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Abstract— Many wireless sensor network applications must
resolve the inherent conflict between energy efficient commu-
nication and the need to achieve desired quality of service such
as end-to-end communication delay. To address this challenge,
we propose the Real-time Power-Aware Routing (RPAR) protocol,
which achieves application-specified communication delays at
low energy cost by dynamically adapting transmission power
and routing decisions. RPAR features a power-aware forward-
ing policy and an efficient neighborhood manager that are
optimized for resource-constrained wireless sensors. Moreover,
RPAR addresses important practical issues in wireless sensor
networks, including lossy links, scalability, and severe memory
and bandwidth constraints. Simulations based on a realistic radio
model of MICA2 motes show that RPAR significantly reduces the
number of deadlines missed and energy consumption compared
to existing real-time and energy-efficient routing protocols.

I. INTRODUCTION

Many wireless sensor network (WSN) applications require
real-time communication. For example, a surveillance system
needs to alert authorities of an intruder within a few sec-
onds of detection [1]. Similarly, a fire-fighter may rely on
timely temperature updates to remain aware of current fire
conditions [2]. Supporting real-time communication in WSNs
is very challenging. First, WSNs have lossy links that are
greatly affected by environmental factors [3][4]. As a result,
communication delays are highly unpredictable. Second, many
WSN applications (e.g., border surveillance) must operate
for months without wired power supplies. Therefore, WSNs
must meet the delay requirements at minimum energy cost.
Third, different packets may have different delay requirements.
For instance, authorities need to be notified sooner about
high-speed motor vehicles than slow-moving pedestrians. To
support such applications, a real-time communication protocol
must adapt its behavior based on packet deadlines. Finally, due
to the resource constraints of WSN platforms, a WSN protocol
should introduce minimal overhead in terms of communication
and energy consumption and use only a fraction of the
available memory for its state.

To address these challenges, we propose the Real-
time Power-Aware Routing (RPAR) protocol, which supports
energy-efficient real-time communication in WSNs. RPAR
achieves this by dynamically adapting transmission power
and routing decisions based on packet deadlines. RPAR has
several salient features. First, it improves the number of
packets meeting their deadlines at low energy cost. Second, it
has an efficient neighborhood manager that quickly discovers
forwarding choices (pairs of a neighbor and a transmission
power) that meet packet deadlines while introducing low com-

munication and energy overhead. Moreover, RPAR addresses
important practical issues in WSNs, including lossy links,
scalability, and severe memory and bandwidth constraints.

In the rest of the paper, we first analyze the impact of
transmission power on communication delay via an empirical
study (Section II) and identify the design goals for real-time
power-aware routing (Section III). Next, we present the design
of RPAR (Section IV). We evaluate the performance of RPAR
through simulations based on a realistic radio model (Section
V). We conclude the paper with discussions on open issues
(Section VI) and related work (Section VII).

II. IMPACT OF TRANSMISSION POWER ON DELAY

RPAR is based on the hypothesis that there is an inher-
ent tradeoff between transmission power and communication
delay. In this section, we study the impact of transmission
power on communication delay in WSNs. We first quantify
their relationship through experiments on XSM2 motes. We
then discuss the tradeoff between communication delay and
network capacity.

A. Empirical Study on XSM2 Motes

To understand the impact of transmission power on end-to-
end communication delay, we perform a set of experiments in
an office environment using XSM2 motes. Each XSM2 mote
is equipped with a Chipcon CC1000 radio. The bandwidth of
the radio is 38.4 Kbps, but the effective bandwidth is lower
due to packet loss. Five XSM2 motes are placed in a line.
The first mote injects packets into the network at a rate of
4 packets per second. Each mote forwards a packet to its
next neighbor. When a packet reaches the end of the line,
the last mote changes the packet’s direction and sends it back
to the source. Each mote runs TinyOS with B-MAC [5] as
the MAC protocol. We implemented the Automatic Repeat
Request (ARQ) mechanism to improve reliability. Each packet
is transmitted at most 5 times. The data and acknowledgement
packets are transmitted at the same transmission power. The
transmission power is varied from -18 dbm to 2 dbm in
increments of 1 dbm. The one-hop distance is varied from
5 feet to 40 feet, in increments of 5 feet. 100 packets are sent
at each power level.

To evaluate the impact of transmission power on end-to-
end delay, we measure the delivery velocity of each packet.
The delivery velocity is defined as the distance a packet
travels divided by its end-to-end delay. As shown in Figure
1, transmission power has a significant impact on delivery
velocity. For example, when the one-hop distance is 20 feet,
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Fig. 1. Impact of transmission power and one-hop distance on
delivery velocity.

increasing the transmission power results in more than a two-
fold improvement in delivery velocity, from 0.25 feet/ms at
-18 dbm to 0.54 feet/ms at 2 dbm. This is because increasing
transmission power effectively improves link quality [6] and,
therefore, reduces the number of transmissions needed to
deliver a packet. This shows that under light workloads, poor
link quality is the root cause of long delays. At each power
level, the delivery velocity increases as the one-hop distance
increases within a range but drops sharply when the one-
hop distance exceeds the range due to degrading link quality.
The initial improvement in the delivery velocity is due to the
packet traveling longer distances at each hop. The drop-off
range of delivery velocity corresponds to the boundary of the
gray area in packet reception ratio reported in [3][7]. A higher
transmission power results in a longer drop-off range, e.g., the
neighbor located at 40 feet is not in the communication range
when the transmission power is -18 dbm but it has good link
quality and high delivery velocity at 2 dbm. Therefore, distant
nodes with poor quality links at low power are transformed
into reliable communication neighbors when the transmission
power is increased, achieving high delivery velocities.

Our experiments demonstrate that transmission power con-
trol may be an effective mechanism for controlling com-
munication delays under light workloads. In the following
subsection, we discuss the tradeoff between communication
delays and network capacity under heavier workloads.

B. Tradeoff between Delay and Capacity

Increasing transmission power has the side effect of reduc-
ing the maximum achievable throughput in a WSN due to
increased channel contention and interference [8]. Our focus
is on real-time applications in which meeting the deadlines
of critical data is more important than the total throughput.
For example, in a surveillance application, timely delivery of
the location of an intruder is more important to the user than
delivering a large amount of non-critical data.

It is also important to note that the reduced capacity is
a problem only when the workload approaches the network
capacity. Recent advances in real-time capacity theory show
that the performance degradation may be avoided as long as

the amount of high-priority data transmitted in the network is
small enough not to trigger capacity bottlenecks. In [9], the
authors derive a lower bound on the maximum amount of real-
time traffic that may be transmitted without triggering capacity
bottlenecks. This bound may be used to perform off-line
analysis of capacity requirements or, on-line, for admission
control or congestion control. We discuss how to integrate
RPAR with such techniques in Section VI-A.

RPAR achieves the desired tradeoff among communication
delay, energy consumption, and network capacity by adapting
the transmission power based on required communication
delays. When deadlines are tight, RPAR trades capacity and
energy for shorter communication delay by increasing the
transmission power. Conversely, when the deadlines are loose,
RPAR lowers the transmission power to increase throughput
and reduce energy consumption. This adaptive approach is a
key feature of RPAR.

III. PROBLEM FORMULATION

Due to the unreliable and dynamic nature of WSNs, it is
unrealistic to provide hard delay guarantees. RPAR assumes
that each packet is assigned a soft deadline by the application,
which specifies the desired bound on the end-to-end delay of a
packet. The primary goal of RPAR is to increase the number of
packets that meet their deadlines while minimizing the energy
consumed for transmitting packets under their deadline con-
straints. RPAR focuses on minimizing the energy consumed
in packet transmissions. In addition, RPAR is designed based
on the following principles:

• WSN applications have varied communication require-
ments resulting in workloads with diverse deadlines. A
real-time power-aware routing protocol should dynami-
cally adapt its transmission power and routing decisions
based on workload and packet deadlines.

• The design of RPAR should account for the realistic char-
acteristics of WSNs including loss links [3] and extreme
resource constraints in terms of memory, bandwidth and
energy.

• RPAR should be localized protocol that makes decisions
based solely on one-hop neighborhood information. This
property enables RPAR to scale effectively to large
WSNs.

In this paper, we assume that each node is stationary and
knows its location via GPS or other localization services [10].
Localization is a basic service essential to many applications
that need to know the physical location of sensor readings.
We also assume that radios can adjust their transmission
power. For example, the Chipcon CC1000 radio can vary its
transmission power between -20 dbm and 10 dbm. RPAR is
designed to work with existing simple CSMA/CA protocols
such as the B-MAC protocol [5] in TinyOS. To be consistent
with the default configuration of B-MAC, RPAR assumes that
the MAC protocol does not use RTS/CTS. RPAR may be easily
extended to work with MACs that use RTS/CTS.



IV. DESIGN OF RPAR

RPAR has four components: a dynamic velocity assignment
policy, a delay estimator, a forwarding policy, and a neighbor-
hood manager. RPAR uses the velocity assignment policy to
map a packet’s deadline to a required velocity. The delay esti-
mator evaluates the one-hop delay of each forwarding choice
(N, p) in the neighbor table, i.e. the time it takes a node to
deliver a packet to neighbor N at power level p. Based on the
velocity requirement and the information provided by the delay
estimator, RPAR forwards the packet using the most energy-
efficient forwarding choice in its neighborhood table that meets
the required velocity. When the forwarding policy cannot find
a forwarding choice that meets the required velocity in the
neighbor table, the neighborhood manager attempts to find
a new forwarding choice that meets the required velocity
through power adaptation and neighbor discovery.

A. Dynamic Velocity Assignment Policy

Before a node S forwards a packet, it uses the velocity
assignment policy to compute the required velocity based on
the progress made toward the destination and the packet’s
slack. The slack is the time remaining until the packet deadline
expires and is part of the packet header. The application
running on the source node initializes the slack with the
(relative) deadline. The slack is updated at each hop to account
for the queueing, contention, and transmission delays. To
measure the queuing delay node S time-stamps the packet
when it is received (trec(S)) and when it becomes the head
of the transmission queue (thead(S)). Let slackrec(S) be
the slack of the packet when S receives it. We account
for the queueing delay by subtracting it from the slack,
i.e., slack(S) = slackrec(S) − (thead(S) − trec(S)). The
required velocity of a packet when it becomes the head of
the transmission queue is:

vreq(S, D) =
d(S, D)

slackrec(S) − (thead(S) − trec(S))
(1)

where, D is the destination of the packet and d(S, D) is the
Euclidean distance between S and D. It is important to note
that the deadline is met if the required velocity is met at each
hop. Hence, RPAR maps the problem of meeting end-to-end
deadlines to the local problem of meeting the required velocity
at each hop.

When a node acquires the channel and is about to transmit
a packet, it updates the slack in the packet header to account
for the contention and transmission delays before transmitting
it. The slack are also updated to account for the additional
delays before each retransmission caused by packet loss. Note
that updating the slack does not require clock synchronization.

This dynamic velocity assignment policy adapts the packet’s
required velocity based on current network conditions. If a
packet is late, then its required velocity is increased so that it
may catch up. Conversely, if the packet is early, its required
velocity is decreased. In addition, the velocity assignment
policy is used to prioritize the packets in the transmission

queue according to their required velocity, with packets having
a higher required velocity being transmitted first.

B. Forwarding Policy

RPAR makes forwarding decisions on packet-by-packet ba-
sis. In the following discussion we assume that RPAR forwards
the packet that is the head of the transmission queue on node
S and is destined for node D. RPAR forwards the packet
to the most energy-efficient forwarding choice that meets the
packet’s required velocity. The velocity provided by (N, p) is:

vprov(S, D, (N, p)) =
d(S, D) − d(N, D)
delay(S, (N, p))

(2)

The progress made toward the destination by forwarding the
packet to N is d(S, D) − d(N, D). The estimated delay of
forwarding choice (N, p), delay(S, (N, p)), approximates the
time interval from when a packet becomes the head of the
transmission queue until it is received at the next hop. The
estimate is computed using the delay estimator (described
in Section IV-C). Note that the delay estimator does not
consider the queuing delay as it is already accounted for in the
dynamic velocity assignment policy (as discussed in Section
IV-A). The estimated one-hop delay is used to determine if
a forwarding choice is eligible. A forwarding choice (N, p)
is an eligible forwarding choice if the velocity it provides
vprov(S, D, (N, p)) is higher than the packet’s required ve-
locity vreq(S, D).

RPAR then estimates the energy cost of all eligible forward-
ing choices. It uses the following formula to approximate the
energy consumption of routing a packet from the current node
S to its destination D through forwarding choice (N, p):1

E(S, D, (N, p)) = E(p) · R(S, (N, p)) · d(S, D)
d(S, D) − d(N, D)

(3)
where E(p) is the energy consumed for transmitting a packet
at power level p. R(S, (N, p)) is the expected number of
transmissions before S successfully delivers a packet to N
when transmitting at power level p. R is computed by the
delay estimator. d(S, D) − d(N, D) represents the progress
towards D when N is selected as next-hop.

C. Delay Estimator

The delay estimator is responsible for estimating the delay
of different forwarding choices. The delay of a packet sent
by S to neighbor N using transmission power p depends on
the contention delay delaycont(S) (i.e., the time to acquire
the channel), the total transmission time of the packet and
its acknowledgement delaytran, and the transmission count
R(S, (N, p))2:

1Equation (3) resembles the routing metric proposed in [11], which outper-
formed greedy geographic routing when a fixed transmission power is used.
Our forwarding policy extends this metric to estimate the energy cost of
forwarding choices with different power levels.

2In case of a failed transmission, the sender waits for the transmission
time of acknowledgement before retransmitting the packet. The data and
acknowledgment packets are sent at the same power level. The propagation
delay is ignored, as WSN usually use short-range radios.



delay(S, (N, p)) = (delaycont(S) + delaytran) ·R(S, (N, p))
(4)

Since the total transmission time of a packet and its acknowl-
edgement is a constant determined by packet size and network
bandwidth, the main function of the delay estimator is to
predict the contention delay and the number of transmissions
required to successfully forward a packet to a neighbor. Since
the contention delay is independent of the forwarding choice
when RTS/CTS is not used, our delay estimator consists of a
single contention estimator per node and a transmission count
estimate per forwarding choice. This reduces the storage cost
of the delay estimator.

Our delay estimator is designed to support real-time com-
munication in dynamic environments. Existing link estimators
are designed to estimate the average link quality [7][12].
These approaches are ill-suited for real-time communication
since routing decisions based on average delays may result
in a large number of deadline misses due to high variability
in communication delays. In contrast, our delay estimator
adapts Jacobson’s algorithm [13] to calculate conservative
estimations of contention delays and transmission counts.
Jacobson’s algorithm was originally used in TCP to compute a
retransmission timeout based on round-trip times between the
source and the destination of a TCP flow. The retransmission
timeout is computed by adding to the average round trip
time its variation multiplied by a scaling term. We adopt
Jacobson’s algorithm because it considers both the average and
variation of the estimated variable and, as a result, provides
a better estimate of its worst-case value. This enables us to
reduce the number of deadlines misses. Similarly, we compute
a conservative estimate of the transmission count for each
forwarding choice by considering the average and variation
in the observed transmission count. However, if a packet is
dropped after exceeding the allowed number of transmissions
(according to ARQ), the transmission count estimate is set to
infinity. A conservative estimate of the contention delay is also
computed based on the average and variation of the observed
contention delays. Equation (4) is used to estimate the delay
of a packet by combining the estimated transmission count
and estimated contention delay.

D. Neighborhood Manager

A key challenge for RPAR is to quickly discover eligible
forwarding choices that are energy-efficient. This is partic-
ularly challenging because a node needs to select among
a large number of forwarding candidates of which only a
few may meet the velocity requirements. In WSN, due to
the probabilistic nature of wireless links [7], a node hears
transmissions from a potentially large number of neighbors
including those that have poor link quality and long delays.
In addition, wireless interfaces typically have a large number
of power levels to support fine-grained power control. For
example, XSM2 motes support 31 power levels. Unfortunately,
typical WSN platforms have limited memory allowing us to

store only a few forwarding choices. For example, MICA2
motes have only 4KBs RAM, of which a small fraction may
be dedicated to neighborhood management. More importantly,
empirical studies show that link quality is highly variable over
time [3][4][7]. As a result, the estimated delay and energy con-
sumption of the forwarding choices that are used infrequently
become outdated and inaccurate. Using this information may
result in increased energy consumption or, even worse, in
deadline misses. Therefore information about such forwarding
choices must be refreshed when needed. This makes efficient
discovery of eligible forwarding choices an important problem
even on platforms without severe memory constraints.

RPAR features a novel neighborhood manager that dynam-
ically discovers eligible forwarding choices and manages the
neighborhood table. The neighborhood manager is invoked
whenever there are no eligible forwarding choices in the neigh-
bor table for forwarding a packet. It supports two mechanisms
for discovering new forwarding choices: adapting the transmis-
sion power to a neighbor already present in the neighbor table
(power adaptation) or discovering new neighbors (neighbor
discovery).

1) Power Adaptation : When the required velocity of
a packet cannot be satisfied, the power adaptation scheme
increases the transmission power to improve the velocity pro-
vided by neighbors already in the neighbor table. Conversely,
when velocity requirements are satisfied by known forwarding
choices, it attempts to improve energy efficiency by decreas-
ing the transmission power. RPAR adjusts the transmission
power to a neighbor using a multiplicative increase and linear
decrease scheme as discussed below.

When the forwarding policy cannot find an eligible for-
warding choice in the neighbor table, RPAR determines a
neighbor whose power should be increased to achieve higher
delivery velocity. A node is eligible for power increase if its
transmission count may be reduced by increasing the trans-
mission power. A node becomes ineligible for power increase
if (1) the maximum transmission power is reached or (2)
the estimated transmission count is one (i.e., the link quality
is perfect). RPAR chooses the neighbor with the maximum
velocity among all neighbors eligible for power increase, and
multiplies the transmission power to that neighbor by a factor
α (α > 1). If RPAR cannot find a neighbor eligible for power
increase, it invokes neighbor discovery to find new neighbors
(see Section IV-D.2).

The power adaptation scheme may also decrease the trans-
mission power to improve energy efficiency and network
capacity. When the neighbor table contains forwarding choices
that meet the velocity requirement of incoming packets, RPAR
decreases the power of the most energy-efficient forwarding
choice by β (β > 0) until one of the following conditions is
satisfied: (1) the minimum power has been reached, (2) the
estimated transmission count exceeds the number of allowed
retransmission, or (3) there are two consecutive power levels
such that at the lower level the required velocity is not met
but at the higher power level the required velocity is met.

A large α reduces the time it takes to reach sufficient



power to find an eligible forwarding choice. However, it may
waste energy when a lower transmission power may suffice
for meeting the required velocity. A large β allows RPAR to
quickly reduce the power but it may also result in deadline
misses when the power is reduced too aggressively.

The power adaptation scheme provides a responsive mecha-
nism for adapting to variations in link quality. A key benefit of
this scheme is that it does not introduce any overhead packets.

2) Neighbor Discovery : When RPAR cannot find an
eligible forwarding choice through power adaptation, it uses
the neighbor discovery component to find new neighbors that
can meet the required velocity.

In the following discussion, we assume that S routes a
packet to D and no eligible forwarding choice that meets
the required velocity vreq exists in S’s neighbor table. S
starts neighbor discovery by broadcasting a Request To Route
(RTR) packet at some power p. Some node N hears the RTR
and replies. Upon receiving the reply, node S inserts in its
neighbor table the new forwarding choice (N, p). We need
to address three issues: (1) What is the transmission power p
at which an RTR is transmitted? (2) How can we minimize
the communication overhead for neighborhood discovery? (3)
How can we reduce the time it takes to find a neighbor that
meets the required velocity?

When neighbor discovery is triggered because there is no
neighbor closer to the destination in the neighbor table, S
broadcasts an RTR at the medium power level. This usually
occurs when a node routes a packet to a new destination. We
chose to transmit the RTR at the medium power level to reduce
the impact of neighbor discovery on network capacity and
energy consumption. In contrast, if a neighbor closer to the
destination is in the neighbor table, the RTR is broadcast at
the maximum power. This ensures that far away nodes that
may provide high delivery velocities receive the RTR.

Since the RTR is broadcast, a large number of nodes may
reply and cause severe network contention. This problem can
be mitigated by requiring each node to wait for a random
interval before it is allowed to reply. A node does not reply
if it hears replies from other nodes. However, This simple
scheme has a drawback: while a large time window reduces the
chance of packet collisions, it prolongs the time needed to find
an eligible neighbor. It is crucial to discover new forwarding
choices quickly, since neighbor discovery time is part of the
end-to-end delay and therefore may lead to deadline misses3.

To find a new neighbor, our neighborhood manager restricts
the set of replying nodes to those that can meet the required
velocity. A node replies only if it satisfies the following
conditions: (1) it makes progress toward the destination, (2) it
is not already in S’s neighbor table, and (3) the maximum
velocity that may be achieved by selecting it as next hop
is higher than the required velocity. To verify that a node
makes progress to the destination, we include the sender and
destination locations in the RTR. In addition, the RTR may

3RPAR accounts for the delay caused by power adaptation and neighbor
discovery by subtracting it from the slack.

piggyback a list of node IDs which are in the table and, hence,
should not reply (within the limit of packet size). A neighbor
N replies if the following inequality is satisfied:

vreq(S, D) ≤ vmax(S, D, N) =
d(S, D) − d(N, D)

delaycont(S) + delaytran
(5)

where vmax(S, D, N) is the maximum velocity that N can
provide to a packet being routed from S to D. vmax is
computed based on the minimum possible delay which oc-
curs when the transmission count between S and N is one
(R(S, (N, p)) = 1). From (5), the maximum distance between
any eligible neighbor N and destination D can be derived as
follows:

dmax(N, D) = d(S, D)−vreq(S, D)·(delaycont(S)+delaytran)
(6)

S piggybacks dmax(N, D) in the RTR, and a neighbor N that
hears the RTR replies only if d(N, D) ≤ dmax(N, D).

3) Neighborhood Table Management: In contrast to earlier
neighborhood management techniques that rely on periodic
beacons [7], our power adaptation and neighbor discovery
schemes are triggered on-demand, when no eligible forwarding
choices exist in the neighbor table. The reactive approach
enables our neighborhood manager to respond quickly to
changes in the network conditions and packet deadlines while
introducing low overhead when network and workload remain
unchanged.

Similar to MT [7], we use the FREQUENCY algorithm [14]
to manage the neighbor table. The FREQUENCY algorithm
associates a frequency counter with each forwarding choice.
When a forwarding choice is used for routing, its frequency
counter is incremented while the frequency counters of all
other forwarding choices are decremented. When the neighbor
manager inserts a new forwarding choice and the table is full,
the forwarding choice with the smallest frequency count is
evicted. Since only the frequently used forwarding choices
remain in the table, RPAR adapts the set of known forwarding
choices to the velocity requirements of the incoming packets.
To avoid using stale data in larger neighbor tables, we add a
timeout value to each forwarding choice which is reset upon
using the forwarding choice. Forwarding choices that exceed
the timeout value are considered stale and are evicted.

V. EXPERIMENTAL EVALUATION

We implement RPAR in a Matlab-based network simulator
called Prowler [15]. To create a realistic simulation environ-
ment, we configure Prowler based on the characteristics of
MICA2 motes [16], which share the same hardware config-
urations as the XSM2 motes but with different packaging. A
node can transmit packets at 31 power levels, ranging from
-20 dBm to 10 dBm, with current consumption from 3.7 mA
to 21.5 mA. The bandwidth is 40 Kbps. Prowler uses a log-
normal shadowing path-loss propagation model at the physical
layer. A collision occurs if a node receives two overlapping
packets with signal strengths over the receiver’s sensitivity.
We implement the probabilistic link model from USC [17]
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Fig. 2. Performance of considered protocols when deadline is varied. The neighborhood table is prefilled.

in Prowler. Experimental data shows that the USC model
produces lossy and asymmetric links similar to MICA2 motes
[6]. The MAC protocol in Prowler employs a simple CSMA
scheme similar to B-MAC, TinyOS’s MAC protocol [5]. To
improve the reliability, we use ARQ with a maximum number
of five transmissions per packet. The size of the data and
acknowledgment packets are 760 and 200 bits, respectively.

We evaluate RPAR’s real-time performance and energy
efficiency using the following performance metrics: miss ratio,
defined as the fraction of packets that missed their deadlines,
and the energy per data packet. The energy per packet is
the total transmission energy consumed in a run divided by
the number of data packets successfully delivered to their
destinations. We compare RPAR with two protocols that
consider real-time or energy-efficient communication. The
first baseline protocol, MaxV, is inspired by SPEED [12],
which supports soft real-time communication by enforcing
a uniform delivery velocity across the network. However, to
reduce the delay MaxV, always chooses the neighbor with
the maximum velocity. The second baseline, MinE, is an
energy-efficient geographic routing protocol that selects as
next hop the most energy efficient forwarding choice according
to Equation (3). This routing scheme significantly outperforms
greedy geographic routing in terms of energy efficiency in
lossy wireless networks [11]. Unlike RPAR, these baseline
protocols operate at a fixed transmission power level. We use
protocolL and protocolH to denote the protocol (MaxV or
MinE) that operates at the default power (0 dBm) and the
maximum power (10 dBm), respectively.

In simulations, we focus on the “many-to-one” traffic pat-
tern that is common in WSN applications. In each simulation,
130 nodes are deployed in a 150 m × 150 m region divided
into 11.5 m × 15 m grids. A node is randomly positioned
in each grid. To increase the hop count between sources and
the sink, we choose sources from the left-most grids of the
topology. The sink is located in the middle of the right-
most grids. A source sets the interval between sending two
consecutive packets to be the sum of a constant (300ms) and
a random value that follows an exponential distribution. We
vary the mean of the exponential distribution to create different
workloads. Each result is the average of five runs. The 90%
confidence interval of each data point is also presented.

We start by evaluating the performance of the three for-
warding policies when the neighborhood table of each node

contains all forwarding choices. The link quality estimators
are initialized according to the USC link model. This set of
experiments is designed to quantify the best-case performance
of the forwarding policies in the presence of perfect knowledge
about the neighborhood and link qualities. Next, we consider
the case when the neighborhood table has limited size and
the link quality of each forwarding choice is estimated on-
line. Finally, we evaluate the impact of different workloads on
RPAR.

A. Performance of Forwarding Policy

The first set of experiments uses a light workload generated
by three sources. Each source sends on average a packet every
4 s. To evaluate RPAR’s ability to adapt to different real-
time delay requirements, we vary the packet deadline between
100 ms and 350 ms. Figure 2(a) shows the miss ratio as the
deadline is varied. The forwarding policies that use the default
transmission power, MinEL and MaxVL, start missing dead-
lines when the deadline is 350 ms. As the deadline decreases,
they miss an increasing number of deadlines until 200 ms
when none of the transmitted packets meet their deadline. In
contrast, the baselines using the maximum transmission power,
MinEH and MaxVH , have significantly lower miss ratios. This
result confirms our observation (see Section II) that using a
high transmission power can effectively reduce communication
delay.

However, Figure 2(b) shows that the baseline protocols
using high transmission power consume significantly more
energy per packet. In contrast, RPAR consistently achieves
both desired real-time performance and energy efficiency
under different deadlines. As shown in Figure 2(a), RPAR
achieves miss ratios close to MinEH and MaxVH . At the same
time, as shown in Figure 2(b), RPAR consumes less energy
than MinEL and MaxVL for all deadlines except 100ms. This
is because our forwarding policy selects more energy-efficient
forwarding choices that still meet the delay requirements.
Note the correlation between the energy consumption and
the deadline: RPAR spends additional energy to meet tighter
deadlines. This shows the desired trade-off between real-time
performance and energy efficiency.

B. Performance with Neighborhood Management

This set of experiments is designed to evaluate the perfor-
mance of the forwarding policies when using neighborhood
management. In the following experiments, RPAR uses the



neighbor discovery scheme described in Section IV-D. In our
simulations, we tune α so that it takes four iterations to
increase the power from the default power level to the max-
imum power. We set β = 1. Similar to the MT protocol [7],
the baselines use a neighborhood manager that uses beacons
for neighborhood discovery and the FREQUENCY algorithm
for table management. In all experiments, each node sends
beacons with a period of 20 s using the same transmission
power as the data packets. When the periodic beacon scheme
is used, data packets start to be transmitted after 40 s to allow
the link quality estimators in the neighborhood table to be
initialized. The size of the neighbor table is set to 360 bytes
for all protocols.

The performance of RPAR is affected by the quality of the
forwarding choices found in the neighborhood table. As such,
we consider three versions of RPAR. RPARbest quantifies
the performance of the forwarding policy when the table is
pre-filled, representing the best-case performance of RPAR.
RPARcold starts with an empty table and builds its neighbor-
hood table according to the neighborhood management scheme
described in Section IV-D. Since in practice the neighborhood
table is usually not empty, RPARcold represents the worst-case
performance of RPAR. Therefore, we introduce RPARwarm,
which approximates the average-case performance when some
forwarding choices are already in the table after routing the
first 50 packets.

Figure 3 shows the performance of the forwarding poli-
cies used in combination with their respective neighborhood
management policies. Figure 3(a) indicates that miss ratios
of all protocols increased due to imperfect knowledge about
forwarding choices. We observe a significant performance
degradation (in terms miss ratio and energy consumption)
when the beacon-based neighborhood manager is used with the
baseline protocols whereas our on-demand neighborhood man-
ager has a small impact on RPAR’s performance. In contrast
to the previous set of experiments where the baselines using
the maximum transmission power had miss ratios comparable
to those attained by RPAR, in these experiments RPAR clearly
outperforms them. This shows that neighborhood management
is an important issue in power-aware routing. The benefit
of the new neighborhood manager is particularly evident for
tight deadlines. At 150ms, the miss ratios of RPARcold and
RPARwarm are only 4.7% and 1.2% higher than RPARbest,
respectively. In contrast the miss ratio of MaxVH jumps up by
30.5%. Two factors contributed to the improved performance
of RPAR’s neighborhood discovery over the beacon based
scheme. First, our neighborhood manager is deadline-aware in
that it discovers and keeps forwarding choices that satisfy the
velocity requirement in the neighborhood table. Furthermore,
our power adaptation and neighbor discovery schemes find
good forwarding choices faster than the periodic beacons.

Figure 3(b) shows the energy consumed per data packet, in-
cluding the energy spent for transmitting the overhead packets.
Figure 3(c) shows the energy consumed for transmitting only
the overhead packets. Figures 3(b) and 3(c) indicate that the
energy consumed by the baseline protocols for neighborhood

discovery accounts for a large part of the energy consumed
per data packet. In contrast, RPAR which uses the on-demand
neighborhood discovery scheme consumes significantly less
energy. The reduction in energy consumption is attributed
to both our forwarding policy (see Figure 2(b)) and our
neighborhood manager which introduces significantly lower
overhead. While the beacon period may be increased to lower
the energy consumption, this would further degrade the real-
time performance of the baselines.

C. Impact of Workload

The final set of experiments evaluates the performance of
RPAR under different workloads. Figures 4(a) and 4(b) show
the experimental results for the case when the workload is
varied by changing the number of sources from 4 to 10.
Each source generates data with an inter-packet time of 6
s. The deadline is fixed at 300 ms. We observe that the
number of deadline misses increases with the number of
sources for all protocols except MinEL. Because of the large
confidence intervals of MinEL, no clear correlation between
its miss ratio and the increase in the number of sources may
be established. The wide confidence intervals are the result
of MinEL selecting unreliable links for transmission. The
increase in the miss ratio with the number of source of the
other protocols may be attributed to higher contention. The
RPAR protocols have lower miss ratios and higher energy
efficiency than the baselines.

Figures 4(c) and 4(d) show the experimental results for the
case when the average inter-packet time of each source is
varied from 1s to 5s and the number of sources is fixed at 3.
As the inter-arrival time is increased, the deadline miss ratios
decrease for all protocols due to reduced network load. Similar
to previous experiments, RPAR’s miss ratio is lower than those
of the baselines in all tested settings. Figure 4(d) indicates a
increase in the total energy consumed by the baselines and a
decrease in energy per data packet for RPAR. The increase
in energy per data packet for the baselines is attributed to a
lower number of dropped packets as the inter-packet packet
time increases. RPAR incurs slight decrease in energy per data
packet because it adaptively lowers transmission power under
lower network loads. Overall RPAR consistently outperforms
the baselines in term of energy efficiency when the inter-arrival
time is 1 s.

VI. DISCUSSION

We now identify several open issues that have not been
addressed in our current work and discuss how RPAR can be
extended to address them.

A. Handling Congestion

RPAR’s power-adaptation policy exhibits a pathological
behavior when a node is congested. Due to high contention,
a node retransmits a packet several times before it is suc-
cessfully received. Hence, RPAR increases the transmission
power, which may further increase contention. RPAR can be
integrated with existing protocols to deal with this problem.
At the MAC layer, several methods have been proposed to
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Fig. 3. Performance of considered protocols when deadline is varied (with neighborhood management).

differentiate between packets lost due to collisions or due
to poor link quality [18]. Such feedback from the MAC
layer would prevent RPAR from needlessly increasing the
transmission power under congestion. Alternatively, RPAR
may also work with existing congestion detection mecha-
nisms for WSNs [19][20]. When a node detects congestion,
RPAR should stop increasing the transmission power to avoid
worsening the congestion and to allow the congestion control
protocols [19][20][21] to alleviate it. Furthermore, RPAR may
also be integrated with congestion and rate control techniques
to keep the network below its real-time capacity bound [9].

B. Handling Holes

A known problem with greedy geographic forwarding is
that it may fail to find a route in the presence of holes in
the network topology. Such holes may appear due to voids in
node deployment or node failures. RPAR partly mitigates this
problem through power control: if the diameter of the hole is
smaller than the transmission range at the maximum power,
RPAR can transmit packets across the hole. For networks with
large holes, RPAR needs to incorporate face routing mecha-
nisms [22][23][24][25][26] to route packets around them.

When there are large holes, the Euclidean distance becomes
a poor approximation of the actual path length. As a result,
RPAR computes the expected number of hops incorrectly. We
alleviate this problem through the dynamic velocity assign-
ment policy, which recomputes the required velocity based on
the progress toward the destination. The performance of RPAR
may be further improved by considering the dilation of a path.
This may be estimated by computing the boundary of a hole
using a protocol such as BoundHole [26].

C. Integration with Power Management

RPAR aims to minimize the energy consumed for packet
transmission. However, the cost of packet transmissions is only
a part of the total energy consumption of a network. To further
reduce total energy consumption, a WSN needs to integrate
RPAR with a power-management protocol that reduces the
energy wasted on idle listening. We consider two classes of
power-management techniques and describe how RPAR may
be integrated with them.

An effective power-management approach is to maintain
a connected backbone composed of nodes that are always
active, while the other nodes typically follow a periodic sleep
schedule to save energy (e.g., [27][28]). The backbone is used
for routing and buffering packets destined to sleeping nodes.
The last-hop delay to a sleeping node is usually bounded by the
period of its duty cycle and can be accounted for by adjusting
the packet’s velocity requirement.

Sleep scheduling algorithms alternate periods of sleep and
activity. Of particular interest to real-time applications are
sleep scheduling algorithms that adjust their periods of sleep
and activity based on observed workload to minimize the
impact of sleep schedules on message delay, such as T-MAC
[29], 802.11 Power Saving Mode, ESSAT [30], on-demand
power management [31], and the low-power listening scheme
adopted by B-MAC [5]. As the packet is routed towards
the destination, RPAR’s dynamic deadline assignment policy
can account for the additional delay introduced by sleep
scheduling.

VII. RELATED WORK

RPAR is related to LAPC, SPEED, and MM-SPEED. LAPC
[32] is a power-control protocol designed to reduce commu-
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varied (with neighborhood management).

nication delays by adapting the transmission power to the
workload. LAPC is not concerned with packet deadlines and
only reduces communication delays in a best effort fashion.
In contrast, SPEED, MM-SPEED, and RPAR are designed
for real-time applications with explicit delay requirements.
SPEED [12] bounds the end-to-end communication delay by
enforcing a uniform delivery velocity (called speed in [12] and
[33]). MM-SPEED [33] extends SPEED to support different
delivery velocities and levels of reliability. Both SPEED and
MM-SPEED use fixed transmission power. In addition, RPAR
differs from the above protocols in the following important
respects. First, RPAR is the only protocol that integrates power
control and real-time routing for supporting energy-efficient
real-time communication. Furthermore, it allows the applica-
tion to control the trade-off between energy consumption and
communication delay by specifying packet deadlines. Second,
unlike the other protocols, RPAR is designed to handle lossy
links. This is an important feature since lossy links are com-
mon in WSNs and have a profound effect on communication
delay [3][34]. Third, RPAR employs a novel neighborhood
management mechanism that is more efficient than the periodic
beacons scheme adopted by LAPC, SPEED and MM-SPEED.
The simulations indicate that neighbor management has a
significant impact on both real-time performance and energy
efficiency.

There has been significant research on quality of service
(QoS) support in wireless ad hoc networks. Several mecha-
nisms to provide QoS support in 802.11 have been proposed.
The most common approach is to provide service differen-
tiation [35][36][37][38][39] by manipulating different MAC
parameters. Overviews of these approaches are presented
in [40] and [41]. Another approach for achieving QoS is
to provide statistical guarantees on real-time traffic through
online admission and rate control [21][42][43]. MAC layer
prioritization, admission control and rate control may be used
in conjunction with RPAR to further improve its real-time
performance. Other papers propose routing protocols that
provide QoS through path discovery and resource reservation
[44][45] but none of the them use power control to achieve
desired QoS.

Power-aware routing has been investigated in several pre-
vious works. For example, Singh et al. propose five power-
based routing metrics that can be used to minimize power con-
sumption or extend system lifetime [46]. Several power-aware
protocols have been proposed to maximize network lifetime
[47][48][49][48]. Power-aware routing has been implemented
on real wireless network platforms [50]. Gomez and Campbell
[51] provide theoretical analysis showing that allowing each
node to dynamically adjusting its transmission power leads to
improved capacity and energy-efficiency over the case when
all nodes use a common transmission power. Unlike RPAR,
none of the above power-aware routing protocols is designed
to support real-time communication.



VIII. CONCLUSIONS

We have developed RPAR, the first real-time power-aware
routing protocol for WSNs. In contrast to existing proto-
cols that treat real-time performance and energy efficiency
in isolation, RPAR integrates novel real-time routing and
dynamic power adaptation algorithms to achieve application-
specified communication delays at low energy cost. Another
distinguishing feature of RPAR is that it handles realistic
properties of WSNs such as lossy links, limited memory,
and bandwidth. Simulations based on a realistic radio model
of MICA2 motes show that RPAR significantly reduces the
deadline miss ratio and energy consumption compared with
existing real-time and energy-efficient routing protocols.
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