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Abstract

Falls are dangerous for the aged population as they can
adversely affect health. Therefore, many fall detection sys-
tems have been developed. However, prevalent methods
only use accelerometers to isolate falls from activities of
daily living (ADL). This makes it difficult to distinguish real
falls from certain fall-like activities such as sitting down
quickly and jumping, resulting in many false positives. Body
orientation is also used as a means of detecting falls, but it
is not very useful when the ending position is not horizontal,
e.g. falls happen on stairs.

In this paper we present a novel fall detection system
using both accelerometers and gyroscopes. We divide hu-
man activities into two categories: static postures and dy-
namic transitions. By using two tri-axial accelerometers
at separate body locations, our system can recognize four
kinds of static postures: standing, bending, sitting, and ly-
ing. Motions between these static postures are considered
as dynamic transitions. Linear acceleration and angular
velocity are measured to determine whether motion transi-
tions are intentional. If the transition before a lying posture
is not intentional, a fall event is detected. Our algorithm,
coupled with accelerometers and gyroscopes, reduces both
false positives and false negatives, while improving fall de-
tection accuracy. In addition, our solution features low
computational cost and real-time response.

1 Introduction

Falls are detrimental events for the aged population. Ac-
cording to [10], more than 33% of people age 65 years or
older have one fall per year. Fall risk is also higher for peo-
ple from special careers such as fire fighting. Hence, reli-
able fall detection is of great importance.

Falls are a common issue, but they are difficult to define
rigorously. Since falls are usually characterized by larger
acceleration compared with ADL, existing solutions mainly
use accelerometers for detection [8]. However, focusing
only on large acceleration can result in many false posi-
tives from fall-like activities such as sitting down quickly
and jumping.

Some fall detection algorithms also assume that falls of-
ten end with a person lying prone horizontally on the floor.
These kinds of systems use change of body orientation as
an indicator for falls [4]. But, they are less effective when a
person is not lying horizontally, e.g. a fall may happen on
stairs.

To improve activity recognition accuracy, a large body
of work uses complex inference techniques like hidden
Markov models to analyze acceleration data [6], but they
use excessive amounts of computational resources and do
not always meet real-time constraints. Such methods are
inappropriate for fall detection because fast response is es-
sential. In addition, fall activity patterns are particularly
difficult to obtain for training such systems.

Our solution divides human activities into two cate-
gories: static postures and dynamic transitions between
these postures. We define falling as an unintentional tran-
sition to the lying posture. Using two tri-axial accelerom-
eters at different body locations, our system can recognize
four kinds of postures: standing, sitting, bending, and ly-
ing. This is more accurate than only using body orienta-
tion information. To determine whether a transition is in-
tentional, our system measures not only linear acceleration,
but also angular velocity with gyroscopes. By using both
accelerometer-derived posture information and gyroscopes,
our fall detection algorithm is more accurate than existing
methods. Moreover, our solution has low computational
cost and fast response.

The rest of the paper is divided into four sections. Sec. 2



gives an overview of existing fall detection systems. Sec. 3
proposes our fall detection solution. The evaluation of our
solution is presented in Sec. 4. Sec. 5 concludes the paper
and gives directions for future work.

2 State of the Art

Existing fall detection solutions can be divided into two
classes. The first class only analyzes acceleration to detect
falls. Prado [13] [5] used a four-axis accelerometer located
at the height of the sacrum to detect falls. Mathie [9] used
a single, waist-mounted, tri-axial accelerometer to detect
falls. Lindemann [8] integrated a tri-axial accelerometer
into a hearing aid housing, and used thresholds for accel-
eration and velocity to decide if falls happen. Kangas [7]
studied acceleration of falls and ADL from the waist, wrist,
and head, and showed that measurements from the waist and
head were more useful for fall detection. Bourke [3] placed
two tri-axial accelerometers at the trunk and thigh, and de-
rived four thresholds, upper and lower thresholds for both
the trunk and thigh. Exceeding any of the four thresholds
indicated a fall had occurred. The problem with this kind of
method is that other ADL such as sitting down quickly and
jumping also features large vertical acceleration. Therefore,
only using acceleration for fall detection causes many false
positives.

A second class of solutions utilize both acceleration and
body orientation information to detect falls. Noury [12] de-
veloped a fall detector consisting of three sensors: a tilt sen-
sor to monitor body orientation, a piezoelectric accelerom-
eter to monitor vertical acceleration shock, and a vibration
sensor to monitor body movements. Noury [11] developed
a sensor with two orthogonally oriented accelerometers and
used this sensor to monitor the inclination and inclination
speed to detect falls. Chen [4] looked at the change in body
orientation during an impact to monitor falls. Body orien-
tation can help improve the fall detection accuracy, but us-
ing one single device can only monitor the orientation of
the trunk, more posture information cannot be collected us-
ing this kind of method. Bourke [2] developed a threshold-
based fall detection algorithm using a bi-axial gyroscope
sensor. They put the gyroscope at the sternum, and mea-
sured angular velocity, angular acceleration, and change in
trunk angle to detect falls.

Besides the two main kinds of fall detection solutions
outlined above, complex inference techniques are also uti-
lized to improve activity recognition accuracy. Raghu et al.
[6] attached five accelerometers to a jacket, and performed
activity recognition by using hidden Markov models to ana-
lyze acceleration data. Their method needs activity patterns
and significant computation, so it is not appropriate for fall
detection.

Some commercial health monitoring products such as

(b)

Figure 1: (a) The TEMPO 3.0 sensor node; (b) The place-
ment of two TEMPO 3.0 nodes

Philips’ Lifeline [1] use a help button to issue medial alerts.
However, when a really serious fall happens, people may
not be able to push the button. Therefore, improving the
accuracy of automatic fall detection is of great importance.

3 Methodology
3.1 Data Acquisition

Since our solution measures both acceleration and an-
gular velocity to detect falls, we chose to use the TEMPO
(Technology-Enabled Medical Precision Observation) 3.0
sensor nodes.

The TEMPO 3.0 node includes a tri-axial accelerometer
and a tri-axial gyroscope as shown in Fig. 1(a). The tri-
axial accelerometer, an MMA7261QT made by Freescale
Semiconductor, can monitor acceleration within a range of
+10g. The tri-axial gyroscope consists of an InvenSen-
sce IDG-300 dual-axis gyroscope and an Analog Devices
ADXRS300 Z-axis gyroscope. The IDG-300 can monitor
angular velocity between £500%s. The ADXRS300 can
monitor angular velocity between +300%s. The sensors are
controlled by an TI MSP430F1611 microcontroller. The
sampling rate is set to 120Hz, a bandwidth exceeding the
characteristic response of human movement.

Considering that most postures have different angles be-
tween the trunk and upper legs, the sensor nodes are at-
tached on the chest (Node A) and thigh (Node B) as shown
in Fig. 1(b). For the following experiments, three male sub-
jects in their 20s engaged in a battery of tests designed to



simulate ADL, falls, and fall-like activities. To conduct
these tests, four continuous data sets were collected from
each subject with approximately 5 seconds spent in each
activity: ADL (walk on stairs, walk, sit, jump, lay down,
run, run on stairs), fall-like motions (quickly sit-down up-
right, quickly sit-down reclined), flat surface falls (fall for-
ward, fall backward, fall right, fall left), inclined falls (fall
on stairs). All fall data was taken on hard surfaces. In ad-
dition, static posture data (standing, bending, sitting, and
lying) was collected from a single subject to explore the ac-
curacy of the proposed posture recognition algorithm. The
following sections present some of the collected data and
discuss the efficacy of the proposed fall detection solution.

3.2 The Fall Detection Algorithm

Our fall detection solution can be divided into three
steps: activity intensity analysis, posture analysis, and tran-
sition analysis.

The data collected are segmented into one second inter-
vals. If the change of sensor readings within an interval falls
into the region specified in Line 2 of Algorithm 1, it is clas-
sified as a static posture. Otherwise, a dynamic transition
is assumed. For static segments, the accelerometer readings
are used to determine specific postures, including standing,
bending, sitting, and lying. If the posture of a static segment
is determined to be lying, we examine whether the transi-
tion to the lying posture was an intentional movement by
examining the previous 5 seconds of data. If the transition
was unintentional, it is flagged as a fall. The three-phase
fall detection process is shown in Algorithm 1. Sec. 3.2.1 to
Sec. 3.2.3 explain the process in more detail.

3.2.1 Dynamic Transitions vs. Static Postures

As shown in Fig. 1(b), two TEMPO 3.0 nodes, A and B, are
attached on the chest and right thigh, respectively. Using

Algorithm 1: The three-phase fall detection process

1 > Monitor if people are static or dynamic during the
present time segment.

2 if |aAm’m —aa,, | <0.4g A |(IBmmC —ag,,,,.| <0.4g
/\|wA7naz WA < 6078 AN |meaz —WB,inl < 600/8
then

3 > Recognize the present static posture: is it lying?

4 if 04 > 35° A > 35° then

5 > Determine if the transition before the

present lying posture is intentional.

6 ifaa,, .. >T,, Nag,,.. > Tuy

ANoA e > Tws Nw,,,. > T, then

7 return Yes

8 return No
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Figure 2: The linear acceleration and rotational rate of the
trunk and thigh for standing, walking, sitting, and running

these two nodes we can get both the linear acceleration and
rotational rate of the trunk and thigh:

as = \/aiz + aiy +a%
ap = \/azBT + CLsz + QQBZ .
w4 = \/w?% —&—wig + Wi, M
wp = \/w%,x + w%y + wh.

Here, a4 and ap are the chest and thigh vector magni-
tude linear acceleration, respectively. w4 and wp serve as
measures of aggregate rotational rate as derived in [2].

Fig. 2 shows the linear acceleration and rotational rate
readings from nodes A and B for typical standing, walking,
sitting and running. From this figure we can see that the ac-
celeration amplitude for stationary postures is smaller than
0.40g, and the rotational rate amplitude for stationary pos-
tures is smaller than 60%s. Using these thresholds we can
separate static postures from dynamic transitions quickly
and accurately.

3.2.2 Posture Recognition

As shown in Algorithm 1 when a static posture is detected,
it must be determined whether a person is lying prone.
Since the posture is static, a4 and ap in (1) should always
be near the gravitational constant: 1.0g. Then we can calcu-
late the angle between the trunk and the gravitational vector,
04, and the angle between the thigh and the gravitational
vector, 0p:

an (J,BI
04 = arccos —=, g = arccos —= 2)
g

Fig. 3 shows 6 4 and 6 for four kinds of static postures:
standing, bending, sitting, and lying. These postures are
characterized by different inclination angles of the trunk and
thigh. These angles are specified in Table 1.
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Figure 3: The inclination angles of the trunk and thigh for
four static postures: standing, bending, sitting, and lying

04 (deg) | Op (deg) | Posture
<35 <35 Standing
> 35 <35 Bending
<35 > 35 Sitting
> 35 > 35 Lying

Table 1: Postures are determined by different inclination
angles of the trunk and thigh

3.2.3 Intentional vs. Unintentional

An unintentional transition to a lying posture is regarded
as a fall, and it features large accelerometer and gyroscope
readings. We differentiate intentional and unintentional
transitions by applying thresholds to peak values of accel-
eration (a) and angular rate (w) from two nodes, A and B,
as shown in Line 6 of Algorithm 1.

The acceleration and rotational rate were compared over
ADL and fall datasets to determine 7}, ,, T3, ;, Tiy, and 1y, ;.
Fig. 4 shows the linear acceleration and rotational rate of
the chest and thigh for ADL. Activities include going up-
stairs, walking, sitting down deliberately, jumping, lying
down deliberately, running, and going downstairs quickly.
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Figure 4: The linear acceleration and rotational rate of the
trunk and thigh for ADL
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Figure 5: The linear acceleration and rotational rate of the
trunk and thigh for falls

Fig. 5 illustrates the acceleration and rotational rate of typ-
ical forward, backward, rightward, leftward, and vertical
falls. Inspection of these figures reveals that falls and vig-
orous daily activities such as jumping, running, going up-
stairs/downstairs quickly are characterized by larger accel-
eration and rotational rate. Using Ty, , = 3.0g, T,,, = 2.5g,
T,, = 200%s and T,, = 3409s can distinguish these
abrupt transitions from normal gentle activities. It should
be noted, however, that such thresholds are influenced by
a person’s profile (e.g. height, weight, age). More work is
needed to find these relationships.

4 Evaluation

In this section we evaluate the accuracy of our fall de-
tection method by: first studying two special cases, then
running a continuous monitoring test.

4.1 Special Case Study

As mentioned in Sec. 2, existing methods monitor the
acceleration and/or body orientation to detect falls. Here
we show two activities that cannot be distinguished from
these two variables alone, but can be distinguished using

our method.

4.1.1 Sit Down Fast

Some existing acceleration-based fall detection systems
[13] [5] [9] [7] [3] only use acceleration to differentiate falls
from ADL. However, some activities like sitting down fast
also feature large vertical acceleration. Fig. 6 shows the ac-
celeration and rotational rate of the trunk and thigh for sit-
ting fast. Both ay,,,, and ap,,,, are larger than thresholds
used in [13], [5], [9], [7], and [3]. Therefore, sitting down
fast is not distinguishable from a typical fall.
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Figure 6: The linear acceleration and rotational rate of the
trunk and thigh for sitting fast, ending postures are sitting
straight and leaning back
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Figure 7: The inclination angles of the trunk and thigh for
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Using accelerometer-derived posture information, gyro-
scopes, and our algorithm, we can distinguish sitting down
fast from falls. If the ending posture is sitting straight, ac-
cording to Table 1, and the inclination angles of the trunk
and thigh are consistent with the data shown in Fig. 7, we
can determine that the transition is not a fall according to
Line 4 of Algorithm 1. If the ending posture is leaning
backward, we can determine that the transtion is not a fall
according to Line 6 of Algorithm 1.

4.1.2 Fall on Stairs

Horizontal body orientation is used as a sign of falls in [12]
and [11], but this triggers false negatives when falls hap-
pen on non-horizontal planes such as with stairs. In [4] and
[2], the trunk inclination change is used to detect falls, but
this method triggers false positives when people bend down
quickly.
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Figure 8: The inclination angles of the trunk and thigh for
falling on stairs
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Figure 9: The linear acceleration and rotational rate of the
trunk and thigh for falling on stairs

As described in Sec. 3.2.2, our solution examines the in-
clination angles of the trunk and thigh to extract posture
information. This technique is more accurate than only at-
taching one node on the chest or waist to detect body ori-
entation. Fig. 8 shows the inclination angles of the trunk
and thigh for a typical fall on stairs. Both §4 and 6p are
larger than 35°. According to Table 1, the posture would
be classified as lying. Fig. 9 demonstrates that Algorithm 1
can recognize falling on stairs accurately using thresholds
mentioned in Sec. 3.2.3.

4.2 Continuous Monitoring

In this section we monitor activities continuously, and
show that our solution is effective for typical activities.
The activities include ADL, fall-like motions (e.g. sitting
down fast, jumping, going up/downstairs, stumbling, ly-
ing down), and different kinds of falls (e.g. falling for-
ward/backward/leftward/rightward/vertically). Fig. 10(a)
shows the false negatives performance of our algorithm.
Our method can detect typical falls and falling on stairs very
accurately. However, it is not as effective when people fall
against walls ending with a sitting position. The sensitivity
of our algorithm is 91% from 70 records. Fig. 10(b) shows
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Figure 10: (a) False negatives performance (sensitivity); (b)
False positives performance (specificity)

the false positives performance of our algorithm. It can ex-
clude most of the fall-like activities. However, quickly lying
down sometimes triggers false positives. The specificity is
92% from 72 records.

4.3 Speed Analysis

Our solution does not need complex computation, so the
detection process can be implemented on an simple, body-
worn aggregator like a PDA or cellphone. Moreover, the
algorithm only needs to buffer 6 seconds of data, which
makes it possible for our solution to respond quickly.

5 Conclusion and Future work

In this work, we present a fall detection algorithm that
can reduce both false positives (e.g. sitting down fast) and
false negatives (e.g. falling on stairs) by using gyroscopes
and accelerometer-derived posture information. It also fea-
tures low computational cost and fast response.

However, our method has difficulties in differentiating
jumping into bed and falling against wall with a seated
posture. To distinguish these activities, context informa-
tion (environmental/physiological) can be exploited in fu-
ture work.
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