend to produce heavyweight components that are not suited to embedded systems,
and none of these systems have adequate analysis capabilities.

Tailorability has been the focus of OS microkernel research such as in Spin [2], Vino [9],
and the exo-kernel [10]. However, these systems have not addressed embedded systems issues,
are not component based and have no analysis of the type being proposed here. They also are
applied to general purpose timesharing systems with totally unrelated applications executing
on a general purpose OS.

Real-time kernels such as VxWorks [41], VRTX32 [29], and QNX [15] all have a degree of
configurability. But the configuration choices are at a high level. e.g., you can include virtual
memory or network protocols or not. There are no dependency checks or analysis tools to
support composition.

For embedded systems we do find some work on component based OSs. These include:
MMLITE [14], Pebble [12], Pure [3], eCOS [8], icWorkshop [16] and 2K [18]. However, these
might be considered first generation systems and have focussed on building the components
themselves with a substantial and fixed infrastructure. These systems offer very little or no
analysis tools and, for the most part, minimal configuration support.

1Our work concentrates on system-level adaptability rather than application level, but in many embedded
systems the distinction is small. In other cases, like the set top box, changes at the application level might
also require associated changes at the system-level.

2

Focussed domains have also produced component based solutions. For example, there
are tools and components for building avionics systems. There are also systems for creating
network protocols such as Coyote [5], the click modular router [23], and Ensemble/Nuprl
[19]. The success of these systems lies in the ability to focus on a specific area. This permits
better control over problems such as understanding dependencies and avoiding the explosion
of the numbers and variants of components. We believe that OSs for embedded systems is
also a well defined focussed area and, consequently, a component based solution for this area
is viable.

Perhaps the closest system to match our goals is the MetaH [40] system. This system
consists of a collection of tools for the layout of the architecture of an embedded system and its
reliability and real-time analysis. The main differences from our work include MetaH begins
with active tasks as the components, assumes an underlying real-time OS, and has limited
dependency checking. In contrast we propose to first create passive components (collections
of code fragments, functions and objects) and then map those onto runtime structures, and
we also focus on adding key dependency checks to address cross cutting dependencies among
composed code.

3 System Architecture

To develop ASOSs for embedded systems we have developed a a toolset called VEST (Virginia
Embedded Systems Toolset) that embodies a composition and analysis architecture. The
architecture uses the concept of reflection as a unifying theme both for off-line analysis and,
when appropriate, for on-line adaptability.

The architecture of VEST (see Figure 1) consists of the following:

• a component, subcomponent and microcomponent library

• a configuration tool that supports

– infrastructure creation

– embedded system composition

– mapping of passive software components to active runtime structures (tasks/threads)

– dependency checks including aspects and dependencies on hardware

• analysis tools

– real-time analysis

– reliability analysis

The library contains components, subcomponents, micro-components and previously cre-
ated and saved infrastructures. The library also contains dependency information that in-
cludes aspects and specific dependencies on hardware and other physical system issues. All
of this information is considered reflective information to be used by the configuration and

3

Configuration Tool

Components
Micro-comp.
Infrastructures

Reflective Inf.
Dependencies
ASPECTS

Composition Dependency
Checks

Analysis

Configuration Tool
Analysis Tools

• Infrastructure
• Embedded System

• Factual
• Inter-component
• Aspects
• General

• Real- Time
• Reliability

Figure 1: Configuration Tool.

4

analysis tools. The configuration tool enables adding or deleting components and reflective in-
formation, listing components, and browsing through the library. The infrastructure creation
feature enables composing micro-components into an infrastructure. The user could also just
choose a previously defined infrastructure if an appropriate one exists. The configuration
tool then permits users to create the embedded system by composing OS-like components
and application components into a system. This includes mapping passive components into
runtime structures (tasks/threads).

Dependency checks are then invoked to establish certain properties of the composed sys-
tem. This is a critical part of the system and more details are given below. For purposes of
doing research, we have separated dependency checks into 4 types: factual, inter-component,
aspects, and general. For each dependency check in each of the four categories the precise
dependency relationship must be explicitly defined. Finally, a user can also invoke analysis
tools such as real-time analysis and reliability analysis (similar to what is found in MetaH).

3.1 Definitions

Before we describe more details of our research we define a few key terms. In the literature, a
software component is defined as a unit of composition with contractually specified dependen-
cies and explicit context dependencies. A software component can be deployed independently
and is subject to composition to third parties. Software components are mostly about large
scale reuse of software assests across organizations. For embedded systems we have to look
at components differently. Embedded system components must consider performance such
as meeting deadlines and reliability requirements, cost, linkage to specific hardware, and
provide global analysis. It is likely that components need to be domain specific and there
may be little need for third party use, rather they are more specific for a given enterprise.
The components must have attached to them significant reflective information that explicitly
relates to real-time, reliability, power, size, and cost issues. This is in contrast, for example,
to a JINI component which has a business card describing the component which contains
information such as the vendor, version number, and the container file where the code re-
sides. We expect that more reflective information will be added to Jini components as its use
broadens. Components in VEST can be fragments of code, functions or objects.

Components may be created in a hierarchy; components can be made up of subcompo-
nents. In an OS, a component such as task management may be constructed from subcom-
ponents such as create task, delete task, and set task priority.

An infrastructure is the essential part of the system which supports the tailored embedded
system. The infrastructure, once chosen, usually does not change. The infrastructure contains
basic code, data structures, hardware, mechanisms for dynamic composability, and underlying
assumptions such as whether this infrastructure supports preemption or not, and if security
is ignored or not. Micro-components are those components that are used to compose the
infrastructure. Typical micro-components are dispatch tables, indirection tables, interrupt
handlers, plug and unplug methods, and proxies. It is important to note that systems like
MMLite, Pebble, VxWorks, and MetaH provide an entire microkernel as the infrastructure.
Our hypothesis is that these infrastructures are too large or not specialized enough for many

5

embedded systems and hence we take the approach to construct the infrastructure itself first.
Our belief is that there will be a relatively small number of infrastructures that will prove
suitable to cover most applications.

4 The VEST Configuration Tool Set

In this section we describe the design of our tool set, called VEST (Virginia Embedded
Systems Toolset) in more detail. This work is quite preliminary so we include key research
questions that must be answered as well as our ideas for solutions. In providing the details
we follow the structure of our tool architecture presented above.

4.1 Designing and Implementing Components, Subcomponents and Mi-
crocomponents

If we look at application specific OS work we can find many examples of components and sub-
components. Source code is available for some of these systems. We will populate our library
with some of these components and subcomponents. Descriptions of hardware components
also exist in the library.

We believe that embedded system components (both hardware and software) must be
domain specific and exist in different levels of detail. Research questions include what are
interface design guidelines for embedded systems, how can an open interface approach be
used effectively, and how can issues such as security and preemption or non-preemption be
addressed in the design and implementation of components? Our approach will use the
notion of microcomponents to create (compose) the essential runtime infrastructure and
then “other” components can be attached. We will compare our ability to develop tailored
infrastructures with fixed infrastructures such as those found in microkernels. We will employ
open interfaces and focus on cross cutting component issues for embedded systems. We will
also use reflection to provide meta-level information regarding components and their intended
uses. The reflective information will be used by the configuration tools and non-functional
analysis. We have extensive experience with the design and implementation of reflective
real-time systems [34, 36] and with specification languages for hardware platforms [24, 35].

4.2 Configuration Tools

Today’s configuration tools are very limited. Research questions include what are the es-
sential infrastructure ingredients for a domain, what library structure is appropriate, what
is doable by the tool and what needs to be left to the designer, and how do we incorporate
rules and guidelines into the tools? VEST will enable the component construction of the
infrastructure itself first by containing infrastructure micro-components as separate entities,
and then construction of the embedded application. The infrastructure construction will
likely include micro-components such as dispatchers or interrupt handlers, but also address
some key underlying assumptions such as preemption versus non-preemption. The tools will
have techniques to represent dependencies (of various types but focusing on embedded system

6

issues and OS-like functionality) in an explicit manner, contain rules to aid in composition,
and provide some semantic guarantees. It will use reflective information to set up the inputs
for the non-functional analysis. The tools first support the creation of the functionality by
composing code and then the mapping of that code to a runtime architecture (first to an ac-
tive task/thread model and then to the hardware). We now consider each part of the toolset
in more detail.

4.2.1 Infrastructure Creation

VEST allows for the construction of an infrastructure out of micro-components. Once an
infrastructure is created it can be saved and used again in a different setting. A combina-
tion of experience and studying other systems will create the micro-components needed for
infrastructure creation. We have developed some experience by constructing uOS [13] and
have studied many of the current component based OSs to extract a set of microcomponents.
This set includes:

• interrupt handlers

• indirection tables

• dispatchers

• plug and unplug primitives

• proxies for state mapping

Infrastructure differences fundamentally depend on issues such as preemption versus non-
preemption, or will the system need security or not.

4.2.2 Embedded System Creation

Once an infrastructure has been composed the rest of the OS components and application
code must be configured and composed into the system; first the passive collection of code
into the modules of the system and then mapping the executables into runtime active struc-
tures (tasks/threads). Listing, browsing, and searching are features required. Rules and/or
guidelines for what to do and not do can also be built into this phase.

4.2.3 Dependency Checks

Due the complexity of dependencies we break these checks into 4 types: factual, inter-
component, aspects, and general. For each dependency check supported by the tool, explicit
definition of that dependency is required together with the availability of the appropriate
information. Note that it is our emphasis on dependencies among components that is one
distinguishing difference of our approach from those such as MetaH.

7

Factual The simplest, component-by-component dependency check is called factual depen-
dency checking. Each component has factual information about itself including:

• WCET (worst case execution time)

• memory needs

• data requirements

• interface assumptions

• importance

• deadline or other time constraints

• jitter requirements

• power requirements (if a hardware component),

• initialization requirements

• environment requirements such as

– must be able to disable interrupts

– requires virtual memory

– cannot block

• the code itself

The above list is extensible depending on the application area. A factual dependency
check can include using this information across all the components in a configuration. For
example, a dependency check might involve determining if there is enough memory. This can
be very easy; add up the memory requirements of each component and compare to the memory
provided by the hardware memory component. If memory needs are variable, a slightly more
sophisticated check is needed that accounts for worst case memory needs. If a particular
component is classified as the most important one, it is trivial to check that this remains true
via a priority assignment. The greater number of factual dependency requirements that are
checked by VEST the more likely it is that simple mistakes are avoided. We are currently
developing a large list of dependency checks for OS-like components.

Inter-component Inter-component dependencies refer to pairwise component checks. This
includes:

• call graphs

• interface requirements including parameters and types of those parameters

8

• precedence requirements

• exclusion requirements

• version compatibility

• software to hardware requirements, and

• this component is included in another.

The above list is extensible. Given a set of components configured for some purpose the
inter-component checks also tend to be easy. For example, that modules conform to interface
definitions can easily checked. That correct versions are being used together and that no
two components that must exclude each other are included, also can be easily checked. The
greater the number of inter-component dependency requirements that are checked, the more
likely that simple mistakes are avoided.

Aspects Aspects [17] are defined as those issues which cannot be cleanly encapsulated in a
generalized procedure. They usually include issues which affect the performance or semantics
of components. This includes many real-time, concurrency, synchronization, and reliability
issues. For example, changing one component may affect the end-to-end deadlines of many
components that are working together. Many open questions exist here. How can we specify
the aspects? Which aspects are specific for a given application or application domain and
which are general? How does the tool perform the checks? Are the checks feasible for certain
problems?

It is our belief that aspects include an open ended (unbounded) set of issues. Therefore,
we cannot hope to be complete, rather we need to identify key aspects for application specific
operating system issues and create the specification and tools to address as many of these
issues as possible. The more aspects that can be checked, the more confidence in the resulting
composed system we will have. However, by no means do we claim that the system is correct,
only that certain specific checked errors are not present.

Consider an example of aspects relating to concurrency. In looking into this issue, we
have divided the problem into 4 parts: what are the concurrency concepts that need to be
expressed, what mechanisms exist for supporting those concepts (the components), how can
we express the concepts and components, and how are the dependency checks themselves
performed?

Concurrency concepts include: synchronous versus asynchronous operation, mutual ex-
clusion, serialization, parallelism, deadlock, atomicity, state (running, ready, blocked), events
(triggers), broadcasts, coordinated termination, optimistic concurrency control, and multiple
readers - single writer. This list can be extended, perhaps indefinitely.

Concurrency mechanisms include: locks, binary semaphores, counting sempahores, wait-
list management, timers, messages, monitors, spin locks, fork-join, guards, conditional critical
regions, and precedence graphs. At this time we have not developed any language for ex-
pressing the concurrency concepts or mechanisms.

9

Related to asopects, dependency checks seem to come in two types. One is an explicit
check across components in the current configuration. Examples include: suppose a given
system has only periodic tasks and a change is made to add aperiodic tasks. A particular
dependency check may be able to identify all those components that had previously assumed
that no aperiodics would exist. Another example involves a system that has no kill primitive.
Adding a kill primitive imposes a key requirement on all other tasks that they cannot be
killed while they are in the middle of a critical section.

The second type of aspect checking is actually deferred to associated analysis tools. For
example, checking that real-time constraints are met is best done by collecting the right
information and passing it to a more general analysis tool. Four such tools are described in
the next section.

General The fourth type of dependency check we refer to as a general dependency check. It
is not clear that this category is needed and it may eventually be folded into the other three.
However, global properties such as that the system should not experience deadlock, or that
hierarchical locking rules must be followed, or a degree of protection is required seem different
enough that, for now, we are treating these checks as a separate category. Note that it is
not important what category a certain dependency check falls into, only that such a check is
made. However, each category may require fundamentally different solutions. Aspects, while
they can be global, seem to focus more on how code changes affect other modules, while
the general dependency category focuses on global requirements. For example, a dependency
check for the absence of deadlock might rely on a Petri-net analysis (see also non-functional
analyses below).

4.3 Non-functional Analysis Tools

Our configuration tool needs to scan the newly composed system, extracting the appropriate
reflective information needed for a particular analysis. It then passes that information to the
analysis tool in the correct format. A tool may be an off-the-shelf tool or one supplied with
our system. To make this clear, consider the following four examples.

Consider that we want to perform a real-time analysis that takes exclusive access to
shared resources into account. See Figure 2. To perform such an analysis requires making
many decisions such as we must know all the components (hardware and software), the
mapping of software to runtime active structures, the mapping of software to hardware, the
scheduling algorithm being used, and the workload. The component reflective information
must include worst case execution times for that software on specific hardware as well as
what data that software needs to share in exclusive mode. All of this information can be
part of the configuration tool set. Given knowledge of all these things it is then possible to
use the Spring scheduling off-line algorithm [42], designated as H() in the figure, to compute
a feasible schedule where all deadlines and exclusion constraints are met, or be told that no
such schedule was found. See Figure 3. In this figure it is shown that task A is scheduled on
one CPU, while tasks B and C are on a second CPU. Resources R1 through R5 are additional
resources required by these tasks and they are allocated for time periods that avoid conflicts.

10

Components/Tasks Platform Components

WCET
D
Resources
Precedence

Speed
Bandwidth

Mapping
Composed System

Analysis - H()

Workload
Reflective Infor.

Figure 2: Real-Time and Concurrency Example.

For example, tasks A and B are scheduled to run concurrently and they use a disjoint set
of resources R2 and R3, respectively. Alternatively, tasks B and C are scheduled to run
sequentially because they conflict over resource R3. In this schedule all the tasks make their
deadlines, designated D(i) i=A,B,C in the picture. In general, if no valid schedule is found
the designer can take various actions such as adding hardware and then reiterate the analysis.

A second example would be to perform actions very similar to the above scenario except
the designer makes assumptions about using the rate monotonic analysis approach with
priority ceiling and invokes the schedulability analysis for that paradigm. This, for example,
is being done in MetaH.

A third example involves reliability analysis. Off-the shelf tools exist for computing the
reliability of a given system configuration. Such an analysis is usually quite restrictive. Yet,
what ever level of sophistication that the off-the-shelf tool supports, that can be supported
here. For example, if we assume fail stop hardware, we know the probability of failure of each
hardware component and the HW configuration, we can input this to a tool such as Galileo
and determine the reliability. This, of course, does not consider software faults.

11

Example: RT Analysis
with Concurrency

(Reservations)
 CPU CPU R1 R2 R3 R4 R5

 A A A

D(A) B B

D(B)

C C

D(C)

C C C

Figure 3: Feasible Schedule.

Tools based on Petri-nets analysis exist to evaluate various concurrency properties of a
system. Again, our configuration tool can extract the right information from the reflective
information about the newly composed system, put it into the format expected from a Petri-
net analysis tool and obtain the analysis benefits of that tool.

As we said, many component based systems produce a collection of software without any
analysis or minimal analysis. Research questions include how does one analyze the real-time,
dependability, and security of the resultant system? We are developing system-wide analysis
techniques for cross-cutting non-functional attributes such as real-time and dependability.
While we can never be complete in the sense of building a tool that can do the analysis for
any system whatsoever, we can provide analysis for particular situations of interest. In those
cases we will be providing significant added value.

12

5 Our Future Work - Approach

For the solutions we develop to be useful they must be applicable to a wide variety of systems.
Our approach will include performing the basic research on the questions posed above while
investigating 4 types of systems (small fixed embedded systems, systems with hot swappable
software, highly adaptable systems, and network-centric systems). These 4 types cover a
wide range of embedded systems. For each of these 4 types of systems we will create the
infrastructure, the components, perform the analysis, and evaluate the resultant product. We
will begin by producing fixed and static embedded systems such as found in wristwatches or
mobile multimedia phones. Second, we will try to determine the utility of our solutions for hot
swappable OS-like software. This could include software in a factory process controller. Such
solutions would enable software evolution, modifications due to faults, or due to performance
mode changes. We will also investigate dynamically reconfigurable systems where the on-line
system includes reflective information (taken from the off-line tool kit and analysis tools).
This would support flexible embedded systems such as future set top boxes. Finally, we
will extend our solutions into a network centric domain by looking at developing Internet
appliances via our techniques.

6 Summary

The number of embedded systems and processors are growing far faster than workstations.
Many of these systems are composed of networks of processors, sensors, and actuators. Soft-
ware for these systems must be produced quickly and reliably. The software must be tailored
for a particular function. A collection of components must interoperate, satisfy various de-
pendencies, and meet non-functional requirements. These systems cannot all be built from
scratch. Our components, configuration tool and analysis techniques and tools will substan-
tially improve the development, implementation and evaluation of these systems. This could
have beneficial impact on products from smart toasters, to set top boxes, Internet appliances,
and factory controllers.

References

[1] Arnold K., O’Sullivan B., Scheifler R.W., Waldo J., and Wollrath A.(1999) The Jini
Specification. Addison-Wesley.

[2] Bershad B., Chambers C., Eggers S., Maeda C., McNamee D., Pardyak P. Savage S.,
Sirer E. (1994) SPIN - An Extensible Microkernel for Application-specific Operating
System Services, University of Washington Technical Report 94-03-03.

[3] Beuche D., Guerrouat A., Papajewski H., Schroder-Preikschat W., Spinczyk O., and
Spinczyk U. (1999) The PURE Family of Object-Oriented Operating Systems for Deeply
Embedded Systems. Proceedings of 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, Saint-Malo, France.

13

[4] Beugnard A., Jezequel J., Plouzeau N. and, Watkins D. (1999) Making Components
Contract Aware. Computer, 32(7), 38-45.

[5] Bhatti N., Hiltunen M., Schlichting R., and Chiu W. (1998) Coyote: A System for
Constructing Fine-Grain Configurable Communication Services. ACM Transactions on
Computer Systems, 16(4), 321-366.

[6] Booch G. (1987) Software Components with Ada: Structures, Tools and Subsystems.
Benjamin-Cummings, Redwood City, CA.

[7] Campbell R., Islam N., Madany P., and Raila D. (1993) Designing and Implementing
Choices: an Object-Oriented System in C++. Communications of the ACM, September
1993.

[8] Cygnus (1999) eCos - Embedded Cygnus Operating System. Technical White Paper
(http://www.cygnus.com/ecos).

[9] Endo Y., et. al. (1994) VINO: The 1994 Fall Harvest, TR-34-84, Harvard University.

[10] Engler D., Kaashoek M.F. and O’Toole J. (1995) Exokernel: An Operating System Ar-
chitecture for Application-Level Resource Management. Proceedings of the 15th SOSP,
Copper Mountain, CO.

[11] Ford B., Back G., Benson G., Lepreau J., Lin A., and Shivers O. (1997) The Flux
OSKit: A Substrate for Kernel and Language Research. Proceedings of the 16th ACM
Symposium on Operating Systems Principles, Saint-Malo, France.

[12] Gabber E., Small C., Bruno J., Brustoloni J., and Silberschatz A. (1999) The Pebble
Component-Based Operating System. Proceedings of the USENIX Annual Technical
Conference. Monterey, California, USA.

[13] Haskins J., Stankovic J., (2000), muOS, TR, University of Virginia, in preparation.

[14] Helander J. and Forin A.(1998) MMLite: A Highly Componentized System Architecture.
Proceedings of the Eighth ACM SIGOPS European Workshop. Sintra, Portugal.

[15] Hildebrand D. (1992) An Architectural Overview of QNX. Proceedings of the USENIX
Workshop on Micro-kernels and Other Kernel Architectures. Seattle, WA.

[16] Integrated Chipware IcWorkShop (http://www.chipware.com/).

[17] Lopes, C., and Kiczales G. (1997), D: A Language Framework for Distributed Program-
ming, TR SPL97-010, Xerox Parc.

[18] Kon F., Singhai A., Campbell R. H., Carvalho D., Moore R., and Ballesteros F. (1998)
2K: A Reflective, Component-Based Operating System for Rapidly Changing Environ-
ments. Proceedings of the ECOOP’98 Workshop on Reflective Object-Oriented Pro-
gramming and Systems. Brussels, Belgium. July 1998.

14

[19] Liu X., et. al. (1999), Building Reliable High-Performance Communication Systems from
Components, SOSP, Vol. 33, No. 5.

[20] Meyer B. and Mingins C. (1999) Component-Based Development: From Buzz to Spark.
Computer, 32(7), 35-37.

[21] Microsoft Corporation and Digital Equipment Corporation (1995) The Component Ob-
ject Model Specification. Redmond, Washington.

[22] Microsoft Corporation (1998) Distributed Component Object Model Protocol, version
1.0. Redmond, Washington.

[23] Morris R., Kohler E., Jannotti J., and Kaashoek M. (1999), The Click Modular Router,
SOSP, Vol. 33, No. 5.

[24] Niehaus D., Stankovic J., and Ramamritham K. (1995), A Real-Time Systems Descrip-
tion Language, IEEE Real-Time Technology and Applications Symposium, pp. 104-115.

[25] Nierstrasz O., Gibbs S., and Tsichritzis D. (1992) Component-oriented software devel-
opment. Communications of the ACM, 35(9), 160-165.

[26] Oberon Microsystems (1998) Jbed Whitepaper: Component Software and Real-time
Computing. Technical Report. Zurich, Switzerland (http://www.oberon.ch).

[27] Object Management Group (1997)The Common Object Request Broker: Architecture
and Specification, Revision 2.0, formal document 97-02-25 (http://www.omg.org).

[28] Orfali R., Harkey D., and Edwards J. (1996) The Essential Distributed Objects Survival
Guide. John Wiley and Sons, New York.

[29] Ready J. (1986) , VRTX: A Real-Time Operating System for Embedded Microprocessor
Applications, IEEE Micor.

[30] Samentiger J. (1997) Software Engineering with Reusable Components. Springer-Verlag,
Town.

[31] Saulpaugh T. and Mirho C. (1999) Inside the JavaOS Operating System. Addison Wesley,
Reading, Massachusetts.

[32] Short K. (1997) Component Based Development and Object Modeling. Sterling Software
(http://www.cool.sterling.com).

[33] Siegel J. (1998), OMG Overview: Corba abd OMA in Enterprise Computing, CACM,
Vol. 41, No. 10.

[34] Stankovic J., and Ramamritham K. (1991), The Spring Kernel: A New Paradigm for
Real-Time Systems, IEEE Software, Vol. 8, No. 3, pp. 62-72; also in text on Readings
in Real-Time Systems, IEEE Press, editor Mani Krishna.

15

[35] Stankovic J. , Ramamritham K., Niehaus D., Humphrey M., and Wallace G. (1999),
The Spring System: Integrated Support for Complex Real-Time Systems, special issue
of Real-Time Systems Journal, Vol. 16, No. 2/3.

[36] Stankovic J. and Ramamritham K. (1995), A Reflective Architecture for Real-Time
Operating Systems, chapter in Advances in Real-Time Systems, Prentice Hall, pp. 23-
38.

[37] Sun Microsystems (1996) JavaBeans, version 1.0. (http://java.sun.com/beans).

[38] Szyperski C. (1998) Component Software Beyond Object-Oriented Programming.
Addison-Wesley, ACM Press, New York.

[39] Takada H. (1997) ITRON: A Standard Real-Time Kernel Specification for Small-Scale
Embedded Systems. Real-Time Magazine, issue 97q3.

[40] Vestal, S., (1997), MetaH Support for Real-Time Multi-Processor Avionics, Real-Time
Systems Symposium.

[41] Wind River Systems, Inc. (1995) VxWorks Programmer’s Guide.

[42] Zhao, W., Ramamritham, K., and Stankovic, J., (1987) Preemptive Scheduling Under
Time and Resource Constraints, Special Issue of IEEE Transactions on Computers on
Real-Time Systems, Vol. C-36, No. 8, pp. 949-960.

16

