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Abstract. Bulk transport underlies data exfiltration and code update
facilities in WSNs, but existing approaches are not designed for highly
lossy and variable-quality links. We observe that Maymounkov’s rateless
online codes are asymptotically more efficient, but can perform poorly in
the WSN operating region. We analyze and optimize coding parameters
and present the design and evaluation of RTOC, a protocol for bulk
transport that recovered over 95% of application data despite up to 84%
packet loss in a MicaZ network.

1 Introduction

Often wireless sensor networks (WSNs) must reliably transfer large amounts of
data, which is challenging given the typical resource constraints of WSN devices.
They may be deployed in adverse circumstances where poor and highly variable
link quality is caused by dynamic environmental factors such as heat and hu-
midity, by low-cost hardware and its concomitant failure or unreliability, or by
obstacles and RF interference (accidental or malicious). Whether for extract-
ing sensor data or loading new code in over-the-air reprogramming, bulk data
must be transmitted efficiently to reduce wasted computation and communi-
cation. These twin problems of loss-tolerance and efficiency are not sufficiently
addressed by the state of the art.

Existing protocols use various methods to conceal or overcome loss of data
blocks. The approaches taken by Deluge [1], RCRT [2], and Flush [3] are based on
Automatic Repeat Request (ARQ), in which ACKs or NACKs explicitly request
retransmission of lost data. However, in severe conditions ARQ protocols require
many retransmissions and have high latency, as determined by Kumar [4] for
TCP in lossy networks.

Another pragmatic approach to achieving reliability in this setting is to
bound the expected error rate δ and use forward error correction (FEC) for
transmitting blocks of the data. For predictable channel conditions, a code may
be chosen that is a trade-off between overhead and performance, and it has been
proven that codes exist with rate equal to the channel capacity 1− δ. However,
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under intermittent interference or other lossy conditions, the channel may be
arbitrarily bad, and for any error rate greater than δ, a fixed-rate code fails
completely and the block or message is lost. Pessimistically chosen parameters
suffer from high overhead which must always be paid.

These limitations motivate the use of rateless erasure codes, also called foun-
tain codes. They have recently attracted attention for use in WSNs [5, 6] due
primarily to these properties: first, a limitless number of encoded symbols can
be generated from an input of k symbols, and second, the original k symbols
can be recovered from any k′ = (1 + ε)k received encodings (asymptotically,
for fixed ε). Theoretically, no feedback channel is needed, such as for the ACKs
and NACKs of an ARQ protocol. The sender can transmit an endless stream of
encoded symbols and even for an arbitrarily poor channel (as long as δ < 1),
the receiver eventually receives k′ symbols and can decode the message. Such an
encoding scheme is optimal if k′ = k.

Rateless Deluge [5] uses random linear codes which require multiplication
modulo an irreducible polynomial to decode. Extra memory is needed for storing
inversion tables to achieve practical execution speeds, and both encoding and
decoding are complex for typical WSN platforms. Luby’s LT codes [7], which are
the basis of SYNAPSE [6], more efficiently encode packets using exclusive-OR
operations at the sender, but also require Gaussian elimination for decoding,
which cannot proceed until k blocks are received.

We propose the use of online codes [8], which improve on LT codes to achieve
O(1) time encoding (per block) and O(n) decoding, and which permit iterative
decoding as packets are received. However, coding parameters recommended
for Internet networks perform poorly in messaging overhead and memory con-
sumption in the typical WSN operating region of relatively few data blocks. This
prevents their direct replacement in existing protocols, and motivates this study.

This work uses online codes to provide reliable data transfer despite highly
lossy communication channels. To do so, it must address challenges in the se-
lection of appropriate parameters for the coding scheme and requires a protocol
design that minimizes round-trip interactions. Our contributions include:

– We design Reliable Transfer with Online-Coding (RTOC), a novel transport
protocol for WSNs that is the first to employ online codes for higher decoding
efficiency than SYNAPSE. It stays synchronized despite high loss rates, and
uses feedback control to adaptively terminate data transmission without
ARQ as in Deluge or manual FEC selection used by Rateless Deluge.

– Through analysis of the online coding degree distribution and algorithm, we
optimize parameters to trade asymptotic optimality for predictability within
the WSN operating region. We achieve a 12% better effective coding rate
with 72% lower variance, which reduces the 98th percentile decoding memory
requirements by 69%.

– We evaluate the performance of RTOC on an implementation in TinyOS for
the MicaZ platform, and show that block delivery ratios exceed 95% despite
up to 84% packet loss. Overhead follows from the page fragmentation and
effective coding rate, and is low when channel loss is low.



In the next section we describe related work, and then present the design of
our loss-tolerant transport encoding scheme in Section 3. Key coding parameters
are analyzed in Section 4 for their impact on efficiency in WSNs. Evaluation of
an implementation for MicaZ motes is given in Section 5. Finally, we conclude
in Section 6.

2 Related Work

Methods exist for selecting high quality links to avoid poor communication [9]
and for detecting inconsistencies to trigger code updates [10] in WSNs and are
orthogonal to this work.

Over-the-air reprogramming has been addressed by other schemes that pre-
date Deluge [1], but the latter has become a popular choice despite its shortcom-
ings. Recent work has attempted to improve its efficiency and performance using
rateless codes as described above [5,6]. RTOC builds upon this work and adopts
some features common to reprogramming protocols, but is modularized to allow
its use for other purposes such as bulk data transport, and nothing precludes its
use as an underlying mechanism for code updates.

Flush [3] is an end-to-end transport protocol for WSNs that uses acknowl-
edgments and rate control to achieve high goodput. Like RCRT [2], another
rate-controlling transport protocol, it relies on round-trip messaging to drive
the control algorithm. While this gives good performance at each hop when the
channel loss is low, it performs poorly when many control messages are lost [4].
RTOC is designed to tolerate such losses in its feedback mechanism.

3 Reliable Transfer with Online-Coding

RTOC is a protocol for data transfer in networks that suffer from high and time-
varying channel loss. The use of fixed, high-rate FEC schemes pay a constant but
high overhead, and existing rateless approaches rely on end-to-end interactions,
a fixed margin for loss tolerance, or incur relatively high decoding cost.

Application data (e.g., sensor data or program code) are assumed to be stored
in pages or messages and are fragmented into blocks by RTOC for encoding and
transmission to one or more neighboring nodes. After one roundtrip exchange to
initiate the transaction, encoded data is streamed to the destination. Feedback
control is used to determine when to slow and terminate transmission to minimize
wasted communication, without requiring multiple rounds of ARQ or assuming
that “no news is good news.” Before describing our solutions for synchronization
and termination, we review online codes in Section 3.1.

3.1 Online codes

Online codes [8] are non-systematic fountain codes, developed independently
from but similar to Raptor codes [11]. They concatenate two codes (outer and
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Fig. 1. Sending a message M through an erasure channel with unbounded loss using
online codes. Steps (b)–(e) show iterative belief propagation as blocks are received.

inner) to produce a limitless stream of output blocks from n original mes-
sage or page blocks. Online codes improve on Luby’s LT codes [7] (used by
SYNAPSE [6]) to achieve O(1) time encoding (per block) and O(n) decoding,
trading optimal for near-optimal recovery performance. They are also locally en-
codable, which means that each output block is computed independently from
the others, easing implementation and memory requirements on constrained
WSN devices.

Encoding consists of an outer or pre-processing encoding followed by an inner
encoding that generates output blocks, called “check” blocks. The outer encoding
creates a fixed number q = kδn of “auxiliary” blocks that are appended to the
original n message blocks (k and δ are parameters described below). For every
message block, k auxiliary blocks are chosen and the message block’s contents
are exclusive-ORed with them all.

The inner encoding creates a potentially endless set of check blocks from the
combined message and auxiliary blocks (the “composite” message). To generate
a check block, a degree d is first chosen by sampling a distribution ρ with cer-
tain properties described below. Then d composite message blocks are chosen
uniformly and exclusive-ORed together to make each check block. Construction
of each check block is independent of all previous and future blocks (a property
called local encodability), so it is easy to implement, takes only constant time,
and requires little memory. Figure 1(a) shows message (Mi), auxiliary (Ai), and
check blocks (Ci) connected in a graph G, where edges from M to A represent
the outer encoding and edges from M ∪ A to C represent the inner encoding.

Check blocks are transmitted through the erasure channel to the receiver for
recovery. To decode the page or message, the receiver uses a belief propagation
algorithm on the subset of graph G formed by the blocks successfully received:

1. choose a check block C of degree one,
2. recover the contents of its adjacent block Mx as Mx = C ⊕Mi, for all Mi

used to construct C originally and i 6= x,
3. remove all edges in G of the recovered block Mx, and
4. repeat until the message is recovered or all check blocks have degree > 1.



Auxiliary blocks are decoded similarly, but after they have been recovered they
are treated as check blocks and used to decode any remaining message blocks to
which they are adjacent in G.

Figures 1(b)–(e) show an example of decoding steps at the receiver. Step (b)
shows the state of graph G after check blocks C0, C3, and C4 have been received.
The first two blocks are buffered because their degrees are higher than one, but
block C4 can be processed by the above algorithm upon its reception. In step (c),
the contents of block C4 are copied to M1, which is marked as recovered. Edges
incident to M1 are deleted from graph G, so blocks C0 and C3 now have degree
one. Block C3 is chosen next and used to recover block M0 = C3⊕M1 in step (d),
and the edges of M0 are removed. Check block C0 similarly is used to recover
auxiliary block A0 = C0⊕M1 in step (e), and edges between A0 and check blocks
are removed. No more check blocks have degree one, so the algorithm terminates
until another block is received.

Iterative decoding spreads the total processing cost across multiple block
receptions, which is more friendly to co-hosted real-time processes than is batch
decoding after k blocks are received as in Rateless Deluge.

3.2 Synchronizing sender and receiver

Online and Raptor codes are in the family of fountain codes—so-called because
they can generate endless streams of encoded blocks, and the receiver does not
require any particular ones as long as a sufficient number of them are received.
For unpredictable and arbitrarily low-capacity channels, this property allows
RTOC to maintain communication. However, a mechanism is needed to shut off
the flow of encoded blocks when the message has been recovered by the receiver,
but without resorting to multiple rounds of control traffic.

To address these requirements, RTOC uses a lightweight protocol for syn-
chronizing the parties, controlling the transmission rate, and terminating an ex-
change. We borrow the protocol nomenclature and sequencing from IEEE 802.11
messages, but redefine the semantics.

A Request To Send (RTS) message bears the transmitter’s block size b, to-
tal message length n, and a transactional nonce used to seed a pseudo-random
number generator (PRNG). The message destination responds with a Clear To
Send (CTS) message to acknowledge the RTS and indicate readiness to receive
encoded fragments. Each encoded check block, or DATA message, bears the
block’s identifier, which partially determines the random selections used to con-
struct it. DATA blocks are streamed to the destination, and when the original
message has been successfully decoded, the neighbor returns an ACK message
and the exchange completes.

Senders and receivers must agree on the parameters of the online code, ε,
δ, and k, and on ephemeral or transactional state as well. The construction of
graph G determines the composition of auxiliary and check blocks and must
be synchronized. In particular, the random selection of message to auxiliary
block mappings, and the generation of random samples from distribution ρ for
constructing check blocks must be performed identically by both parties.
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Fig. 2. Senders and receivers use synchronized transaction state to compute loss-
tolerant pseudo-random block mappings for the online code.

The sequence and dependencies of these steps are shown in Figure 2, viewing
from left to right. The sender of the application message seeds PRNGS with a
private value not shared with the receiver, though it need not be secret. This
PRNG is later used to generate a random identifier for each check block that is
sent. After exchange of the RTS and CTS messages, both parties generate the
subset of G consisting of the kn edges defining message block to auxiliary block
mappings, using the transaction nonce to seed PRNGT. A final value, the check
seed, is generated from this PRNG to combine with each check block identifier.

Our solution of combining multiple generators satisfies several objectives. Se-
quentially numbering check blocks would produce a highly autocorrelated input
for generating the check block contents, resulting in poor randomness when used
with a linear-feedback shift register. For this reason the identifiers are randomly
generated by the sender. However, they may be too short to produce a long-
period sequence because of constraints on identifier length. They are therefore
combined with the check seed and used to seed PRNGC for generating the check
block degree d from ρ and the adjacent message and auxiliary blocks. As the
check seed is derived from the transaction nonce, it also provides randomness
among multiple messages sent by a single node.

Receivers must be able to determine the contents of each check block inde-
pendently to cope with loss. This is satisfied by using the identifier, which is
unique to the received block, together with the check seed, which is unchang-
ing for all blocks created from a single application page or message. Separately
seeding PRNGC with this combination ensures that both endpoints produce the
same pseudo-random stream: first the degree d, then d blocks to exclusive-OR
together (at the sender) or mark as adjacent and decode (at the receiver).

Hence, after a single round-trip exchange to begin the transfer, data flows
until an ACK stops it. These are retransmitted if necessary to overcome loss,
but no other control messages are needed.

3.3 Stream termination and rate control

Special attention must be given to terminating the stream of check blocks, which
is potentially endless. When channel capacity is low, the effective rate (n/c, where



c check blocks were transmitted in total) necessary to recover the data may be
quite low. Rather than fix the number of check blocks to transmit, which assumes
accurate knowledge of the loss rate or requires additional control messages to
finish, we use online rate control. This makes our protocol more robust to high
loss rates of both data and control messages and to dynamic channel conditions.

Every node maintains an estimate of the loss rate γ̂ for each neighbor link to
determine how many check blocks to transmit. When an application message is
successfully transmitted to a neighbor at time t, the sender saves the number of
check blocks ct that were required (as reported by the receiver in the terminating
ACK message) and total message blocks n. Using the expectation from [12] that
messages are recoverable with high probability from (1 + 3ε)n check blocks, the
average loss rate for the completed transmission is computed as:

γt = 1− (1 + 3ε)n

ct
(1)

The estimated current channel loss to the neighbor is updated as an exponen-
tially weighted moving average:

γ̂t+1 = αγt + (1− α) γ̂t for 0 ≤ α ≤ 1 (2)

We estimate the channel loss instead of c directly because we allow the length
n to vary freely among application pages or messages.

When sending a message at time t+ 1 to the same neighbor, the node trans-
mits (1 + 3ε)n/ (1− γ̂t+1) check blocks at the nominal rate supported by the
underlying MAC layer. If no ACK has been received to terminate the trans-
mission by this time, the node reduces the sending rate, but continues to send
check blocks up to some maximum tolerated cmax. The lower but sustained rate
reduces overhead at the sender, while allowing for potentially high losses on the
reverse link that interfere with ACKs.

Prior to transaction termination with an ACK message, the receiver may
periodically notify the sender of the number of check blocks received and message
blocks decoded. The sender then updates γ̂ to shorten or extend the duration of
the full transmission rate period. However, as channel losses may be severe, the
original γ̂ is used if no updates are received.

In contrast with ARQ protocols, which implode under retransmissions in
lossy networks [4], RTOC’s transaction control mechanism tolerates high losses.
Given that the original RTS and CTS messages are repeated sufficiently many
times to overcome channel loss γ and begin the online coding, the receiver can
recover the message from any (1+3ε)n check blocks. No further acknowledgment
is required, though it does prevent the sender from wasting transmissions up to
the maximum tolerated cmax (equivalently, down to a minimum effective rate
n/cmax). High loss conditions that would prevent acknowledgment delivery are
also when the maximum number of check blocks are likely to be required, so
the waste is small. Conversely, in good conditions when the potential waste
cmax − (1 + 3ε)n is high, an ACK terminates the transaction promptly.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  2  3  4  5  6  7  8  9  10  11  12  13

P
ro

ba
bi

lit
y 

de
ns

ity

Check block degree (d)

ε=0.2,  δ=0.1,  F=44
ε=0.01, δ=0.005, F=2115

Distribution ρ(d,ε,δ)

(a) Probability density of ρ, with high den-
sity in low degrees and a long, thin tail.
Small ε produce very small ρ1 densities.

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.025 0.05 0.075 0.1 0.125 0.15

 10

 100

 1000

F
F0.98
F

ε
δ

F

0.01

0.005

F=2115

F0.98=38
F=47

F0.98=25

F0.98=16

Contour:
F0.98 = 35Contour:

F = 35

(b) F and 98% bound F0.98 for ρ. Contours
show feasible region for n+ q = 35.

Fig. 3. Impact of parameters ε and δ on the check block degree distribution ρ and
maximum degree F, computed from Equation 3.

4 Design of Code Parameters

A key challenge remaining for the use of online codes is the selection of several
inter-related encoding parameters that determine efficiency and suitability for
use in WSNs. Maymounkov’s analysis of the coding scheme and degree distribu-
tion ρ shows that the receiver can recover the original data with high probability
after receiving (1 + 3ε)n check blocks [8]. Distribution ρ(d, ε, δ) is given as:

ρ1 =
1− 1/F

1 + ε
, ρi =

(1− ρ1)F

(F − 1)i(i− 1)
for 2 ≤ i ≤ F, F =

⌈
ln (ε/2) + ln δ

ln (1− δ)

⌉
(3)

A small ε minimizes transmission overhead, however, it also skews distribu-
tion ρ to the right. This increases the average check block degree d and the
decoding complexity which is proportional to n ln (ε/2). Figure 3(a) shows the
probability density of ρ for ε = 0.2 and ε = 0.01, with δ = ε/2 in both cases. For
ε = 0.01, the value recommended by Maymounkov, the maximum check block
degree F given by Equation 3 is 2115—far exceeding the number of composite
message blocks n + q needed in this context and consuming valuable memory
space. The lookup table for sampling ρ requires up to 4230 B, which is more than
the capacity of MicaZ’s SRAM.

However, we note that ρ has a long, thin tail with more than half of its
density concentrated in its first two elements ρ1 and ρ2. An implementation could
truncate the distribution with little practical effect on decoding performance if
large values sampled from ρ are very rare. To gain a better understanding of
the usable range of ε and δ parameters given WSN constraints, we numerically
calculated the least degree d that bounds 98 percent of the cumulative probability
density of distribution ρ: F0.98 = min d, such that

∑
i≤d ρi ≥ 0.98.

Figure 3(b) shows F0.98 for values of ε ∈ [0.01, 0.3] and δ ∈ [0.005, 0.15], and
indicates that small values of ε may be practical depending on the number of
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blocks n created by fragmentation. For example, a 480 B page sent as 16 B blocks
creates about 35 composite blocks to be selected randomly from the distribution
of ρ. Values of ε and δ for which F and F0.98 ≤ 35 are indicated in Figure 3(b)
by contour lines. Truncating F makes a much larger parameter space available,
as seen from the difference in the contours.

Parameters k and δ affect the online code performance in three ways. First,
the number of auxiliary blocks created for each message grows as q = kδn, so
for fixed k, higher δ values require more memory buffers. Second, higher δ values
increase the probability δk that the message cannot be decoded until after (1+ε)n
blocks. Although the foregoing argue against large δ, the last consideration is
that small δ values, as for small ε values, extend the right-tail of ρ and increase
decoding complexity.

There is one further disadvantage of a small ε—and which is ultimately
determinant—that affects the use of an online code in our setting. Using the
algorithm given above, recovery of the message cannot begin until a check block
of degree one (i.e., a copy of a message block) is received. With relatively few
message blocks to send in total, it may often happen that the first check block to
be randomly assigned degree one is sent very late, requiring the receiver to buffer
check blocks well in excess of the asymptotically expected (1 + 3ε)n bound.

The probability ρ1 = ρ (d=1, ε=0.01, δ=0.005) of such a degree-one block
is only 0.0094, as shown in Figure 3(a). For this low ρ1 density, there is a 30%
chance that a check block of degree one is not sent until after 127 others, which
delays decoding and increases buffer occupancy at the receiver.

Maymounkov and Mazières [12] make the simplifying recommendation that
δ be chosen as ε/2. However, subject to the constraints and trade-offs discussed,
ε and δ may be varied independently. A contour map of ρ1 for values of ε and δ
is shown in Figure 4. The upper-left region is infeasible for the given algorithm
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because ρ1 is either zero or very small, and must be avoided. Outside this region,
the parameters may be chosen to yield good performance, as we now describe.

Rather than optimizing for asymptotic behavior, selection of higher ε values
leads to better performance in the operating region useful for WSNs, that is, for
relatively small n. We implemented the encoding and decoding algorithm on a
PC to measure the code performance trade-offs for the parameters ε, δ, and k.
From the data collected, we present the median, and 2nd, 25th, 75th and 98th

percentiles of 500 randomized runs per data point.

Figures 5(a) and 5(b) show the significant differences in the cumulative de-
coding progress for ε = 0.01 and ε = 0.15, respectively, when receiving the check
blocks transmitted for a message of n = 120 blocks. A small ε yields a small
ρ1 and delays the decoding, as evidenced by the larger variance and extended
recovery time shown in Figure 5(a). In 2% of the tests, very little of the message
was recovered until after 340 check blocks (≈ 2.8n) had been received, when
decoding rapidly proceeded.

A larger ε = 0.15 parameter yields significantly more compact and consistent
performance and the final decoding time is faster, as shown in Figure 5(b).
This is particularly beneficial on memory-constrained WSN devices, as buffers
allocated to check blocks can be re-used when a block is decoded completely.
Figures 5(c) and 5(d) show the large difference in dynamic check block buffer
use, with 52% (vs. median) and 69% (vs. 98th percentile) less memory required
than for ε = 0.01. Fixed memory overhead from the kδn auxiliary blocks is also
kept low by parameters δ = 0.01 and k = 1.

The effective coding rate (i.e., ratio of the number of message blocks to
check blocks) was measured for 2 ≤ n ≤ 120, and indicates that these effects
are even more pronounced for smaller message lengths. Figure 5(e) shows the
wide variability in effective rate for lengths smaller than the n = 120 case of
Figures 5(a)–5(d). A linear fit of the ε = 0.15 data shown in Figure 5(f) gives
an effective rate of 0.7–0.75 with smaller variance.

Our analysis of the online code degree distribution ρ, the impact of its key
parameters, and simulation results in the domain of WSN operation lead to the
selection of a higher ε to reduce variance by 50–71% and a relatively small k and
δ to reduce fixed overhead. This enables implementation on memory-constrained
devices, and trades asymptotic efficiency for good performance in RTOC, and
allows the transport protocol to benefit from online coding’s algorithmic advan-
tage over other proposed rateless schemes.

5 Experimental Results

Having analyzed and optimized the online coding parameters, we evaluated the
performance RTOC in an embedded implementation for the MicaZ mote to
obtain the most realistic and accurate results possible. First, we consider the
effect of channel loss on link reliability and transmission overhead. We utilize a
loss, or erasure, rate of γ on all protocol messages and fragments.
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In the following tests, a node transmitted 180 messages of length 96 B to a
neighbor using block (fragment) lengths of 8 and 16 bytes, and we measured the
performance under varying loss rates. We induced nominal loss rates of 0–75%
by discarding blocks randomly in software on the MicaZ motes. Uncontrolled
channel conditions at the time of the experiments further lowered the actual loss
rates, which are shown in the figures.

Despite actual channel plus induced loss rates of up to 84%, RTOC delivers
in excess of 95% of packets. Figure 6(a) shows the mean and standard devi-
ation of PDRs for the tests, which range from 95–100%. Induced losses were
applied equally to data fragments and transaction control messages, which must
be retransmitted to keep the protocol from stalling.

Online codes are designed to decode a message with high probability after
(1 + ε)n check blocks are received—which clearly requires many transmissions
to overcome high loss rates. Figure 6(b) shows the effective coding rates for
both sender and receiver. The receiver’s rate is the ratio of the total number of
message blocks to the number of check blocks received before decoding success.
It is nearly constant in the range of 0.64 to 0.69 and is consistent with the



simulation results presented earlier in Section 4. The sender’s encoding rate is
the ratio of the total number of message blocks to the number of check blocks
sent before protocol termination, and directly reflects the increasing channel loss,
as it drops from 0.63 to about 0.12.

Figure 7 shows the overhead of the RTOC protocol, fragmentation, and chan-
nel losses more directly. We measured the overhead as the ratio of all bytes trans-
mitted, including fragment and TinyOS headers, for the original 96 B payload
length. High loss rates, as expected, require the most transmissions and incur
high overhead. Larger block sizes are more efficient because the overhead from
headers is greatly reduced.

For comparison, the behavior of ideal fixed-rate error correction schemes for
rates 0.25, 0.5, and 0.75 is also shown in Figures 6(a) and 7. Fixed-rate codes
enjoy small overheads, which are calculated from the design rate (1 to 0.25),
header length (5 B), and block size (8–16 B), when matched to the actual loss
rate. However, as these schemes are designed to correct only a fixed fraction of
errors, PDR drops precipitously when the loss rate exceeds their design rate.

The overheads of RTOC and fixed-rate codes are the result of both the cod-
ing rate and fragmentation. Fragmentation alone incurs substantial overhead de-
pending on the block size. For original message payload length P , header length
H , block size B, fixed coding rate R or number of check blocks transmitted c,
the overheads are:

Fixed-rate =

⌈
P
B·R

⌉
· (H +B)

H + P
, Online code =

c · (H +B)

H + P
(4)

Short fragments give high overheads, but may be necessary due to application
constraints, and may be less prone to erasure in very poor channels.

5.1 Discussion

Many systems for WSNs must be adaptable at runtime to handle the wide per-
formance range between normal operation and when channels are very poor. The
overhead of RTOC is primarily due to: (1) fragmentation of pages or messages
into smaller blocks, (2) message expansion from the effective coding rate, and
(3) streaming of fragments in a transaction. RTOC allows trade-offs in these
key areas to maintain efficiency and incur overhead only when necessary for loss
resistance. Most mechanisms are automatic and part of the design of protocol,
while selection of the block size is exposed as part of its configuration to allow
external control by the application.

Use of a rateless erasure code overcomes variable channel loss rates auto-
matically with proper parameter selection and integration with the transaction
control protocol. Through analysis of online coding’s degree distribution, we
chose parameters ε, δ, and k to achieve stability and good performance in the
operating region useful for WSNs. The resulting low coding rate variance reduces
memory pressure on already constrained WSN devices.

The check block transmit rate control algorithm described uses the estimated
loss rate γ̂ and bound cmax on check blocks to reduce wasted transmissions



from lost termination (ACK) messages. These mechanisms automatically adjust
RTOC’s behavior to prioritize message delivery despite poor channel conditions.
In our embedded evaluation, the protocol transferred over 95% of the messages
successfully despite up to 84% induced channel loss.

6 Conclusion

Despite the resource limitations of WSN devices and high channel loss, online
coding and RTOC’s synchronization and termination mechanisms provide effi-
cient, reliable data transfer that can serve as a building block for data exfiltra-
tion or code updating. We carefully designed the protocol’s parameters to trade
asymptotic optimality for predictability in the WSN operating region, and there-
fore it imposes modest memory and resource requirements on the system. We
presented an evaluation of its implementation on embedded hardware to demon-
strate its efficiency and performance. Future work may apply our methods to
other codes, such as Raptor codes [11], and integrate RTOC with over-the-air
reprogramming protocols for high-loss networks.
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