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Abstract

Background: The field of dietary assessment has a long history, marked by both controversies and advances. Emerging
technologies may be a potential solution to address the limitations of self-report dietary assessment methods. The Monitoring
and Modeling Family Eating Dynamics (M2FED) study uses wrist-worn smartwatches to automatically detect real-time eating
activity in the field. The ecological momentary assessment (EMA) methodology was also used to confirm whether eating occurred
(ie, ground truth) and to measure other contextual information, including positive and negative affect, hunger, satiety, mindful
eating, and social context.

Objective: This study aims to report on participant compliance (feasibility) to the 2 distinct EMA protocols of the M2FED
study (hourly time-triggered and eating event–triggered assessments) and on the performance (validity) of the smartwatch algorithm
in automatically detecting eating events in a family-based study.

Methods: In all, 20 families (58 participants) participated in the 2-week, observational, M2FED study. All participants wore a
smartwatch on their dominant hand and responded to time-triggered and eating event–triggered mobile questionnaires via EMA
while at home. Compliance to EMA was calculated overall, for hourly time-triggered mobile questionnaires, and for eating
event–triggered mobile questionnaires. The predictors of compliance were determined using a logistic regression model. The
number of true and false positive eating events was calculated, as well as the precision of the smartwatch algorithm. The
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Mann-Whitney U test, Kruskal-Wallis test, and Spearman rank correlation were used to determine whether there were differences
in the detection of eating events by participant age, gender, family role, and height.

Results: The overall compliance rate across the 20 deployments was 89.26% (3723/4171) for all EMAs, 89.7% (3328/3710)
for time-triggered EMAs, and 85.7% (395/461) for eating event–triggered EMAs. Time of day (afternoon odds ratio [OR] 0.60,
95% CI 0.42-0.85; evening OR 0.53, 95% CI 0.38-0.74) and whether other family members had also answered an EMA (OR
2.07, 95% CI 1.66-2.58) were significant predictors of compliance to time-triggered EMAs. Weekend status (OR 2.40, 95% CI
1.25-4.91) and deployment day (OR 0.92, 95% CI 0.86-0.97) were significant predictors of compliance to eating event–triggered
EMAs. Participants confirmed that 76.5% (302/395) of the detected events were true eating events (ie, true positives), and the
precision was 0.77. The proportion of correctly detected eating events did not significantly differ by participant age, gender,
family role, or height (P>.05).

Conclusions: This study demonstrates that EMA is a feasible tool to collect ground-truth eating activity and thus evaluate the
performance of wearable sensors in the field. The combination of a wrist-worn smartwatch to automatically detect eating and a
mobile device to capture ground-truth eating activity offers key advantages for the user and makes mobile health technologies
more accessible to nonengineering behavioral researchers.

(JMIR Mhealth Uhealth 2022;10(2):e30211) doi: 10.2196/30211
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Introduction

Challenges to Dietary Assessment
A prevailing challenge in dietary and eating research is the
ability to accurately measure dietary intake. Historically, the
assessment of dietary intake and eating behaviors uses
self-reporting tools [1,2], such as food diaries, food frequency
questionnaires, and 24-hour dietary recalls [3,4]. All dietary
assessment self-report methods have some level of measurement
error (difference between measured and true values) [5,6].
Dietary data collected via self-report methods may be
misreported because of biases, such as recall or memory bias
(when a respondent erroneously recalls their dietary intake) and
social desirability bias (when a respondent desires to present
oneself positively) [7-9]. Studies have also found that those
with certain characteristics (eg, obese weight status and body
image dissatisfaction) are more likely to underreport their energy
intake [10,11].

Shifting Focus From Dietary Intake to Eating Behavior
and Context
The field of nutritional epidemiology has produced an
abundance of studies that have examined the role of dietary
intake (ie, what and how much is consumed) in human health
and disease—specifically, macronutrients (eg, fats and
carbohydrates), types of food, quality of food, dietary patterns,
and more [12]. Decades of laboratory-based and observational
research indicate that dietary intake is a critical component of
chronic disease prevention [13]. However, the measurement of
diet in free-living populations remains a significant challenge
in the field. In addition, even if public health researchers can
easily and accurately track free-living dietary intake, dietary
intake patterns are notoriously difficult to change long-term
[14].

Eating behaviors and patterns (ie, food choices and motives
and feeding practices) and context (who is eating, when, where,
with whom, etc) also play a significant role in the development

of obesity and other chronic diseases, including type 2 diabetes
and heart disease [15-20]. These findings indicate that the
patterns and features of eating events may be key contexts that
shape dietary intake, and thus could be more malleable features
of eating behavior that could be intervened. However, the field
lacks appropriate behavioral theories that provide a richer
understanding of how eating behaviors vary across contexts and
across time [21,22].

Technology-Assisted Dietary Assessment
Emerging technologies offer a potential solution for the accurate
assessment of dietary intake by addressing the limitations of
self-reported dietary assessment methods. The incorporation of
technologies into dietary assessment can improve the quality
and validity of dietary data by passively measuring eating in
naturalistic settings over long periods with minimal user
interaction [23]. Two emerging technological advances in
dietary assessment tools include the following:

1. Ecological momentary assessment (EMA): a data collection
technique in which one’s behavior is repeatedly sampled
in real time and in context [24-26].

2. Wearable devices and sensors: allow for the passive
collection of various data streams from the physical
environment (eg, acoustic, visual, and inertial) [27].

EMA and wearable sensors are able to measure behavior near
or just in time, thereby reducing or eliminating the recall bias
that can affect retrospective self-report measures. In addition
to improving the validity of data, these technologies offer the
opportunity to measure eating behavior frequently and over
long periods, allowing researchers to examine how it varies
over multiple timescales (varies over the day, over the week,
etc).

Monitoring and Modeling Family Eating Dynamics
Study
To address the limitations of traditional dietary assessment
methods and theories, the Monitoring and Modeling Family
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Eating Dynamics (M2FED) study developed a sensor system
that used smartphones as well as deployable and wearable
sensors to collect synchronized real-time data on family eating
behavior [28]. This study used the following: (1) wrist-worn
smartwatches containing inertial sensors (accelerometer and
gyroscope) to automatically detect arm movements and hand
gestures associated with eating; (2) EMA via smartphone to
confirm whether the eating occurred and to measure other
contextual information, such as who was present during the
eating event and the current mood of the respondent; and (3)
Bluetooth proximity beacons to determine the approximate
location of the smartwatches.

Rather than focusing on dietary intake (caloric intake, portion
sizes, etc), this study took a novel approach by measuring eating
behaviors (ie, food choices and motives and feeding practices)
and context (who is eating, when, where, with whom, etc).
Family eating dynamics have yet to be measured and modeled
dynamically to better contextualize our understanding of social
influence processes within family systems. This paper begins
the first step toward producing new models that develop
behavioral theory, and it may enable the identification of
temporally specific processes and events within the family
system that can be targeted for personalized, context-specific,
real-time feedback.

Assessing Validity of Wearable Sensors
The validity of using wearable sensors to automatically assess
eating behavior and context has been tested in both laboratory
and field settings [27,29-31], indicating that the performance
of the wearable sensors decreases in naturalistic settings
(compared with controlled laboratory settings). Studies have
used a variety of sensors (eg, microphones, cameras,
smartwatches, and electromyography electrodes) to measure
various dietary outcomes, including bites, chewing, swallowing,
and duration of eating occasions [27,29-33]. A review by Bell
et al [27] indicates that there is still a strong reliance on
retrospective self-report methods (eg, end-of-day food diaries)
to determine ground-truth eating activity to evaluate wearable
sensors in the field. Given the aforementioned limitations of
retrospective self-report methods to accurately assess diet, the
M2FED study used event-contingent EMA to determine
ground-truth eating activity in families. The use of EMA offers
unique methodological advantages, such as the following:

• The ability to measure behavior near or just in time, thereby
reducing recall bias and reducing participant burden.

• The ability to measure behavior at the location in which it
actually occurs, thereby maximizing ecological validity
[24].

The validity of this method has been tested in a few in-field
studies [34,35]; however, it has not yet been tested in a
family-based study.

Assessing Feasibility of EMA
One disadvantage of using technologies for data collection is
the potential for participant noncompliance. A recent systematic
review and meta-analysis by Wen et al [36] found that
compliance rates among EMA studies in youth samples were
suboptimal; the weighted average compliance rate was 78.3%,

falling under the recommended 80% compliance rate [24]. Many
studies have explored EMA compliance for various behaviors
in various populations [36-40], but the compliance rate for a
family-based EMA study is underexplored. A recent EMA study
involving mothers and their children found that mothers’
presence may enhance children’s compliance with EMA
questionnaires [41], suggesting that family members and other
social relations may be leveraged to increase compliance in
future EMA studies.

Study Aims
Therefore, the overall purpose of this study is to report on
participant compliance (feasibility) to the 2 distinct EMA
protocols of the study (hourly time-triggered and eating
event–triggered assessments) and on the performance (validity)
of the wearable sensor in automatically detecting eating events
in a family-based study. Specifically, the primary aims of this
study include the following:

• Aim 1A—evaluate participant compliance with the EMA
protocol, (1) overall, (2) for hourly time-triggered survey
assessments, and (3) for eating event–triggered survey
assessments—and aim 1B—evaluate the impact of time
(time of day, day of week, and deployment day), age,
gender, family role, and compliance of other family
members (whether another participating family member j
had answered a survey that had been received within 15
minutes of focal person i’s survey) on compliance.

• Aim 2A—evaluate the performance of the wrist-worn
smartwatch to automatically detect eating events of
participants at home—and aim 2B—determine whether
there are systematic differences in the detection of eating
events by age, gender, family role, and height.

Methods

Participants and Recruitment

Eligibility
The research team recruited families that contained at least two
members (including at least one adult parent and one child
between the ages of 11 and 18 years) living in Los Angeles
County. Families with children aged <11 years were eligible to
participate; however, children aged <11 years were not permitted
to participate in the study. Families were not eligible to
participate if one or more family members living at home did
not primarily speak English. There were no demographic or
disease-related exclusion criteria.

Method of Recruitment
Families were recruited in public spaces and at public events
in Los Angeles County from May 2017 to August 2019.
Snowball sampling was also used, such that participating
families were offered an additional US $20 if they referred other
eligible families that were successfully enrolled in the study.

All families that expressed interest and met the eligibility
requirements were invited to participate in the study. An intake
screening tool was administered over the phone by recruitment
coordination staff to confirm eligibility before enrolling in the
study.
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This study was approved by the Institutional Review Board of
the University of Southern California (UP-16-00227). All
parents provided informed written consent, and all children
provided assent.

M2FED System

Overview
The primary objective of the M2FED study is to develop and
deploy the M2FED cyberphysical system (Figure 1) in the
homes of families. Cyberphysical systems can be defined as
“physical and engineered systems whose operations are

monitored, coordinated, controlled, and integrated by a
computing and communication core” [42]. This novel system
monitored in-home family eating behaviors in all participants.
This system contained four primary components (1) sensors
(including smartwatches, smartphones, and Bluetooth proximity
beacons), (2) a base station, (3) an EMA subsystem, and (4) a
remote monitoring subsystem, all of which were connected
through a Wi-Fi router (Figure 1).

For the scope of this study, all data collected by the system were
measured in the home (ie, no data were collected outside of the
home).

Figure 1. Overview of the Monitoring and Modeling Family Eating Dynamics cyberphysical system. EMA: ecological momentary assessment.

Sensors
Participants were instructed to wear a Sony Smartwatch 3
(Android Wear operating system) on their dominant hand during
all waking hours that they were in their home. The smartwatches
were used to automatically detect eating-related hand-to-mouth
(H-t-M) gestures for each participant at home and in real time.
Arm movements and H-t-M gestures were detected via an
algorithm that used motion data from the inertial sensors inside
the smartwatch (accelerometer and gyroscope) [43]. If a cluster
of at least two H-t-M gestures were detected within a 1-minute
time frame, then the motion data were processed with a more
sophisticated algorithm, and these clusters were then
characterized as an eating event. An eating event can be defined
as a set of H-t-M gestures, representing phenomena such as
consuming a meal, snack, drink, or a combination of these
consumption behaviors in which H-t-M gestures are clustered
temporally. The technical details of the eating event detection
algorithm are provided in detail elsewhere [43]. Participants
were instructed to wear the smartwatch only at home and to not
take it outside or wear it outside of the home. Consequently,
data on H-t-M gestures and eating events that were determined
by the proximity beacons that occurred outside of the home
were discarded.

Participants were each provided with a Samsung Galaxy S7
smartphone (Android operating system) preprogramed with
limited functioning. The smartphone app in which they
responded to mobile questionnaires was pinned to the screen

so that they could not access other apps on the smartphone. This
smartphone was only intended for use as a data collection tool.
Participants were instructed to keep their smartphones at home
and not take it outside of the home. If a smartphone left home
and was not within the range of the Wi-Fi router, the phone did
not receive any mobile questionnaires. Consequently, data on
participants’ states and behaviors outside of the home were not
collected.

Estimote Bluetooth Low Energy proximity beacons were used
to determine the approximate location of smartwatches of
participants (including approximately which room the watches
were in and whether they were still at home) during the study
period. The beacons continuously broadcasted packets that
included the unique media access control address of the
Bluetooth interface, whereas the smartwatches periodically
scanned for these packets. The smartwatches then recorded the
received signal strength indicator (signal from the beacons),
which indicated the proximity of the smartwatches to the
beacons.

Typically, 1 to 2 beacons were placed on a wall in each living
space at home (excluding bathrooms and bedrooms), and they
required no further action by the participants during the study.

Base Station
A base station is a radio receiver and transmitter and a
computing platform that serves as the hub of a local wireless
network (the M2FED system). The base station for the M2FED
system was a Lenovo ThinkPad laptop, which was placed in
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the home of the family for the duration of the study. The laptop
was placed in a locked cage so that it could not be tampered
with. The base station collected and processed the data received
from the smartphones and smartwatches through the Wi-Fi
router, and managed the EMA subsystem that ran on the laptop
as well.

EMA Subsystem
EMA is a data collection technique in which one’s behavior is
repeatedly sampled in a natural environment [24]. In this study,
participants were assessed on several individual behaviors and
states via mobile questionnaires sent to their smartphone
approximately every hour during waking hours. Each
smartphone had an app developed by the members of our
research team installed on it. The app acted as a mobile
questionnaire platform (ie, participants answered the
questionnaires within the app interface).

The two types of EMAs that the participants received are as
follows: (1) time-triggered mobile questionnaires and (2) eating
event–triggered mobile questionnaires.

A time-triggered mobile questionnaire was sent to the
participants’ smartphones every hour at the top of the hour (eg,
10 AM, 11 AM, 12 PM, etc; Figure 2A). The questionnaire

included a brief validated positive affect and negative affect
survey [44-47] (see Table 1 for the full list of questions).

Shortly after an eating event was detected for any given
participant, an eating event–triggered mobile questionnaire was
sent to the corresponding participant’s smartphone asking to
confirm whether they had just eaten (Figure 2B). If they
confirmed that they had just eaten, then following this first
question, they were asked a battery of survey items including
previously validated measures of hunger and satiety [48],
mindful eating [49], positive and negative affect [44-47], and
with whom they were eating, if anyone (see Table 1 for the full
list of questions). If the participant had not finished eating, they
were given the option to request more time before filling out
the questionnaire.

If they responded to the first question indicating that they had
not just eaten, then they were asked to report what activity they
had just completed. They were then asked to respond to
validated measures of positive and negative affect [44-47].

Figure 3 illustrates the full eating event–triggered EMA question
logic. The full list of questions for the time-triggered and the
eating event–triggered mobile questionnaires can be found in
Table 1.
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Figure 2. Examples of a time-triggered and eating event–triggered mobile questionnaire received on the phone of a participant. Figure 2A is an example
of a time-triggered mobile questionnaire that the participants received on their phone during the study. It contains the first 4 questions of the questionnaire
that measure negative affect. Figure 2B is an example of an eating event–triggered mobile questionnaire that the participants received on their phone
during the study. It contains the first question of the questionnaire that measures whether the participant had just eaten or drank. EMA: ecological
momentary assessment.
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Table 1. Ecological momentary assessment (EMA) items.

FormatResponse optionsItemsVariable (subscale)

Time-triggered EMA

Separate screen for
each of the 8 items

How were you feeling right before the phone signal went off?
(upset, nervous, stressed, could not cope, happy, great, cheerful,
joyful)

Positive and negative af-
fect

• Not at all
• A little
• Some
• Very

Eating event–triggered EMA

—aWere you eating or drinking just now?Eating confirmation • Yes
• No

—What did you just eat?Eating type • Meal
• Snack
• Drink only

—Who was eating with you? (check all that apply)Social context • Nobody
• Spouse or partner
• Child(ren)
• Mother
• Father
• Sister(s)
• Brother(s)
• Grandparent
• Other family
• Friend(s)
• Other people

Separate screen for
each of the 8 items

I started eating because (food looked, tasted, or smelled so
good; others were eating; feeling sad or depressed; feeling
bored; feeling angry or frustrated; feeling tired; feeling anxious
or nervous; my family or parents wanted me to eat).

Eating in the absence of
hunger—started eating

• Not at all
• A little
• Some
• Very

Separate screen for
each of the 8 items

I kept eating because (food looked, tasted, or smelled so good;
others were eating; feeling sad or depressed; feeling bored;
feeling angry or frustrated; feeling tired; feeling anxious or
nervous; I wanted to finish the food on my plate).

Eating in the absence of
hunger—kept eating

• Not at all
• A little
• Some
• Very

Sliding scale 0 to
100

How hungry were you right before you ate?Hunger level before eating • 0=Not at all hungry
• 100=Greatest imagin-

able hunger

Sliding scale 0 to
100

How full were you right after you ate?Satiation level after eating • 0=Not at all full
• 100=Greatest imagin-

able fullness

Separate screen for
each of the 3 items

Before the beep, while I was eating (My thoughts were wander-
ing while I ate; I was thinking about things I need to do while
I ate; I ate so quickly that I did not taste anything).

Mindful eating • Very true
• Somewhat true
• A little true
• Not true

Separate screen for
each of the 8 items

How were you feeling right before the phone signal went off?
(upset, nervous, stressed, could not cope, happy, great, cheerful,
joyful)

Positive and negative af-
fect

• Not at all
• A little
• Some
• Very

aNo additional formatting notes.
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Figure 3. Eating event–triggered ecological momentary assessment question logic.

Participation Windows
Before a family’s deployment started, all participants were
individually asked about the time at which they normally woke
up and the time at which they normally went to bed. The
participants were limited to only 1 personalized participation
window for the study. Therefore, they could not have different
windows for Monday versus Tuesday and weekday versus
weekend. If the times at which they woke up or went to bed

varied extensively among days, then they were asked to provide
a time frame that generally worked for all days. The purpose
was to create personalized participation windows to account
for variations in the daily routines and sleeping patterns of the
participants. For the duration of the study, the participants only
received EMAs during their personalized participation window.
For example, if the window of a participant was from 6:30 AM
to 11:00 PM, then they only received EMAs during that period.
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Remote Monitoring Subsystem
The monitoring subsystem was used to monitor the status of
the M2FED system in real time [50]. The subsystem monitored
several things, including the battery status and network
connection of the smartwatches, smartphones, and base station;
the processes running on the base station; the detected eating
events; and whether participants responded to any given EMA
sent to their smartphones. When the monitoring system detected
an issue (eg, the base station was no longer connected to the
router), an email was sent to the research team to alert them of
the issue.

Procedures
Following enrollment, 2 members of the research team visited
the home of each recruited family 2 separate times.

Visit 1
During the first home visit, the team went to the participants’
home to obtain consent from all participating family members,
take body measurements of the participants using a
research-grade Tanita scale (Model TBF 300) and stadiometer,
administer baseline surveys, and install the components of the
cyberphysical system around the home (all living spaces, not
including bedrooms or bathrooms).

The base station, Wi-Fi router, and Bluetooth beacons were
placed in a discrete location in the home of the family, so they
could run without interference for the duration of the study.
Samsung smartphones and Sony smartwatches were provided
to all participating family members for the duration of the study
(all features except answering questionnaires were turned off).
Each phone and watch was designated to a specific participant
and labeled with their name so that they knew which devices
were their own. The team instructed the family on how to
properly wear, charge, and care for the smartwatches and how
to answer an EMA on the smartphones. The family was
instructed to wear the watch at all times when they were at home
and to answer all EMA questionnaires they received when they
were at home. They were also instructed to leave their designed
phone and watch at home when they left home to prevent the
devices from getting damaged or lost while outside of the home.

Upon leaving the visit, family members underwent
approximately 14 consecutive days of (1) use of a smartphone
to complete hourly time-triggered and eating event–triggered
mobile questionnaires, up to once every hour during waking
hours; and (2) eating event monitoring, in the form of a
wrist-worn smartwatch during waking hours.

Visit 2
At the final home visit, approximately 2 weeks following the
first home visit, the research team terminated data collection,
and all equipment was uninstalled and removed from the homes.
Each participant received US $100 in a Visa gift card format
as compensation for the 2-week study.

Measures

Eating Events
During the 2-week assessment period, participants were asked
to wear their dedicated smartwatch on their dominant wrist at

all times while they were home during waking hours. Automatic
eating event detection software on the smartwatches developed
by our research team [43] collected the timestamps (approximate
start and end times in the format mm/dd/yyyy, hh:mm:ss) for
all detected eating events that occurred while the watch was
worn. After an eating event was detected, participants received
a brief mobile questionnaire on their study phones to confirm
whether the detected eating event was a true event. The first
question on the questionnaire was “Were you eating or drinking
just now?” If the participant responded “No,” they were asked
to report what they were doing. Options included using my
phone, smoking, fixing my hair, putting on sunscreen or lotion,
or other with an open text field. If the participant responded
“Yes,” they were asked to report on a range of momentary
measures, such as hunger level before the eating event and with
whom they were eating. The full list of questions for the
time-triggered and the eating event–triggered mobile
questionnaires can be found in Table 1.

EMA Questionnaires
Timestamps (format: mm/dd/yyyy, hh:mm:ss) when the hourly
time-triggered and eating event–triggered mobile questionnaires
were sent to and received by the smartphones of participants
were obtained from the monitoring system. In addition, the
responses of the participants to the questionnaires were obtained
from the monitoring system.

Timing
Time of day at which and day of week on which an eating event
occurred was calculated using the timestamp of the detected
eating events. The time of day at which the eating event occurred
was stored in hh:mm:ss format. The lubridate R package [51]
was used to convert the date on which the eating event occurred
(format: mm/dd/yyyy) to the day of corresponding week
(Monday, Tuesday, etc), which was then converted to weekday
(Monday, Tuesday, etc) and weekend (Saturday or Sunday).

Anthropometrics
During home visit 1, height (cm), weight (kg), and body fat
percentage (%) were measured in all participants in a private
section of the home, using a portable stadiometer and a
research-grade Tanita scale (model TBF 300).

Demographics
During home visit 1, participants were asked to provide basic
demographic information via a paper-based questionnaire,
including their current age (years), gender (female or male),
race (Hispanic or Latino, Asian or Pacific Islander, White, Black
or African American, American Indian or Native American,
Mixed, or other), Hispanic or Latino ethnicity (Yes, No, or Do
not know), and family role (mother, father, child, grandparent,
aunt, uncle, and others).

Analytic Approach

Data Processing
A limitation of the EMA sampling protocol of the M2FED study
was that the study phones of participants (which were instructed
to be kept at home at all times) received hourly, time-triggered
surveys regardless of whether the participants themselves were
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at home or not (at school or work, running errands, etc). This
means that the time frame in which any given participant was
at home and participating in the study was not necessarily
continuous. Although we do not possess the ground truth for
presence of the participants at home (eg, no cameras and no
self-report diaries), our research team generated a participation
algorithm using the EMA system, proximity sensors, and
accelerometer in the watch to identify time intervals in which
we were confident that the participants were both at home and
actively participating in the study (ie, answering EMAs or
wearing the smartwatch; Figure 4).

If participants had answered an EMA at time t, then we assigned
their status as participating for the 30-minute interval
surrounding time t (ie, from t −15 to t +15 minutes). For times

outside the EMA interaction windows, we used data from the
sensors (smartwatch accelerometer and Bluetooth beacons) to
determine the status of the participants. For every minute, if the
accelerometer data of the smartwatch was both available (ie,
not missing for that minute) and indicated movement (ie, the
frequency and instantaneous changes of the sensor signal was
above a threshold, representing change in the signal because of
movement) and beacon data were available, then they were
classified as participating for that 1-minute interval. Contiguous
minute intervals with participating status were merged to
acquire larger time intervals. For each participant, these
participation time intervals were calculated, and the union of
all intervals (Figure 5) was used as the valid time interval in the
analyses.

Figure 4. Decision tree to determine when study participants were participating at home. EMA: ecological momentary assessment.
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Figure 5. Example of participation time intervals for a participant. In this example, the shaded gray regions indicate the valid participation time intervals
for this participant. In the first interval, we see that the participant answered an ecological momentary assessment (EMA), and there were available data
from the accelerometer and beacon. In the second interval, the participant did not answer an EMA, but there were available data from the accelerometer
and beacon. In the third interval, the participant answered an EMA and there were some available data from the accelerometer.

Data Analyses

Individual- and Family-Level Characteristics
The mean and SD or the count and proportion of the analytic
sample's age, BMI, gender, race, and ethnicity were calculated
and reported by family role (child or parent). At the family level,
the count and proportion of the type of household of the family
(1- or 2-parent household), number of children living at home,
and average length of family deployment were reported.

EMA Characteristics
The mean and SD of EMAs received per family, received per
person, and received per person per day were calculated after
applying the participation algorithm to the EMA data. The
frequency distribution of EMAs by family role and time of day
was calculated.

Primary Analyses
To test study aim 1A, EMA compliance was calculated as
follows (i can be values from 1 to n, where n represents the
number of participants in the study):

Overall compliance to EMAs for participanti = total
number of EMAs answered by participanti / total
number of EMAs received at home by participanti  (1)

Compliance to time-triggered EMAs for participanti
= total number of time-triggered EMAs answered /
total number of time-triggered EMAs received at
home by participanti  (2)

Compliance to eating event–triggered EMAs for
participanti = total number of eating event–triggered
EMAs answered / total number of eating
event–triggered EMAs received at home by
participanti  (3)

Means and SDs of overall compliance to EMAs, compliance to
time-triggered EMAs, and compliance to eating event–triggered
EMAs were also calculated across all participants.

To test study aim 1B, the unit of analysis was every EMA that
was sent to and received by the smartphones of the participants
throughout the span of the 2-week data collection period.
Compliance (dependent variable) was calculated as 1 if the
questionnaire was answered and as 0 if the survey was not
answered. A logistic regression model was fitted with the
following independent variables: type of EMA (time-triggered
and eating event–triggered), time of day (morning, defined as
midnight to 11:59:59 AM; afternoon, defined as noon to
16:59:59 PM; and evening, defined as 17:00:00 PM to 23:59:59
PM), day of week (weekday, defined as Monday through Friday;
and weekend, defined as Saturday and Sunday), gender (male
or female), family role (parent, child, or other), and social factors
(whether another participating family member j had answered
a survey that had been received within 15 minutes of the focal
person i’s questionnaire).

To test study aim 2A, we evaluated the performance of the
smartwatch by computing the following metrics for all eating
events automatically detected during deployments:

True positives = cases in which an eating event actually
occurred, and that eating event was correctly detected by the
smartwatch algorithm

False positives = cases in which an eating event actually did
not occur, but an eating event was erroneously detected by the
smartwatch algorithm.

Precision = true positives / (true positives + false
positives)  (4)

To test study aim 2B, nonparametric methods were used to
determine whether there were differences in the detection of
eating events by participant age, gender, family role, and height.
The metric we used to compare across demographic groups was
the following:

Proportion of correctly detected eating events for
participanti = true positives for participanti / total
number of detected eating events for participanti  (5)
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If any participant had received fewer than 3 eating
event–triggered EMAs, their data were excluded from this
analysis.

For categorical variables with 2 groups (ie, gender), the
appropriate assumptions were tested, and then the
Mann–Whitney U test was used to test for equality of central
tendency of the 2 distributions; for categorical variables with 3
or more categories (ie, family role), the Kruskal-Wallis test was
used. Finally, for continuous variables (ie, height [cm] and age
[years]), the appropriate assumptions were tested, and Spearman
rank correlation was used to measure the strength and direction
of the relationship between the continuous variable and the
proportion of correctly detected events.

Missing Data
There were no missing anthropometric or demographic data.
Similarly, there were no missing data on detected eating events
and corresponding variables, including time of eating event and
day of eating event; however, there were missing data for
time-triggered and eating event–triggered EMAs.

Missingness Attributed to Technical Issues

Preliminary analyses indicated that not all EMAs that were sent
to the study phones of the participants by the M2FED system
were received by the phone. The M2FED system ran
independently on the base station regardless of the network
connection, and therefore sent EMAs regardless of network
connection. However, a network connection was needed for the
phone to successfully receive the EMA.

Although we do not have data that explain why this happened
at every instance, we know from in-the-field troubleshooting
and from accounts given by participants that at least a portion
of the nonreceived EMAs resulted from (1) network connection
issues at home (ie, the router was not working and the EMAs
could not be received on the phone) and (2) EMA app failure
(ie, the EMA app on the phone failed to work properly).

For these analyses, we removed any EMAs that were sent by
the system but were not received by the phone.

Missingness Attributed to Participant Nonresponse or
Partial Response

The different types of missing data that we encountered were
because of participant nonresponse (ie, participants did not

respond to any EMA questions) or partial responses (ie,
participants did not respond to all EMA questions).

For aim 1 analyses, if participants did not respond to any
questions on a given mobile questionnaire, then this EMA was
labeled as received but not answered. If participants did not
respond to all questions, then this EMA was labeled as received
and partially answered. These EMA observations were kept in
the data set to calculate EMA compliance.

For aim 2 analyses, if participants did not respond to at least
the first question on a given eating event–triggered EMA (“Were
you eating or drinking just now?”), then this EMA observation
was removed from the data set.

Statistical software R (version 4.0.2) was used to perform these
analyses.

Results

Individual- and Family-Level Characteristics
A total of 74 participants from 20 families were enrolled in the
M2FED study. In all, 18% (13/74) of participants dropped out
of the study or were removed from the data set if their
participation (as determined by the participation algorithm) was
0% (ie, they did not answer any EMAs and never wore the
smartwatch; Figure 6).

In addition, the data from 4% (3/74) nonparent adult participants
made up approximately 1.44% (61/4232) of the EMAs received,
so these participants were removed from the analytic sample as
well. The remaining 78% (58/74) of participants included in
the analytic sample did not significantly differ from the enrolled
sample (N=74) by age, gender, or parent role (P>.05; Table 2).

Of the 58 participants, 43% (n=25) were parents and 57% (n=33)
were children. On average, children were aged 15.12 years (SD
3.97 years) and parents were aged 43.72 years (SD 6.71 years).
There were 39% (13/33) female children and 68% (17/25)
female parents. In all, 61% (20/33) of children and 68% (16/25)
of parents identified as Hispanic or Latino (Table 3).

Of the 20 enrolled families, most (17/20, 85%) were 2-parent
households, 15% (3/20) of the families had 1 child living at
home, 75% (15/20) of the families had 2 children, 5% (1/20)
of the families had 3 children, and 5% (1/20) of the families
had 4 children (Table 4). On average, family deployments lasted
14.90 days (SD 3.13 days).
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Figure 6. Flow of participants in the Monitoring and Modeling Family Eating Dynamics study. Participants may not have received an eating
event–triggered ecological momentary assessment (EMA) as no eating event was detected by the system or technical issues prevented the EMA from
sending.

Table 2. Comparison of recruited sample and analytic samples.

ValuesCharacteristics

P valueaAnalytic sample
for aim 2B
(n=36)

P valueaAnalytic sample
for aim 2A
(n=46)

P valueaAnalytic sample
for aim 1A and 1B
(n=58)

Recruited sample
(N=74)

.4726.67 (14.83).9628.76 (15.51).5927.45 (15.23)28.91 (15.79)Age (years), mean (SD)

.4920 (56).8124 (52).7830 (52)37 (50)Sex (female), n (%)

.9715 (42).7721 (46).9925 (43)32 (43)Parent (yes), n (%)

aP values were calculated by comparing the analytic sample to the recruited sample. Welch 2 independent sample 2-tailed t test was used for continuous
variables (ie, age), and Pearson chi-square test was used for categorical variables (ie, sex and parent).
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Table 3. Individual-level characteristics of the Monitoring and Modeling Family Eating Dynamics analytic sample (N=58), by family member role.

Parent (n=25)aChild (n=33)aCharacteristics

43.72 (6.71)15.12 (3.97)Age (years), mean (SD)

17 (68)13 (39)Sex (female), n (%)

Race and ethnicity, n (%)

1 (4)1 (3)Asian or Pacific Islander

1 (4)2 (6)Black or African American

16 (68)20 (61)Hispanic or Latino

4 (16)4 (12)White

1 (4)6 (18)Mixed

1 (4)0 (0)Other

32.90 (7.38)22.36 (4.66)BMIb percentile (n=53), mean (SD)

aThe percentages presented are column percentages.
bBMI: body mass index.

Table 4. Family-level and deployment-level characteristics of the Monitoring and Modeling Family Eating Dynamics study families (N=20).

ValuesCharacteristics

Number of parents living at home, n (%)a

3 (15)1-parent household

17 (85)2-parent household

Number of children living in the home, n (%)a

3 (15)1 child

15 (75)2 children

1 (5)3 children

1 (5)4 children

14.90 (3.13)Deployment length (days), mean (SD)

aThe percentages presented are column percentages.

EMA Characteristics
In total, 15,010 EMAs (14,348/15,010, 95.59% time-triggered
and 662/15,010, 4.41% eating event–triggered) were sent by
the M2FED system and received by study phones of the
participants. After filtering the data through the participation
algorithm, 27.78% (4171/15,010) EMAs remained in the data
set: 88.95% (3710/4171) of which were time-triggered and
11.05% (461/4171) were eating event–triggered (Table 5).

On average, families received 209.0 EMAs (SD 89.4; range
86-391), and individuals received 71.9 EMAs (SD 34.3; range
8-176) each. Participants received, on average, 64.0
time-triggered EMAs (SD 31.3; range 8-147) and 8.0 eating

event–triggered EMAs (SD 8.9; range 0-40) across the
deployment. The daily average number of EMAs received per
person was 5.2 (SD 2.7; range 0.6-11.7) for all EMAs, 4.7 (SD
2.4; range 0.3-10.2) for time-triggered EMAs, and 0.6 (SD 0.6;
range 0-2.7) for eating event–triggered EMAs (Table 5). Of the
4171 total EMAs, 18.58% (775/4171) were received in the
morning, 30.46% (1270/4171) in the afternoon, and 50.97%
(2126/4171) in the evening. Of the 461 eating event–triggered
EMAs, most, 45.8% (211/461), were sent in the evening (Figure
7). Children received 57.52% (2399/4171), fathers received
10.72% (447/4171), and mothers received 31.77% (1325/4171)
of the total EMAs. Of the 461 eating event–triggered EMAs,
49.9% (n=230) were received by children, 7.4% (n=34) by
fathers, and 42.7% (n=197) by mothers.
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Table 5. Ecological momentary assessment (EMA) summary statistics after applying participation algorithm, by prompt type.

EMAs received per person per
day, mean (SD; range)

EMAs received per person,
mean (SD; range)

EMAs received per family,
mean (SD; range)

Total EMAs received, NType of EMA

5.2 (2.7; 0.6-11.7)71.9 (34.3; 8-176)209.0 (89.4; 86-391)4171All EMA

4.7 (2.4; 0.3-10.2)64.0 (31.3; 8-147)186.0 (84.3; 77-356)3710Time-triggered
EMA

0.6 (0.6; 0-2.7)8.0 (8.9; 0-40)23.0 (17.2; 3-69)461Eating
event–triggered
EMA

Figure 7. Distribution of ecological momentary assessments (EMAs) received across the time of day (hour), by EMA survey type.

Participant Compliance
The overall compliance rate across the 20 deployments was
89.26% (3723/4171) for all EMAs, 89.7% (3328/3710) for
time-triggered EMAs, and 85.7% (395/461) for eating
event–triggered EMAs (Table 6). The average family-level
compliance was 89.4% (SD 5.74%; range 75.7%-98.1%) for
all EMAs, 89.8% (SD 5.84%; range 75.8%-98.7%) for

time-triggered EMAs, and 85.9% (SD 14.3%; range
55.6%-100%) for eating event–triggered EMAs. At the
individual-level, the average compliance for all EMAs was
89.6% (SD 9.5%; range 53.8%-100%), for time-triggered EMAs
was 89.5% (SD 10.1%; range 50%-100%), and for eating
event–triggered EMAs was 88% (SD 17.5%; range
28.6%-100%). The distributions of individual- (Figure 8A) and
family-level compliance (Figure 8B) are shown in Figure 8.

Table 6. Ecological momentary assessment (EMA) compliance rates after applying participation algorithm, by prompt type.

Individual-level compliance (%),
mean (SD; range)

Family-level compliance (%),
mean (SD; range)

Total EMAs answered
(compliance), n (%)

Total EMAs received, NType of EMA

89.6 (9.5; 53.8-100)89.4 (5.74; 75.7-98.1)3723 (89.3)4171All EMA

89.5 (10.1; 50-100)89.8 (5.8; 75.8-98.7)3328 (89.7)3710Time-triggered EMA

88.0 (17.5; 28.6-100)85.9 (14.3; 55.6-100)395 (85.7)461Eating event–trig-
gered EMA
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Figure 8. Distribution of (A) family-level and (B) individual-level compliance.

Predictors of Compliance
Three separate logistic regression models were fitted with the
following data sets: (1) all EMAs, (2) time-triggered EMAs,
and (3) eating event–triggered EMAs.

Results from the first model indicate that time of day and
whether other family members had also answered an EMA were
significant predictors of compliance to all EMAs (Table 7).
Participants were 37% less likely (odds ratio [OR] 0.63, 95%
CI 0.46-0.86) to respond to an EMA in the afternoon and 39%
less likely (OR 0.61, 95% CI 0.45-0.81) to respond to an EMA
in the evening compared with the morning (reference group).
Participants were 91% more likely (OR 1.91, CI 1.56-2.34) to
respond to an EMA if another family member had responded
to an EMA in the surrounding 30-minute time interval.

The results from the second model indicate that time of day and
whether other family members had also answered an EMA were

significant predictors of compliance to time-triggered EMAs
(Table 7). Participants were 40% less likely (OR 0.60, 95% CI
0.42-0.85) to respond to a time-triggered EMA in the afternoon
and 47% less likely (OR 0.53, 95% CI 0.38-0.74) to respond to
a time-triggered EMA in the evening than in the morning
(reference group). Participants were approximately 2 times as
likely (OR 2.07, 95% CI 1.66-2.58) to respond to a
time-triggered EMA if another family member had responded
to any EMA in the surrounding 30-minute time interval.

Results from the third model indicate that weekend status and
deployment day were significant predictors of compliance to
eating event–triggered EMAs (Table 7). Participants were 2.4
times as likely (OR 2.40, 95% CI 1.25-4.91) to respond to an
eating event–triggered EMA on the weekend, than on a
weekday. Participants were 8% less likely (OR 0.92, 95% CI
0.86-0.97) to respond to an eating event–triggered EMA for
every 1-day increase in deployment day.
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Table 7. Logistic regression model results, examining predictors of compliancea.

Model 3: eating event–triggered EMAsModel 2: time-triggered EMAsModel 1: all EMAsbCharacteristics

OR (95% CI)β (SE)OR (95% CI)β (SE)ORc (95% CI)β (SE)

11.15 (2.65-48.64)2.41f (0.74)9.22 (5.24-16.36)2.22e (0.29)8.75 (5.20-14.82)2.17d,e (0.27)Intercept

1.02 (0.96-1.08).02 (0.03)1.00 (0.98-1.02).00 (0.01)1.00 (0.98-1.03).00 (0.01)Age (years)

0.71 (0.33-1.46)−.35 (0.38)0.60 (0.42-0.85)−.51f (0.18)0.63 (0.46-0.86)−.47f (0.16)Afternoon

1.32 (0.62-2.75).28 (0.38)0.53 (0.38-0.74)−.63e (0.17)0.61 (0.45-0.81)−.50f (0.15)Evening

2.40 (1.25-4.91).87g (0.35)0.95 (0.75-1.19)−.06 (0.12)1.06 (0.86-1.31).06 (0.11)Weekend, yes

0.92 (0.86-0.97)−.09f (0.03)0.99 (0.97-1.01)−.01 (0.01)0.98 (0.96-1.01)−.02 (0.01)Deployment day

0.52 (0.22-1.22)−.65 (0.43)1.37 (0.98-1.92).31 (0.17)1.21 (0.90-1.65).19 (0.15)Female, yes

0.52 (0.06-4.56)−.65 (1.07)1.06 (0.53-2.16).06 (0.36)0.99 (0.51-1.93)−.01 (0.34)Mother

0.53 (0.08-3.26)−.64 (0.93)0.69 (0.33-1.47)−.37 (0.38)0.66 (0.33-1.30)−.42 (0.35)Father

0.99 (0.54-1.76)−.02 (0.30)2.07 (1.66-2.58).73e (0.11)1.91 (1.56-2.34).65e (0.10)Others answered, yes

aAkaike information criteria is 2805.16, 2417.32, and 375.57 for models 1-3, respectively. Bayesian information criteria is 2868.52, 2479.50, and 416.91
for models 1-3, respectively.
bEMA: ecological momentary assessment.
cOR: odds ratio.
dValues indicate significant estimates.
eP<.001.
fP<.01.
gP<.05.

Smartwatch Algorithm Evaluation
At least one eating event was automatically detected during the
deployment for 46 participants. This subsample (ie, the analytic
sample for aim 2A) did not significantly differ from the enrolled
sample (N=74) by age, gender, or parent role (P>.05; Table 2).

A total of 461 eating events were automatically detected using
the smartwatch algorithm across these 46 participants.
Participants responded to 85.7% (395/461) of the corresponding
eating event–triggered EMAs. Participants confirmed that 76.5%
(302/395) of the detected events were true eating events (ie,
true positives) and 23.5% (93/395) were not true eating events
(ie, false positives). For approximately one-third of these false
positives, participants reported that they were using their phones
at the time. The calculated precision measure, that is, the number
of true positives divided by the sum of true positives and false
negatives, was 0.77.

Differences in Eating Event Detection
At least three eating event–triggered EMAs were received by
36 participants. This subsample (ie, the analytic sample for aim
2B) did not significantly differ from the enrolled sample (N=74)
by age, gender, or parent role (P>.05; Table 2). For this
subsample, the average individual-level proportion of correctly
detected eating events (true positives / total number of detected
eating events) was 78.5% (SD 19%; range 30%-100%). In all,
72% (26/36) of the analytic sample had at least one falsely
detected eating event (false positive).

Neither age (years) nor height (inches) was significantly
correlated with the proportion of correctly detected eating events
(rs=0.24, P=.17 and rs=−0.12, P=.52, respectively). The average
individual-level proportion of correctly detected eating events
for women was 82.1% (SD 20.4%; range 30%-100%) and was
74% (SD 16.6%; range 50%-100%) for men. The difference
between the 2 groups was not significant (W=112; P=.13). The
average individual-level proportion of correctly detected eating
events for children was 74.3% (SD 19.3%; range 30%-100%),
for fathers was 76.1% (SD 21.5%; range 58.3%-100%), and for
mothers was 86.5% (SD 16.8%; range 54.5%-100%). The
differences among these 3 groups were not significant

(Kruskal–Wallis χ2
2=2.998; P=.22).

Discussion

The M2FED study sought a dramatically different mobile health
(mHealth) approach to obesity prevention and intervention by
not focusing directly on diet and activity, but rather on family
eating dynamics. An in-home sensor system was developed and
deployed to monitor family eating dynamics in real time and
context.

Evaluating EMA Compliance
After applying our customized participation algorithm, we found
that both individual- and family-level compliance rates to the
EMA protocols of the study were relatively high (both greater
than the recommended 80%) [24]. Compliance was significantly
higher in the mornings overall and higher on the weekends for
eating event–triggered EMAs, which supported the informal
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feedback we received from participants that they were more
likely to participate (ie, respond to EMAs and wear the
smartwatch) when they did not need to go to work or school
(typically the weekend days). We also saw that overall
compliance decreased as the 2-week study went on, most likely
attributable to participant fatigue.

One particularly interesting finding was that participants were
significantly more likely to answer an EMA if another family
member had answered an EMA in a similar time frame. A
similar finding was reported by Dzubur et al [41], in which
mother-child dyads were more likely to comply with prompts
when they were together. Although the overarching aims of the
M2FED study were to measure the social influence of family
members on eating behavior, this finding also indicates that
social influence came into play in other parts of the study as
well. Drawing from the social psychology field, several social
mechanisms could partially explain these findings. For instance,
an expectation could have been set early on in particular families
to answer the EMA prompts, thus establishing a social norm
for EMA compliance [52,53]. Similarly, some individuals may
have been inclined to answer EMA prompts to conform to the
behavior of other family members around the same time [52,53],
especially considering that family members received their
time-triggered EMAs at approximately the same time as each
other.

Studies have used EMA to measure various dietary outcomes,
including frequency of food intake, intake of specific types of
foods (eg, low glycemic index foods), and energy intake [25].
It has been suggested in a recent systematic review of mobile
ecological momentary diet assessment methods that EMA has
the potential to be a novel dietary assessment method, both on
its own and as a supplement to other mHealth technologies [25].
The use of EMA to assess dietary intake and eating behavior
provides some key advantages, namely, the reduction of
participant burden and recall bias and the maximization of
ecological validity [25]. Taken together with the findings from
Dzubur et al [41] and Schembre et al [25], our findings suggest
that EMA can be used to sufficiently supplement automatic
dietary assessment (ADA) approaches and may be a particularly
useful approach for leveraging social relations and maintaining
compliance in dyad- and group-based EMA studies.

Evaluating ADA
Various technologies have been used to passively measure eating
activity in naturalistic settings over long periods with minimal
user interaction. One of the most popular technologies for
assessing eating activity in the field is the wrist-worn smartwatch
or accelerometer [23,27]. The performance of automatic,
wearable-based, in-field eating detection approaches to date has
been reviewed by Bell et al [27]. The smartwatch used in the
M2FED study performed on par with other in-field devices,
although comparability is difficult owing to the wide and varying
metrics used by other papers [27]. Although some wearable
devices included in this review performed very well, the duration
of the free-living deployment was 1 day (approximately 24
hours) or shorter for more than half of the studies, and another
one-third were 1 week in length or shorter [27].

Overall, 3 studies had durations that lasted at least two weeks
or longer [34,54,55], 66% (n=2) of which had sample sizes of
only 1 participant each. Therefore, the M2FED study is one of
the first studies to extensively test the feasibility of deploying
an ADA approach for a considerable amount of time (2 weeks)
and with a relatively large same size (>50 participants). Part of
this success stems from the combined use of mobile devices
(for EMA) and smartwatches, which were selected for the
M2FED study to maximize long-term usability. Although other
technologies have been able to perform better in the field, the
usability of these technologies (electromyography electrodes,
ear and neck sensors, wearable video cameras, etc) may be lower
compared with wrist-worn devices because of the inconvenient
location of sensor placement, the potential to interfere with the
behavior of participants in real life [56], and the potential
intrusiveness or discomfort caused by the sensor [57].

This study also demonstrates that EMA is a feasible tool for
collecting ground-truth eating activity and thus evaluating the
performance of wearable sensors in the field. Only 2 studies
[34,35] included in the review by Bell et al [27] used a novel
method for obtaining ground-truth eating activity in the wild,
similar to the way EMA was used in the M2FED study. In a
study by Ye et al [34], when an eating gesture was automatically
detected via a wrist-worn sensor, participants were sent a short
message on their smartwatch to confirm or reject in real time
whether they were eating. Similarly, in a study by Gomes and
Sousa [35], when drinking activity was detected via a wearable
sensor, participants were sent an alert on their smartphone and
could then confirm or reject whether they were drinking via
EMA. Although EMA and similar self-report methods have
their own limitations [23,58], they offer the ability to capture
and validate ground-truth eating activity near the time of eating,
thus improving research scalability and participant acceptability
[25].

Another key feature of the M2FED study was the ability to
capture intrapersonal (individual) and interpersonal (social)
contexts with our combined event- and signal-contingent
protocols. A systematic review noted that <7% of EMA studies
assessing diet use a combined approach [59]. EMA is a powerful
tool that can be used to validate automatically detected eating
behavior in the field and to easily collect information about
meaningful contexts; however, few studies have used this
approach and still rely on paper–pen questionnaires to validate
their findings [27].

Limitations and Strengths
The M2FED study design had notable limitations. First, our
method of obtaining ground-truth eating was only deployed via
eating event–triggered EMA after an eating event was detected
by the smartwatch. Thus, we could only verify true positive and
false positive eating events. The M2FED system was not
designed to verify true negative or false negative eating events,
which limited our ability to calculate common evaluation metrics
(ie, accuracy and F1-score) and compare our results to other
in-field studies described in the literature. Future research can
build upon our study by implementing a verification of true
negative and false negative eating events, via time-triggered
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EMA or other methods, to gain a better understanding of the
strengths and weaknesses of such an event detection algorithm.

Second, the false positive eating events were self-reported
validation, which might be subject to social desirability in
underreporting an eating event. This could potentially bias the
validity of the results. Third, we encountered various difficulties
with the deployed technologies, including smartwatches (ie,
limited battery), mobile phones (ie, limited battery and app
crashes), and the Wi-Fi router (ie, wireless connection dropped).
Although these challenges were anticipated and were addressed
in a timely manner on all occasions, some data were lost during
the data collection process.

Finally, as the scope of this study only covered in-home eating
behavior, we observed relatively few eating event–triggered
EMAs per person across the 2-week study (approximately 8 per
person). However, the range was very wide, indicating that
some participants consumed more meals inside their homes
compared with others. Reasons often provided informally by
participants included eating all or most meals at school or work,
working early or late, traveling for work, and participating in
after-school extracurricular activities.

On the other hand, this study also possesses several strengths.
First, we recruited a large and ethnically diverse sample of
families from Los Angeles. It has been previously noted that
the lack of diverse samples in eating-related mHealth and EMA
studies is a major limitation of past research [60]. Second, as
noted above, the M2FED study facilitated one of the longest
in-field deployments found in the literature so far. Most ADA
research has been conducted in the laboratory. By deploying in
the field, we are able to better understand real-life eating
behavior (vs eating behavior in a laboratory) and gain a better
understanding of the challenges that arise when deploying
wearable sensors outside of the laboratory. Third, as the
deployment process was across a 2-year period, we were able
to iteratively improve our automatic eating event detection
algorithm and then use the newest version in the following
deployments. Finally, this study produced momentary measures
of theoretical constructs as well as momentary measures of
eating behaviors. The theoretical work that we can now
contribute would be to understand which constructs influence
behavior, which behaviors influence various constructs, and
which constructs play no role at all. We can also begin to
understand the role of timing in these influences.

Future Directions
The mHealth field is converging toward the use of a combination
of user-friendly devices to assess eating behavior in the wild
(eg, mobile phones and wrist-worn devices) [27,31].
Implementing user-friendly technologies for in-field dietary
assessment or eating behavior interventions offers at least two
substantial advantages—people are generally familiar with them

[31] and may be willing to use them for longer periods compared
with more intrusive devices. Although early studies
experimented with less familiar, often not off-the-shelf
technologies (eg, piezoelectric strain gauge sensors), most recent
studies have opted for accelerometers and gyroscopes that are
embedded within a wrist-worn smartwatch [27]. Furthermore,
the combination of a wrist-worn smartwatch to automatically
detect eating and a mobile or wearable device to capture
ground-truth eating has been featured in a few studies published
in the past year [61-63]. This approach is becoming more
common, and these types of devices offer advantages for the
user (participant) and make the use of mHealth technologies
more accessible to nonengineering behavioral researchers.
However, a number of related challenges have emerged. Future
research will need to address comparability between newer
technology-assisted measures and more traditional self-report
measures of eating [64] versus other similar technology-assisted
measures [27].

These user-friendly technologies also allow for passive
measurement or low-effort reporting of various contexts and
environments with relative ease. For example, fine-grained
real-time GPS data can be scraped from both mobile devices
and smartwatches to determine an individual’s location and
potentially assess the external influences on behavior [65,66].
Similarly, the social environment can be gleaned from wearable
cameras [67], self-report EMA [68], or proximity Bluetooth
sensors [69].

The ability to determine one’s context or environment is a
necessary component of ecological momentary interventions
[70] or just-in-time interventions [71]. These types of
intervention designs aim to provide the right amount of support
at the right time and in the right context to promote behavior
change [71-73]. These types of designs are well-suited for and
offer unique opportunities for family-based settings [74]. They
offer the ability to intervene in children and adolescents and
can be designed to target the behavior of multiple family
members at once [74]. As family members share genetic,
environmental, and behavioral risks, family units are especially
important targets for intervention and prevention [75] and have
the potential to halt the intergenerational transmission of obesity
and other chronic diseases.

Conclusions
This paper demonstrates that EMA is a feasible tool to collect
ground-truth eating activity and thus evaluate the performance
of wearable sensors in the field. The combination of a
wrist-worn smartwatch to automatically detect eating and a
mobile or wearable device to capture ground-truth eating activity
offers key advantages for the user (participant) and makes the
use of mHealth technologies more accessible to nonengineering
behavioral researchers.
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