
1 INTRODUCTION
As a next generation computing platform, wireless sensor
networks (WSNs) are being applied to more and more areas
for surveillance and monitoring purposes [15]. In these ap-
plications, WSNs are expected to detect interesting events
specified by the users, and/or respond to these events. An
essential event service package for WSNs is to provide a
platform for users to specify the events of interest, then to
transform them into the data format that instructs motes how
to detect the events and/or how to react to them. Higher
level events such as group level and global level events can
be recognized by aggregating multiple local events. Specifi-
cations for these higher level events are also necessary for
an integrated event service. For some WSN applications,
events can be simple since they only depend on the value of
a particular sensor reading without spatial-temporal con-
straints. These types of events are usually called atomic
events [10]. Some events (complex events) have compli-
cated temporal and spatial constraints and correlations and
thus are difficult to specify. One of the critical functions of
an event service is accurately specifying events, especially
complex and high level events, and interpreting event se-
mantics into formats recognizable by motes. In most WSN
literature, researchers use SQL or SQL-like languages to
describe the events [3, 6, 10, 11]. However, SQL-like se-
mantics are not always suitable for sensor networks because
of the lack of collaborative decision making and other nec-
essary functionalities.

The inadequacy of SQL languages in specifying WSN
events comes from some of the essential characteristics of
events in sensor networks :
• Data dependency and correlation among different types

of sensors in heterogeneous WSNs are hard for SQL to
capture.

∗ This work is supported in part by NSF CCR-0329609.

• WSNs are distributed, concurrent and asynchronous,
while meaningful events usually require spatial and tem-
poral composition of ad-hoc sensor readings. SQL is
awkward in collaborative decision making and represent-
ing event triggering [5].

• Each individual mote is unreliable, and it results in non-
determinism in event detection. To tolerate such non-
determinism, a probabilistic model should be considered
in defining events. SQL has no explicit support in this
regard.

• Most WSN applications need to form groups for data
aggregation and event detection. Mote-level events,
group level events and global level events can form a hi-
erarchy of events. SQL-like languages do not naturally
present a hierarchical model for event structure.

The Petri Net is well accepted as a model to tackle a system
which has distributed, concurrent, asynchronous and non-
deterministic features. Inspired but not limited by Petri Nets,
we develop an event description language, SNEDL which
has the following contributions:
• To the best of our knowledge, the first even description

language specially designed for wireless sensor network
applications.

• It tackles the challenges of sensor network events,
namely composing complex events with temporal and
spatial constraints and correlations.

• Based on Petri Nets, it not only provides symbolic lan-
guage based specification, but also provides a visual pic-
ture of the event structure.

• SNEDL is a hierarchical approach with different levels
of abstractions for differentiated specification purposes.

• In addition to being a description language, SNEDL can
also be used as an analysis tool for studying event sys-
tem properties by SNEDL net simulation.

SNEDL enables users to specify events, and important de-
sign decisions can be made according to event specifica-
tions. For instance, with event size specified, group size can
be determined if groups are formed based on geography.

GEM: Generic Event Service Middleware for Wireless Sensor Networks∗

Binjia Jiao Sang H. Son John A. Stankovic
Department of Computer Science, University of Virginia

{bj3r, son, stankovic}@cs.virginia.edu

ABSTRACT
Most wireless sensor network (WSN) applications are event-based and their special features demand a new paradigm for
event services. This paper presents a framework for a generic event service middleware (GEM). GEM provides an integrated
service package for WSN applications so that users can specify events accurately, export specified events to the network, and
initiate in-mote middleware to provide multi-level event detection. A sensor network event description language (SNEDL),
designed specifically for WSN events, is a part of the GEM architecture. Built upon Petri-Nets, SNEDL can also be used as
an offline analysis tool. A case study is presented to demonstrate the usefulness of SNEDL. To make the sensor motes under-
stand SNEDL specified events, GEM encodes events into a mote-understood format (called event DNA). GEM also contains
an in-mote detection module to read DNAs for event recognition. When communication is necessary for higher level events,
a detection module transfers a lightweight structure (called RNA) to support collaborative decisions.

The next step after specification is to convert the SNEDL
event specification into data formats for motes in the net-
work, to tell each node what exactly they are expected to
detect. Since the process of recognizing the specified events
in GEM is like a DNA transcript procedure, we call the data
format, converted from SNEDL specification and stored in
motes’ data memory, event-DNA. Each event DNA is an
encoded representation of a SNEDL event, and all event
DNAs are encoded by the same rule. There is an embedded
event detection middleware in motes’ program memory,
which can read different event-DNAs and act accordingly.

The overall architecture of GEM is shown in Figure 1. In
the figure, the SNEDL IDE (Integrated Development Envi-
ronment) is an offline package which resides on a PC, from
which specified event semantics can be encoded and ex-
ported to a base mote. The base node installs a deployment
module that deploys all event DNAs onto their correspond-
ing motes. For example, if an event DNA represents a mote-
level event, it will be deployed onto every mote, while if an
event DNA represents a group level event, only a group
leader will have a copy. In reality, such a base mote is usu-
ally a laptop, carried around the network to communicate
with motes for initialization purposes. For dynamic leader
schemes, the deployment module needs to interact with
group module to determine what to deploy. Then inside
each mote, imported event DNA is stored in data memory
and an event detection module is embedded in program
memory. The detection module achieves its goal by reading
event-DNA and calling other lower primitives in the pro-
gram section such as reading sensor values, obtaining time,
location information and other data from other modules in
the program section. The GEM framework contains the fol-
lowing modules:

• SNEDL environment which includes both a specifi-
cation module and an analysis module. It also en-
codes event specification into event-DNA and ex-
ports them to the base node.

• Base node contains encoded event DNA and has a
deployment module in charge of transferring event-
DNA to motes in the field. The deployment module
provides communication, in which messages are
event DNAs.

• At the mote level, data memory contains event DNAs
and an event detection module resides in program
memory. The event detection module uses a token
vector (called RNA) to communicate with other
motes for collaborative detection for higher level
events.

This paper is organized as follows: Section 2 describes
the SNEDL language in detail, concentrating on its speci-
fication and analysis capabilities, followed by a case
study in Section 3. Section 4 presents a DNA-based ap-
proach used in the event detection module. Related works
are discussed in Section 5. Section 6 presents the imple-
mentation of GEM and future work, and Section 7 con-
cludes the paper.

2 SNEDL
Petri Nets are the base model for SNEDL due to its ability
to tackle concurrent and non-deterministic distributed sys-
tems. A basic Petri Net consists of places (circles), transi-
tions (bars), directed arcs and tokens (dots inside places) as
in Figure 2. Tokens model instances / objects, and places
represent the states in which the objects can be in. Arcs rep-
resent the path in which tokens travel through; they also
represent changes between states. Transitions are used to
check conditions (token attributes) and take actions such as
manipulating passing tokens. Because events in WSN are in
fact spatiotemporal combinations of sensor readings and/or
status messages, SNEDL has the following features:

• Tokens travel through places and arcs, and they are
much like messages communicated in WSN. There-
fore, sensor readings and messages are naturally
modeled using tokens. We extend Petri Net tokens to
include attributes unique in WSN such as power level
and sensing range.

• In SNEDL, arcs indicate a communication path and
we impose a timer function on arcs to indicate the
valid interval for a sensor reading/message.

• Transitions represent conditions and actions - a
mote’s computing and processing of readings / mes-
sages. It tests if passing tokens satisfy the guard func-
tions and take actions (change tokens) if they do. In
this way, transitions naturally model the event detec-
tion process in WSN, namely testing if readings /
messages satisfy the spatiotemporal conditions of
events, and creating a new message to indicate
whether a state has been reached.

Refer to [8] for other specifics and a detailed example of
SNEDL.

SNEDL IDE

Specification Analysis

Export

Base Node
 Event-DNA &
Deployment

Deploy

Group
Module

Event DNAs

Event Detection Module Other
Modules

API to call lower primitives

Sensor reading, time, localization, and
others

Figure 1: Architecture of GEM

G
E

M
 Fram

ew
ork

Sensor Mote

2.1 SNEDL Semantics
SNEDL Petri Net Definition
A SNEDL representation of an event is given as a 10-tuple
structure

 S = (P, T, A, λ, δ, θ, H, L, Q, M) where
• P is the set of all places, which includes places for

sensor level events and those for higher level events.
• T is the set of all transitions, and transitions are rep-

resented as rectangle bars in the structural diagram.
• A is the set of arcs/flows, which are represented as ar-

rows in the diagram. Note that A contains set of pre-
arcs (incoming arcs to a transition) I, and set of post-
arcs (outgoing arcs from a transition) O.

To this point, the definition is exactly an ordinary Petri
Net. SNEDL extends this basic Petri Net model to inte-
grate temporal, spatial and probability features.

• λ is the probability / weight function for the arcs λ:

A [0,1]. For example, assume f is a post arc from
transition T to state B, then λ(f) = p means that after
T fired, with probability p the token enters state B.
As for a pre-arc, it can be viewed that a token puts a
weight p on its capacity c, the capacity changes into
c*p when it goes through this arc. With this function,
SNEDL takes non-determinism into account such
that some events can be specified using a probabilis-
tic model.

• δ is a time guard function for transitions, δ: T
(r1, r2), where r1≤ r2 are real. It means a transition
can only fire during a given time interval. For exam-
ple δ(T) = (a1,a2) means transition T can only be
fired during interval (a1,a2). This function is used for
defining temporal constraints.

• θ is the persistency guard for arcs. For a pre-arc of a
transition, θ: I R+ , it means the arc can only hold
the token to participate in a transition for a certain
amount of time before this token expires. This mod-
els valid intervals for sensed data. For example, light-
ening data can only be valid for 1 second, while the
existence of some chemical may last for 1 day. Map-
ping the semantics onto a sensor network, a θ value
for a pre arc refers to the valid interval for the tokens

in the place, which stands for a sensor event or a
higher level event. For an outgoing arc (post-arc) of a
transition, θ: O R+, means how long it takes for
this event to happen, which is the delay of communi-
cating a message.

• H is the threshold function for places only, H: P
R. For example H(p) = c means that if a token with a
certain capacity wants to enter p, and the capacity is
over c, then this token can reach place p, else it can-
not. It can be used to model the threshold of sensor
readings.

• L is the spatial guard function for transitions, L: T
R+. This function is only one particular spatial guard
function to guarantee that the sensed data are within
the event radius. However, in SNEDL, we can also
generalize spatial guard functions to support more
complex spatial constructs. At this point, we focus on
using L to model valid event size. For example, in
Figure 2, we define L(T3) = r, then it means only if
sensor readings from A (acoustic) and readings from
M (magnetic) are localized within radius r, they can
be called event E. In other words, radius of E is r.

• Q is a quorum / frequency function on pre-arcs to fil-
ter out false alarms by requiring a quorum of positive
readings. For example in Figure 2, Q(a5) = (3, 10)
means that tokens coming from A can only trigger
transition T3 if they appear 3 times in a row within a
window of 10 time units.

• M is a token manipulating function on post-arcs
which explicitly defines attribute values for newly
generated tokens. The new attribute values may de-
pend on the values of old tokens. In Figure 2, transi-
tion T3 has two pre-arcs with two types of tokens A
and M. When tokens from A and M come to T3 and
fire T3, they will get merged into new tokens and
sent to post-arcs of T3. M(a7) represents the
definition for the new token that will travel through
a7 to E. For instance, M(a7) = (v(A,M); t(A,M);
l(A,M); p(A,M)) defines the new token attribute val-
ues, where v, t, l, p are functions on manipulating old
tokens’ attributes. With the token mapping function
M, all the messages are explicitly defined in SNEDL.

Token Path and Firing Rules
We outline the path of a token in SNEDL as below:
• A token is initially generated upon receiving sampling

data from a sensor and encapsulated with the type (sen-
sor event), time (when the sample taken), capacity (the
value of the sensor reading) and the location (where the
sensor is, and what the sensing range is), as shown by
transitions T1, T2 and T3 in Figure 2.

• Tokens in places go immediately through the arcs to get
ready to fire transitions, given that firing of a transition
should respect all the guard functions.

A

M

E

T3

T1

T2

a5

a6

a7

a1

a2

a3

a4

Figure 2: SNEDL Petri Net

Token Format:
(value, time, location, power)

• A token disappears if the arc carrying it exceeds its per-
sistence value (defined by θ) before the transition can
be fired.

• When a token goes through a pre arc, its sensor reading
value is multiplied by the weight on the arc (defined by
λ). In this way, we can give different weights for dif-
ferent readings to distinguish their importance levels in
collaborative decision making.

• When a token goes through a post-arc, it enters the des-
tination place of this post-arc according to the probabil-
ity defined on this post-arc. In this way, non-
determinism of individual motes can be modeled. If all
probabilities are defined as one, then no non-
determinism is considered.

• A token can only enter a place if the token’s sensor
reading value is over the place’s threshold value (de-
fined by H).

The token generation/destruction process is done through
transition firing processes. Transition firing rules and the
token processing procedure are presented as follows:
• A transition T can be fired if and only if

o each of its pre-arcs has a positive token,
o T happens at a time interval satisfying δ.

• During firing, a transition T does the following on the
tokens carried by its pre-arcs:

o Generates a new token for each of the post-
arcs according to mapping function M.

2.2 SNEDL Analysis
SNEDL provides a generic specification environment for
users to define how an event is interpreted in a WSN, and
users also need to define system properties they need to ana-
lyze. SNEDL has analysis capability because it is not only a
specification tool, but also provides a simulation engine.

After an event is specified as a SNEDL Petri Net, inserting
stream of tokens will result in different event patterns.
These streams of tokens represent ad-hoc sensor readings
across the network. Since a SNEDL event specified in such
a way simulates how motes interpret readings/messages into

events, the analysis process is actually studying the impact
of a specific system design on event patterns and other sys-
tem properties.

As shown in Figure 4, ad-hoc sensor readings across the
network are represented by tokens in the sample space. Ac-
cording to their timestamps, tokens are dispatched in
streams into the SNEDL event system specified. To study a
certain system property such as timeliness of event detec-
tion, statistics functions are built on a component such as a
transition to monitor attributes of interest of all the tokens.

There is a lot of flexibility in SNEDL analysis. For example,
if we design the token dispatcher to dispatch tokens accord-
ing to their locations, then we can analyze geographic sys-
tem properties.

3 CASE STUDY
To illustrate how SNEDL can be used in a real WSN appli-
cation, we present a case study of a surveillance application
in sensor networks. DARPA (Defense Advanced Research
Projects Agency) sponsored the NEST project [12] In this
project a large surveillance system has been implemented
and tested, in which the main purpose is to monitor a large
area for objects of interests and classify them. Due to space
limitation, we only provide a brief outline in this paper.
More detailed specification and analysis procedures are pro-
vided in [8].

3.1 Hierarchical Specification
There are three types of sensors – acoustic, magnetic, and
PIR (motion) – in the network sampling environments. The
major task of this application is to distinguish three types of
events –a person, a person with weapons, and a vehicle –
from ad-hoc sensor readings. The system designers have
developed a 3-tier classification approach to identify a par-
ticular event. As shown in Figure 3, the three tiers are mote-
level, group-level and base-level event classification. At the
mote level, readings from M (magnetic sensors), P (PIR
sensors), and A (acoustic sensors) are processed at transition
T4, where temporal and spatial conditions are checked and
new messages are generated for next level (group level)
processing. SNEDL is a hierarchical approach, which means
that each component (indicated as dashed box) can be ex-

Sample Space

SNEDL Event System

T6

Token Dispatcher T5

T4

T3

T2

T1

Figure 4: SNEDL Analysis Workload Generation

T5
T2

T3

T4

T1

Magnetic

 PIR

Acoustic

 a21

 a22

 a23

 a31
 a32
 a33

 a41
E

M

P

A

Member Level Classifi- Group Level Classifica-
tion

 Determine
Object Types

Base Level
Classification

B

S

E

B

Figure 3: Hierarchical Event Specification

tended to a sub SNEDL net to provide more design details.
For instance, extending sensing activity component S in
Figure 2 dashed box discloses a SNEDL structure as shown
in Figure 5.

In addition, hierarchies can be nested, such as the schedul-
ing module in Figure 6. It can be viewed as a transition in S,
yet it can be extended to a sub-net disclosing more details in
how a scheduling module is implemented.

3.2 System Property Analysis
In this case study, there are two system properties of inter-
est: maximum speed detectable and system lifespan. Once a
system property is defined using the parameters in a SNEDL
Petri Net, it can be evaluated by running the simulation en-
gine and statistics collector.
Definition: The maximum speed detectable (MSD) is de-
fined as the highest speed of a moving object v such that
from time t1 to t2, we have at least n number of distin-
guished location reports collected, where n is a function of
t1, t2 and average sensing range r.
With this definition, we can evaluate the maximum speed
detectable using the following steps:
• Specify NEST event system architecture using SNEDL.
• Insert token streams representing different sensor read-

ings when an object is moving at different speeds, and
run the simulation engine to see if over n messages
have been received.

• Increase object speed until it does not satisfy the defini-
tion to identify the maximum detectable speed.

To analyze the system lifespan, a power level attribute is
modeled into tokens, such that when tokens travel through
arcs and transitions, their power level can be reduced ac-
cordingly. Statistics on power levels will be collected, and
based on definition of system lifetime, the data can be used
to determine how alive a system is. Users can define system
lifetime differently based on different applications.

4 DNA-BASED EVENT DETECTION
As discussed in Section 1, SNEDL specified events are en-
coded into a data format to be stored in motes. This type of
data format is called event DNA, and they are normally de-
ployed during the initialization phase. In detecting group-
level events or global-level events, status about a mote level
event is needed from each mote. However, if we transfer a
marked event DNA (a SNEDL Petri Net with tokens), it will
be too heavyweight for WSN with a constrained packet size.
To address this issue, we designed a light-weight structure
(called RNA or token vector) representing the event status
on a mote, and transfer this type of light-weight structure
across the network. This process is very similar to the bio-
logical DNA/RNA transcript process. A SNEDL specifica-
tion is static in the sense that only the event structure is
specified. The token vector is a dynamic structure which
records the changing status of the event described by the
DNA. For example, as in Figure 2, symbol representation
of the event structure can be given as:
• Components: P = {A, M, E}, A={a1,a2,a3,a4,a5,a6,a7},

T={T1,T2,T3}
• Token Format: e.g. A{soundvalue, time, location}
• ArcPlace Relations:a3—A , a4—M, a7—E;A—a5, M—a6.
• ArcTransition Relations: a1||T1, a2||T2, a5||T3, a6||T3;

T1||a3, T2||a4, T3||a7.
• Guard functions: e.g. T1{ δ, L }, a3{λ, θ, Q, M}, A{H}

The token vector is a vector of tokens for each place in the
event structure, indicating the marking of the event struc-
ture. Using the same example as in Figure 2, the token vec-
tor will look like:
• Token Vector: (A:1-{value, time, location, power} M:0-{}

E:0-{})
If a place has a token, it indicates that there is a positive
sensor reading or a message and a “1” will mark the corre-
sponding place in the vector with the values for all token
attributes. Otherwise it is marked by “0” without any token
attribute values.

This DNA-based event recognition method has substantial
advantages in handling event aggregation, privacy mainte-
nance and other features. This method is ongoing research
which will be refined in the future work.

5 RELATED WORK
From the event description language perspective, there has
been little work on specifically designing a description lan-
guage for specifying events in sensor networks. One rele-
vant work can be found in [14], in which an object-oriented
model was proposed to represent sensor network events.
However, the approach lacks supporting data interactions
and collaborative decision making.

In databases and other conventional areas, a lot of formal-
ized approaches are used for event descriptions and compo-
sitions purposes. A survey on formal methods for specifica-

Moving Object

Global Timer
tick Asleep

Awake

Sleep& Wakeup
Scheduling
Module

S

Figure 5: Hierarchical Approach – Extending
Component S

tion and analysis [1] shows that most of the popular ap-
proaches are based on the theoretical models such as finite
state machine, timed automata, process algebra and Petri
Nets [13]. SNEDL is based on a basic place / transition Petri
Net with extensions adapted to WSN characteristics. Other
types of Petri Nets such as Color Petri Nets [7] and Timed
Petri Nets [4] have difficulty in supporting these features. In
addition, SNEDL is also designed as a compatible part of
the GEM event service system, which establishes its
uniqueness in these aspects. SNEDL can also be used to
analyze system properties and its analysis capability is in-
herited from Petri Nets. A related work on analysis can be
found in [2], where authors use hybrid automata to analyze
system lifetime of a sensor network.

Although a lot of interesting work has been done in sensor
networks, to the best of our knowledge, no prior research
directly focuses on providing event services as an integrated
framework like GEM for wireless sensor networks.

6 IMPLEMENTATION
GEM is ongoing research work; currently SNEDL seman-
tics and analysis design have been finished. A prototype of
the SNEDL tool for specification purposes has been built
using GME [9] as illustrated in Figure 6. A full scale tool
supporting other functions such as analysis and simulation
engine is being implemented using Java. Other modules
such as the DNA-based event recognition, deployment mod-
ule are currently being refined for efficient implementation.

7 CONCLUSIONS
Most wireless sensor network (WSN) applications are event-
based and their special features demand a new paradigm for
event services. This paper presents a framework of generic
event service middleware, called GEM. GEM aims to pro-
vide an integrated service package for WSN applications so
that users can specify events precisely, export specified
events to the network, and initiate in-mote middleware to do
multi-level event detection. A sensor network event descrip-
tion language (SNEDL) is presented as a part of GEM archi-

tecture, which is developed specifically for WSN events.
Built upon Petri-Nets, SNEDL can also be used as an offline
analysis tool. A brief case study is presented to demonstrate
the usage of SNEDL. To make the sensor motes understand
SNEDL specified events, GEM encode events into mote-
understood format (event DNA). GEM also contains an in-
mote detection module to read DNAs for event recognition.
When communication is necessary for higher level events,
detection module transfers a lightweight structure (called
RNA) for collaborative decisions.

REFERENCES
[1] Fulvio Babich and Lia Deotto. “Formal Methods for
Specification and Analysis of Communication Protocols,”
IEEE Communications Surveys & Tutorials, 2002.
[2] S. Coleri, et al “Lifetime Analysis of a Sensor Network
with Hybrid Automata Modeling”, Proceedings of 1st ACM
International Workshop on Wireless Sensor Network and Ap-
plications, Atlanta, Georgia, USA.
[3] Cougar Project. www.cs.cornell.edu/database/cougar.
[4] F. DiCesare, et al. “Practice of Petri Nets in Manufactur-
ing.” Chapman & Hall, 1993.
[5] Michael Franklin. “Declarative Interfaces to Sensor Net-
works”, Presentation at NSF Sensor Workshop, Los Angeles,
CA, Feb, 2004.
[6] R. Govindan, et al. “The Sensor Network as a Database.”
Technical Report 02-771, Computer Science Department, Uni-
versity of Southern California, Sept 2002.
[7] K. Jensen. “Colored Petri Nets and the Invariant-Method”.
Theoretical Computer Science, 14:317-336, 1981.
[8] B. Jiao, S. Son, and J. Stankovic “SNEDL: Sensor Net-
work Event Description Language”, University of Virginia,
CSTR9400. www.cs.virginia.edu/~bj3r/snedl.pdf
[9] A.Ledeczi, et al. “Metaprogrammable Toolkit for Model-
Integrated Computing.” In Proceedings of the IEEE ECBS’99
Conference, 1999. 53
[10] S. Li, S. H. Son, and J. A. Stankovic, “Event Detection
Services Using Data Service Middleware in Distributed Sensor
Networks,”, 2nd International Workshop on Information Proc-
essing in Sensor Networks (IPSN’03), Palo Alto, CA, April
2003.
[11] S. Madden, et al “The Design of an Acquisitional Query
Processor for Sensor Networks,” In Proceedings of ACM
SIGCMOD, San Diego, CA, June 2003.
[12] NEST Project www.cs.virginia.edu/~control
[13] C. A. Petri. “Kommunication Mit Automaten.” Dissera-
tion, Technische Universitat Darmstadt, 1962.
[14] M. Worboys, “Event-based Models of Geosensor Net-
works,” Invited Talk, First Workshop on Geo Sensor Networks,
Portland, Maine, Oct, 2003.
[15] F. Zhao, et al. “Wireless Sensor Network: An Information
Processing Approach”, Morgan Kaufmann Networking Series,
Jul 2004.

Figure 6: SNEDL Specification Tool

