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Abstract

This paper articulates three main challenges for employ-
ing feedback control with humans in the loop. They
are: (i) the need for a comprehensive understanding of
the complete spectrum of the types of human-in-the-loop
controls, (ii) the need for extensions to system identi-
fication or other techniques to derive models of human
behaviors, and (iii) most importantly, determining how
to incorporate human behavior models into the formal
methodology of feedback control.

1 Introduction

Human-in-the-loop feedback control systems offer ex-
citing opportunities to a broad range of cyber-physical
system applications including energy management [7],
health care [5], and automobile systems [2]. For ex-
ample, it is hypothesized that explicitly incorporat-
ing human-in-the-loop models for driving can improve
safety, and using models of activities of daily living in
home health care can improve medical conditions of the
elderly. Although having humans in the loop has its ad-
vantage, modeling human behaviors is extremely chal-
lenging due to the complex physiological, psychological
and behavioral aspect of human beings. Here we propose
that it is necessary to raise human-in-the-loop control to
a central principle in system design and to solve three
main challenges.

2 Challenges

Challenge 1: The need for a comprehensive understand-
ing of the complete spectrum of types of human-in-the-
loop controls.

There are many variations for human-in-the-loop con-
trols. We need to understand the complete spectrum to
determine the underlying principles and subtleties that
separate them. Figuring out the principles will be very

beneficial for the future applications and allow the cre-
ation of feedback control solution techniques for each of
them, building on commonalities when appropriate.

To begin to understand the spectrum of human-in-
the-loop controls, we start with creating a taxonomy
of human-in-the-loop applications based on the controls
that they employ. We classify the applications into three
categories: (i) applications where humans directly con-
trol the system, (ii) applications where the system pas-
sively monitors humans and takes appropriate actions,
and (iii) a hybrid of (i) and (ii). Now, we describe some
example applications belonging to each of these cate-
gories.

Applications where humans directly control the sys-
tem primarily use supervisory control. In supervisory
control, involvement of humans takes place in two ways.
In one case, the process runs autonomously. Humans in-
tervene with the control algorithm when it is necessary
typically by adjusting set points. These control prob-
lems are well understood. In the other case, the pro-
cess accepts a command, carries out the command au-
tonomously, reports the results and waits for further com-
mands to be received from the human. As a concrete
example, in [10], human-in-the-loop control is used in
a wheelchair-mounted robotic arm to retrieve an object
from a shelf. In this feedback control system, human
provides input via a touch screen or joystick which is
analyzed by a vision processing system to position the
robotic arm to retrieve the object. In this application,
a human directly controls the controller of the feedback
control system and guides it to take appropriate action.
The main problems here involve interfacing humans to
control loops.

A broad range of applications monitor human behav-
ior passively and take appropriate actions (including do-
ing nothing). These applications are sub-categorized to
either open loop or close loop system. For example, Lul-
laby [5] uses a commercial off the shelf sleep tracking
device to keep track of sleep quality. It also uses sound,



light, temperature, and motion sensors to record the envi-
ronmental conditions during sleep. All this information
is presented to the users in a tablet that helps them to
identify the potential causes of sleep disruption. Here,
human is in the loop, but the human does not directly
control the system and this is an open loop system as
Lullaby does not proactively take any action to improve
the quality of sleep. Similarly, another open loop sys-
tem is AlarmNet [11], which is a state of the art assisted-
living and residential monitoring network for smart home
health care. It monitors activities of daily living by us-
ing the environmental and wearable sensors and creates
a continuous medical history. Authorized health care
providers are allowed to monitor activity patterns to de-
termine if the residents need immediate attention or new
healthcare services. Open problems here include under-
standing what human behaviors need to be monitored.

On the other hand, Smart Thermostat [7] is a closed
loop human-in-the-loop system as it uses sensors to de-
tect occupancy and sleep patterns in a home and uses
these patterns to proactively turn off the HVAC system
to save energy. Another example of closed loop system
is an advanced driver assistance system. In [6], a driver’s
intended actions, e.g., to turn or lane change are inferred
from several sources, including the driver’s current con-
trol actions (steering and acceleration), his visual scan-
ning behavior, and the surrounding traffic environment.
Although [6] is an open loop system, if we can model the
driver’s physiological state (fatigue, anger, drunk, etc.)
and behaviors (distraction, erratic steering, etc.), thenwe
can convert it to a closed loop system where the auto-
mobile can immediately react and signal alarms, or even
wrestle control from the driver when the driver is unfit
to keep the safety or fuel efficiency of the current trip.
In these systems, real-time response and intimately in-
corporating physiological, behavioral and psychological
aspects of humans are complex open questions.

The hybrid system passively monitors human behav-
ior, takes appropriate actions and also takes occasional
human inputs for the control. For example, in [12],
human-in-the-loop is used to control building energy. It
uses human feedback to adjust set point of the control,
e.g., human feedback is used to adjust the temperature
set point of the HVAC system to maintain thermal com-
fort. It tracks the position of the occupant and feeds this
information to the controller so that energy is delivered
to only those spots where needed. These systems incor-
porate all the challenges from the above discussion. Af-
ter understanding these behavioral aspects, our next chal-
lenge addresses how to model these behaviors using the
appropriate modeling techniques.

Challenge 2: The need for extensions to system iden-
tification or other techniques to derive models of human
behaviors.

System identification is a powerful technique to create
system models. It is a new challenge to apply it to human
behaviors. The order and types of equations to use, how
to produce adequate testing inputs, what output variables
are required, and how such a model accounts for human
traits are unknown. For example, Empath [3] is a real-
time depression monitoring system for the home. It col-
lects different behavioral data including sleep, weight,
activities of daily living, and speech prosody and can po-
tentially detect the early signs of a depression episode,
as well as can track progress in managing a depressive
illness. This is an open loop system as the system only
shows the reports to the caregivers and does not proac-
tively take any action to improve the quality of life of the
depressed patients. If we were to use system identifica-
tion technique to model a human being who is suffering
from depressive illness, it is not clear what are the inputs,
what are the states and how the state transitions occur
based on different physiological, psychological and envi-
ronmental factors. If there was a formal model of human
behavior or even an estimated model, then by combin-
ing all the factors that affect depression, we could close
the loop by changing the factors in a way that helps the
patients and that is based on an established methodology
rather than ad hoc rules.

Capturing human behavior by extending system iden-
tification or other modeling techniques is extremely dif-
ficult due to complex physiological, psychological and
behavioral aspects of human beings. Also, the level
of modeling depends on application requirements. Al-
though requirements are different for different applica-
tions, a significant portion of human-in-the-loop appli-
cations have to address some common challenges, e.g.,
user specific thresholds and parameters, change of hu-
man behavior over time, and required sensing technol-
ogy to sense the appropriate aspects of human behav-
ior. We need to model human behavior for large num-
ber of applications before general principles and theories
emerge to address these issues. Clustering, data mining,
inference, first principle models based on human physi-
ology and behaviors may all be necessary techniques to
be enhanced and applied for different applications. Ro-
bust CPS systems will likely require predictive models
to avoid problems before they occur, consequently ad-
vances to stochastic model predictive control are also re-
quired. It is also unlikely that any models developed ini-
tially to design the controllers will remain accurate as the
system and human behaviors evolve over time. Hence,
adaptive control with humans-in-the-loop will be neces-
sary.

Currently, state of the art techniques that model cer-
tain aspect of human behavior are either very general or
very specific. For example, Smart Thermostat [7] uses a
Hidden Markov Model (HMM) to model occupancy and



sleep patterns of the residents in a home to save energy,
which captures human behavior from a very high level.
On the other hand, [4] proposes mathematical models
for impulsive injection of insulin for diabetes mellitus.
Their model determines the insulin injection by closely
monitoring the glucose level when it reaches a threshold
value. It addresses some critical challenges for design-
ing an artificial pancreas. In another case, [8] models
human muscle in a closed loop system based on high
order sliding mode techniques. The controller is used
to control shank movement and has shown a great accu-
racy and robustness against force perturbation. It can be
useful in Functional Electrical Stimulation (FES) for the
paraplegic patients in regaining limited locomotor activ-
ities through electrical stimulation of the lower extrem-
ity muscles. As another example, [9] describes a new
paradigm called Body Coupled Communication (BCC)
for Wireless Body Area Network (WBAN) that leverages
the human body as a communication channel. In this ap-
plication, sensors are implanted in a human body that
are capable of monitoring a wide range of physiological
and emotional states and human serves as a communica-
tion channel to transmit the sampled data to a centralized
monitoring entity. Here, human is modeled as a body
channel where different layers of the body, e.g., skin, fat,
muscles and bone offer varying but measurable levels of
impedance to the signal. The human modeling in the lat-
ter three applications are very specific to the application.

While understanding of human physiological re-
sponses will continue to improve and expand to new
problem areas, we also need to understand holistic hu-
man behaviors. To achieve these goals, we need to ad-
vance the state of the art in system modeling techniques.

Challenge 3: Determining how to incorporate human
behavior models into the formal methodology of feed-
back control.

Even if we have a model of human behavior, it is not
clear where to place the model for “each” application.
For example, consider the Smart Thermostat [7] project
where the system monitors human occupancy and turns
off the HVAC when not needed. In this case, humans are
in the loop, but they are not giving any active feedback.
Now assume that sometimes humans change the temper-
ature set point. They are still in the loop, but they are part
of a hierarchical control where they are controlling some
parameters from the higher level while in the lower level
the system is trying to reach the set point. Now assume
a more sophisticated system where the room temperature
is being changed depending on physiological or psycho-
logical status of the human, e.g., when someone is expe-
riencing an episode of depression, the room temperature
is increased. In such a system, the human state as de-
tected by sensors acts to guide the control system when
a depression episode begins. Apart from this context, in

general, there are several areas where a human model can
be placed:
• Outside the loop,
• Inside the controller,
• Inside the system model,
• Inside a transducer, and
• At various levels in hierarchical control.
The newest challenge seems to be how to incorporate

the human behavioras part of the system itself. Can
we define/guarantee/learn the stability, accuracy, settling
time and overshoot properties of such systems, initially
and as the system and human behavior evolves? As an
example, [1] proposes a procedure to refine user behav-
ior models based on reports of accidents and incidents
that occur during the operation of electrical power sys-
tem. This work mainly focuses on using Components
Model of Emotion (CME) for observing, recording and
analyzing the emotional components of the operator be-
havior, which can be eventually useful for simulating dy-
namic behavior of an operator performing tasks in a con-
text that leads to an error. If we can model such an op-
erator behavior using formal methodology of feedback
control and if we can incorporate these operator models
into the system, we will be able to analyze various safety
properties of the overall system.

Incorporating human models into the formal method-
ology of feedback control has several advantages. For
example, it allows us to analyze the property of the whole
system using existing or new feedback control strategies.
Also, we can run optimization techniques across people
in a home, or in a building, or in a city considering vari-
ous metrics and choose optimal parameters to maximize
multidimensional utilities, e.g., health improvement as
well as saving energy.

3 Summary

In this challenge paper, we identified three major re-
search challenges of cyber physical systems involving
human-in-the-loop control. The challenges are: (i) un-
derstanding the complete spectrum of human-in-the-loop
control since more sophisticated human-in-the-loop ap-
plications are appearing, (ii) modeling human behav-
ior of various types and identifying the best modeling
schemes for each type, and (iii) incorporating these mod-
els into the formal feedback control methodology which
may require new results and theory to support formal
performance guarantees. Basically, state of the art sys-
tem modeling techniques and feedback control strategies
need to be advanced to address these challenges.
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