
Efficient and Reliable Breadcrumb Systems via
Coordination among Multiple First Responders

Hengchang Liu, Zhiheng Xie,
Jingyuan Li, Kamin Whitehouse,

and John Stankovic
Computer Science Department

University of Virginia
Charlottesville, VA, USA 22904

Email: {hl4d, zx3n, jl3sz, whitehouse,
stankovic}@cs.virginia.edu

Shan Lin
Computer Science Department

Temple University
Philadelphia, PA, USA
Email: slin@temple.edu

David Siu
Science and Technology Division

OCEANIT
Honolulu, HI, USA

Email: dsiu@oceanit.com

Abstract—Breadcrumb systems (BCS) aid first responders
by communicating their physiological parameters to remotely
located base stations. However, state-of-the-art research only
focuses on deploying breadcrumb systems on the assumption of
uncoordinated users, which is inefficient. In this paper, we present
the first design, implementation, and evaluation of reliable multi-
user breadcrumb systems (MUBCS) which exploits efficient and
automatic coordination among system users to achieve better
utilization of limited breadcrumbs. We propose UF, a distributed
cooperative deployment algorithm, to achieve longer breadcrumb
chain length while maintaining fairness and high system relia-
bility via selecting appropriate benefit and cost functions. UF
also requires no prior assumptions about users’ mobility models,
making the design practical for real applications. We deployed
and evaluated our system in real buildings with several different
first responder mobility patterns. Experimental results indicate
that this approach can maintain connectivity for up to 87%
longer distances than baseline greedy coordination approach
while maintaining 96% packet delivery ratio.

I. INTRODUCTION

First responders are at an increasing risk of cardio-vascular
problems especially during mission execution [3], [4], [5].
For instance, 118 emergency workers died in America in
2008 according to the U.S. Fire Administration [4], and 45
of them died from heart attacks during actual firefighting, not
from the physical dangers of their work. Therefore, continuous
physiological monitoring during missions can be effective in
reducing the number of fatalities. However, existing solutions
using one-hop communications [7] to connect first respon-
ders to a remotely located base station suffer from limited
transmission range due to complex indoors infrastructures.
The recently emerged breadcrumb systems [1], [2] allow
each first responder to carry a small dispenser filled with
sensor nodes and deploy them one-by-one in a manner that
guarantees reliable communication and extends transmission
range. To date, all related work focused on uncoordinated
first responders, resulting in inefficient performance in multi-
user breadcrumb system (MUBCS) scenarios. In this paper,
we address the challenge associated with efficient and reliable
automatic coordination among the dispenser systems carried
by multiple first responders.

Our work is motivated by the fact that first responders are
organized into small groups to execute different tasks and
geographically close to each other in each group. Previous
systems and algorithms do not fit into this situation and lead
to suboptimal system resource (breadcrumbs) utilization as a
result of inefficient breadcrumb deployments. One example is
that a group of first responders are running along a hallway,
in an uncoordinated scenario, the one at the head of the
group drops breadcrumbs all the time because his system
always detects decreased link quality first. Later, when this
first responder takes another separate route by himself, he
finds himself running out of breadcrumbs. On the other
hand, simple coordination algorithms may not help increase
deployment efficiency. For example, for fairness reasons, one
simple algorithm requires the one with the most number of
breadcrumbs in a group to deploy. In this case, breadcrumbs
deployed by the one at the end of the group may not improve
communication for the one at the very head of the group due
to the distance between them, resulting in another request for
breadcrumb deployment by the leading first responder very
soon.

In this paper, we present the first sophisticated study to
exploit efficient design for automatic MUBCS. The driving
idea behind our design is efficient and automatic coordination
to determine which user should deploy a new breadcrumb.
More concretely, given a limited number of breadcrumbs
available for each user (due to physical size and cost reasons),
we address the problem of finding an optimized coordination
scheme that maximizes the transmission range while maintain-
ing high end-to-end reliability.

Our contributions in this paper are three-fold. First, Our
work makes a further step from the traditional study on
reliable single-user breadcrumb systems into more practical
and efficient MUBCS design. Conceptually, our design prin-
ciple is general enough to be applied to any sensor network
applications that require opportunistic sensor deployment, such
as firefighting, underground mining, and wilderness area ex-
ploration applications. Second, we present UF, a utility func-
tion based algorithm that provides an efficient and distributed



coordination process via selecting appropriate benefit and cost
functions. This novel algorithm results in a reliable and longer
breadcrumb chain compared to a baseline greedy algorithm
in which the user with most breadcrumbs always deploys.
In addition, UF requires no a priori user mobility models,
making the design practical. Third, we have built a prototype
of MUBCS using 2.4 GHz based hardware. We deployed
and evaluated our system in real buildings with multiple first
responder mobility patterns. Experimental results indicate that
this approach can maintain connectivity for up to 87.3% longer
distances than baseline greedy approach while maintaining
96% packet delivery ratio. This implies that our proposed
MUBCS design is reliable and efficient.

The remainder of this paper is organized as follows. In
Section II, we describe the MUBCS model and present the
functionalities of our proposed breadcrumb system. Then the
UF algorithm is presented in detail in Section III. The proto-
type and evaluation for our proposed system are discussed in
Sections IV. Finally, we conclude the paper in Section V.

II. MUBCS MODEL

This section presents the main design of the MUBCS model,
which is a classical finite state machine. A dispenser under
the MUBCS model is in one of four states at any time: (1)
maintenance, (2) requester, (3) coordinator, and (4) ghost.
Transitions between the states are triggered by events.

After the MUBCS model is initiated, the dispenser enters
the maintenance state, in which it has reliable communication
with the breadcrumb chain. Here, the link between users is
maintained by periodically exchanging ping messages and the
link quality of these transmissions is measured. Whenever
the dispenser receives a HelpMsg from other dispenser, the
dispenser enters the coordinator state, sends back response
packets and involves itself into the coordination process. When
a new breadcrumb is deployed, the dispenser goes back to
the maintenance state. When the link monitoring algorithm
determines that the link between the dispenser and breadcrumb
chain is getting out of range, it enters the requester state and
asks its neighbor dispensers for help. When the coordination
is finished, it goes back to the maintenance state; otherwise,
when all dispensers run out of breadcrumbs, the connection
is completely lost and the dispenser goes to the ghost state.
Finally, the dispenser can go from the ghost state to the
maintenance state if the user walks backwards to the coverage
of breadcrumb trail.

Before describing the coordination algorithms used in
MUBCS, we first review some other system components in
our breadcrumb system design. The combination of these com-
ponents provides a practical and reliable breadcrumb system
for a single first responder. For more details and related work,
please refer to [1], [?].

Each first responder carries m breadcrumbs in his bread-
crumb dispenser and deploys one whenever connection to
the breadcrumb chain is getting weak. As they run into the
building, breadcrumbs are deployed automatically on the fly.
Due to the harsh environment in which breadcrumbs may

Fig. 1. PDR and RSSI as time changes in an example trace.

break or burn up, our deployment policy requires that each
breadcrumb keeps “good communication” with at least n + 1
other breadcrumbs at any time in order to have redundancies
to tolerate physical failures. Here, n represents the redundancy
degree of each breadcrumb.

As the first responder moves on for rescue work, the link
quality between the dispenser on the user and the breadcrumbs
becomes weaker. The link monitoring algorithm is used to
estimate the link quality and make optimal decisions on when
to deploy a new breadcrumb. Note that the design of the link
monitoring algorithm should take both independent and non-
independent breadcrumb failures into account.

Another key factor that needs to be taken into account
while deciding when to deploy new breadcrumbs is the height
effect. Since the dispenser (and the link estimator inside the
dispenser) is normally placed at the waist of the first responder,
thus there is a gap between the estimated link quality and the
actual link quality after the new breadcrumb is deployed on
ground. Solutions proposed to eliminate this height effect are
called height effect solvers.

After the new breadcrumb is deployed and joins the crumb
chain, the link quality between this new crumb and its n
neighbors may vary due to the dynamic impact from the
environment. Adaptive power control enables it to adaptively
adjust its transmission power according to real-time link
quality estimation.

III. UF ALGORITHM

In this section, we describe the proposed UF algorithm,
which introduces the calculation of a utility function as the
criteria of deploying new breadcrumbs. The utility function
based algorithm works as follows: the requester initiates the
algorithm by broadcasting a help message; then all of his
neighbors send their information to the requester; after a
predefined timeout, the requester calculates the value of utility
functions for each of its neighbor and sends a drop message
to the one with the highest value to deploy a new breadcrumb.

The essential part of the algorithm is to define an appro-
priate utility function. A good utility function must precisely
represent the tradeoffs between the gain of communication
range extension to the requester/group and the cost of the



Fig. 2. C(i) as R(i) and P (i) change.

breadcrumb counts to the deployer. The utility function for
User i, denoted by U(i), is defined as the weighted difference
between a benefit function and a cost function, i.e.,

U(i) = α ·B(i)− β · C(i) (1)

in which α and β and coefficients for the benefit function
B(i) and cost function C(i), respectively. Without changing
the final decisions, we use another variable γ = α/β and
rewrite the formula as follows:

U ′(i) = γ ·B(i)− C(i) (2)

B(i) represents the gain of the communication link if the
first responder i deploys a new breadcrumb. This gain can be
measured by either the RSSI value for the requester himself
or the average RSSI value for both the requester and his
neighbors. Thus it can be represented as:

B(i) =
1
n

n∑
k=1

RSSI(i, k) (3)

or

B′(i) = RSSI(i, req) (4)

The tradeoff between these two functions B(i) and B′(i)
is as follows. B(i) considers all communication links in
the group and takes the global optimal gain, but it requires
each group to broadcast within the group, which increases
both the communication overhead and the coordination delay.
Moreover, the coordination delay may become even worse,
since all group members are trying to broadcast simultaneously
and thus schemes like random backoff timers have to be used.
On the other hand, B′(i) takes only a local optimal gain
upon the requester, but it leads to much less communication
overhead and shorter coordination delay. Based on these
reasons, we choose the metric B′(i) during the implementation
and evaluation of our system.

To convert the RSSI into a value for the calculation of
U(i), we propose the following approach: First, the timestamp
when a predefined threshold of PDR is reached is set to be
the minimum 0, and the timestamp when the experiment starts

Fig. 3. Breadcrumb system prototype with four dispensers, twenty bread-
crumbs, and one USB-ported base station.

is set to be the maximum K. Then we record the fraction
of time µ when the exponentially weighted moving average
(EWMA) value of RSSI first reaches RSSI(i, req) and
calculate the corresponding value k = µ ·K. The final value
for the benefit function is then represented as the average of
k for all 20 trials. We collected experimental data in traces in
which the dispenser is moved far away from a breadcrumb on
the floor until the connection is lost. To eliminate the effect of
noise, we repeat the same experiment for 20 times, 5 in each
different environments including hallway, corner, upstairs, and
downstairs. Figure 1 shows the results of PDR and EWMA
RSSI in an example trace. Since the mapping between RSSI
and PRR is different from one building to another, a linear
approximation model can be used to obtain the corresponding
value k = RSSI−(RSSImin)

(RSSImax)−(RSSImin) · K, here RSSImin stands
for the minimum possible RSSI value, which for instance is
−92 dBm for CC2430 radio [9].

C(i) is the penalty for the number of remaining bread-
crumbs for first responder i. A good cost function must
take both relative ranking in the group and the absolute
counts into consideration. The relative ranking is necessary
since global information can provide important support for
making decisions. The function of absolute counts, which
grow exponentially as the counts decrease, is especially useful
when most group members have only a few breadcrumbs left
after the system is running for a long time. Thus, taking both
factors into account, we have

C(i) = R(i) + P (i) (5)

in which R(i) ∈ {1, 2, 3, . . . , n} represents the ranking of
group member i in the group in terms of breadcrumb counts
and P (i) = en0−n. Here n0 is a predefined threshold to
indicate that this user has very few breadcrumbs and will be at
high risk of running out of breadcrumbs soon. Figure 2 shows
how the value of C(i) changes with the relative ranking and
absolute counts. The number of users in the group is set to be
10, the initial number of breadcrumbs is 10 for each user, and
the threshold for absolute counts is 4. We can observe from
the graph that, relative ranking and absolute counts each affect
the C(i) value in a different way. R(i) provides a constant



Fig. 4. Nine sampling points in the Computer Science building.

increasing factor to C(i), P (i) does not change much when
there are plenty of remaining breadcrumbs, but as the counts
decrease to the threshold, P (i) starts to be the dominating
factor for the total value of C(i).

In summary, the utility function can be written as follows:

U(i) =
RSSI − (RSSImin)

(RSSImax)− (RSSImin)
·K −R(i)− en0−n (6)

IV. EVALUATION

We have built several new-version custom hardware mod-
ules, as shown in Figure 3, to accommodate the specific needs
of the breadcrumb system. All modules are designed to be
compatible with CC2430 series hardware. The key difference
to the last version [1] lies in that the transmission range for
both dispenser and breadcrumb increases to 40 meters. For
more details on hardware configuration, please refer to [?].

To evaluate our proposed UF algorithm, we conducted
groups of experiments in the Computer Science Building at
the University of Virginia. We compare UF to two baseline
algorithms: the greedy algorithm (Greedy) in which the user
with the most breadcrumbs deploys immediately, and the delay
dropping approach (DD) in which the user with the most
breadcrumbs deploys, but the deployment is delayed to where
his own link quality monitor indicates a new drop. Nine
predefined branch points are used to record the experiment
traces as shown in Figure 4 (Points 1, 4, 7, and 9 are
entrances/exits due to hilly environments), and users divide
into subgroups or merge to a larger group at some of these
branch points. The experiments involve four users in total,
denoted by A, B, C, and D. Users walk in a zigzag style
at normal walking speed. The three traces that they walked
through are listed below.

1) Branching and Merging (BM): This is to simulate the
searching application. ABCD all enter the building from
branch point 1, and divide into two groups: AB : 1 →
2 → 3 and CD : 1 → 3. ABCD merge at 3 and walk
through 3 → 6, and divide again: AC : 6 → 5 → 8
and BD : 6 → 9 → 8. Then ABCD merge at 8, walk
through 8 → 7, and leave the building.

2) Single Rescue Point (SRP): This is to simulate the rescu-
ing application with a single rescue point. ABCD enter

Fig. 5. Comparison of PDR between DD, Greedy and UF in the BM trace.

the building from two different entrances 1 and 6, and
the rescue point is 8. First, they walk through the trace:
AB : 1 → 2 → 5 and CD : 6 → 5. Then ABCD merge
at 5 and walk through 5 → 8 → 9 and leave the building.

3) Peeling Off One By One (PEEL): This is to simulate the
rescuing application with multiple rescue points. ABCD
all enter the building from branch point 1, and walk
through 1 → 2 → 5 → 8 → 9. At each branch point
2, 5, and 8, one user will leave the team and search via
a different route.

During the experiments, users walked along the predefined
traces and breadcrumb trails were automatically established.
Multi-hop communication is then applied to transmit useful
data packets to the base station. The redundancy degree is
set to 1 and exponentially weighted moving average was
adopted to guide when a new breadcrumb is needed, and
the parameters are set to be the optimal value that results
in the least probability of dropping late while maintain a
low Least Square value [1]: the weight β is 0.0313 and
dropping threshold is −81.8 dBm. The timer used for waiting
for responses from neighbors in UF is set to 1 second. For
simplicity, the height effect is solved by a fixed offset 10 dBm.
Along the trace, the dispenser sends out request messages
periodically at the rate of 5 packets per second in order
to get responses from “active” breadcrumbs. Link quality
information is then recorded according to the identity of
breadcrumbs. Physiological data are sent from the dispensers
to active breadcrumbs at the rate of 2 packets per second. Due
to the spatial locality, the synchronization message for group
management is sent once per 2 seconds. For performance
analysis purposes, in each data packet we included informa-
tion such as timestamp and source node ID. Upon receiving
the data packet, the intermediate breadcrumbs recorded this
information in its own flash memory. Zigbee techniques [8] are
used for the networking layer protocol during the experiments.
To eliminate the effect of random noise, experiments were
repeated five times when evaluating the reliability and the
coordination delay of candidate algorithms and we found that
the results have little variations. Unless stated otherwise, we
used the above default values in all the experiments.



(a) BM trace. (b) SRP trace. (c) PEEL trace.

Fig. 6. Average distances between breadcrumbs for sub-traces.

A. Reliability

To investigate whether the candidate coordination algorithm
leads to a high PDR breadcrumb system, a group of indoor
experiments were conducted. We attached sequence numbers
to data packets for statistical purposes and recorded the PDR
when running Greedy, DD, and UF. Due to page limitations,
we selected the most complex BM trace as the experiment
environment and recorded the PDR for each subtrace. The
PDR for each user is recorded separately so as to see the
variance.

Figure 5 compares the average PDR with error bars of each
subtrace when running Greedy, DD, and UF. We observe that
15 out of totally 18 bars achieve more than 95% PDR, which
indicates that all three coordination algorithms lead to a high
PDR. Particularly, UF achieves an average 96.3% PDR for
all users in all subtraces, more concretely, 94%, 88%, 99.4%,
99.3%, 99%, and 98%, respectively.

We also observed that sometimes people shadowing is a
big factor in packet loss. This occurs when multiple users
walking in a narrow environment simultaneously and one
stands in between the breadcrumbs and another user. As shown
in Figure 5, subtrace 3 → 6 (stairway from the third floor to
the second floor, 4 users) when running DD only results in an
average PDR 84.6% and the minimum PDR is only 70.7%.

B. Efficiency

To compare the efficiency of candidate coordination al-
gorithms, precise locations of deployed breadcrumbs in the
previous experiments were recorded and analyzed. As shown
in Figure 6, due to the inefficient coordination mechanism,
Greedy produces only 5.10, 4.08, and 9.82 meters in terms of
average distances in three traces. UF, however, achieves 7.76,
7.64 and 11.09 meters, which is 52.2%, 87.3%, and 12.9%
better than Greedy. This is because in UF, both breadcrumb
costs and link quality gains are taken into account, situations
in which the deployer is far from the requester rarely happen.
DD has an average distance of 6.79, 7.22, and 10.77 meters,
which is close to the performance of UF. This is reasonable
since the delay dropping process allows the deployer to carry
the breadcrumb for a while before dropping it, and thus
extends the average distance between breadcrumbs. However,
DD relies on the assumption that users are walking towards

the same direction with the same speed all the time, and they
cannot stop or go backwards during the process. UF does not
have these impractical constraints and performs well via the
well-designed utility function, i.e., considering both benefit
function and cost function, and taking both relative ranking
and absolute counts into account when calculating the cost
function. Due to page limitations, we do not show the results
of fairness, but UF results in a maximum STDEV value of 2
in all traces, which implies that the group is well balanced.

V. CONCLUSION

In this paper, we present the breadcrumb system design in
the context of multiple users. We propose a novel coordination
algorithm (UF) to provide efficient and reliable breadcrumb
deployment processes for multiple firefighter applications. We
fully implemented the MUBCS on several custom hardware
modules we have built, and evaluated our system in a real
building with several different firefighter mobility patterns.
Experimental results indicate that this approach can maintain
connectivity for up to 87% longer distances than baseline
greedy approach while maintaining 96% packet delivery ratio.

ACKNOWLEDGMENT

This work was performed on a Phase II SBIR on Wireless
Body Area Networks funded by the Science and Technology
Directorate of the Department of Homeland Security. This
work was also supported, in part, by the NSF grants EECS-
0901686 and CSR-0720640.

REFERENCES

[1] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, and J. A. Stankovic. Auto-
matic and Robust Breadcrumb System for Indoor Firefighter Applications.
In MobiSys 2010.

[2] M. R. Souryal, J. Geissbuehler, L. E. Miller, and N. Moayeri. Real-time
Deployment of Multihop Relays for Range Extension. In MobiSys 2007.

[3] National Fire Protection Association, 2005. URL: http://www.nfpa.org.
[4] Firefighter Fatalities in the United States in 2008. URL: http://www.usfa.

dhs.gov/downloads/pdf/publications/ff fat08.pdf.
[5] C. Stefanos, N. Kales, and E. S. Soteriades. Emergency duties and Deaths

from Heart Disease among Firefighters in the United States. In the New
England Journal of Medicine, 356(12), 2007.

[6] H. Liu. Design and Implementation of an Automatic, Reliable, and
Efficient Breadcrumb Sensor Network. Ph.D. dissertation, UVA, 2011.

[7] P25 projects, URL: http://www.project25.org.
[8] ZigBee Alliance, URL: http://www.zigbee.org.
[9] ChipCon CC2430 datasheet. URL: http://www.alldatasheet.com/

datasheet-pdf/pdf/241043/TAOS/CC2430.html.


