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Abstract—Stress increases the risk of several mental and
physical health problems like anxiety, hypertension, and car-
diovascular diseases. Better guidance and interventions towards
mitigating the impact of stress can be provided if stress can
be monitored continuously. The recent proliferation of wearable
devices and their capability in measuring several physiological
signals related to stress have created the opportunity to measure
stress continuously in the wild. Wearable devices used to measure
physiological signals are mostly placed on the wrist and the
chest. Though currently chest sensors, with/without wrist sensors,
provide better results in detecting stress than using wrist sensors
only, chest devices are not as convenient and prevalent as wrist
devices, particularly in the free-living context. In this paper, we
present a solution to detect stress using wrist sensors that emulate
the gold standard chest sensors. Data from wrist sensors are
translated into the data from chest sensors, and the translated
data is used for stress detection without requiring the users to
wear any device on the chest. We evaluated our solution using a
public dataset, and results show that our solution detects stress
with accuracy comparable to the gold standard chest devices
which are impractical for daily use.

Index Terms—Stress, Wrist, Chest, Sensors, Physiology

I. INTRODUCTION

Stress is a major reason for several mental and physical
health problems including anxiety, cardiovascular diseases,
hypertension, and stroke. According to the British Health and
Safety Executive, 37% of all work-related ill health cases are
caused by stress [1]. It is possible to provide better guidance
and interventions toward mitigating the impact if stress can be
monitored continuously. However, stress detection is challeng-
ing, particularly in the free-living context. Facial expression
is a common approach to detect stress, but it is not feasible
to capture facial expressions continuously in the wild. In
addition to privacy issues, such an approach might not work
well for people who are good at hiding their emotions. On
the other hand, different physiological signals are affected by
stress and other affect states, and so these signals provide
an alternative avenue to facial expression for stress detection.
The physiological signals can be captured unobtrusively using
wearable sensors on the chest or the wrist, and it is not possible
to disguise such signals. This paper focuses on detecting stress
using wearable sensors.

Stress detection using physiological signals is complex. One
reason is because not all the modalities are good indicators
of stress in all situations. Also, a non-stressful situation can
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also change the physiological parameters. So, it is difficult to
set a standard accuracy for detecting stress. For example, in
the WESAD dataset, authors detect stress with a maximum
80.34% accuracy using the gold standard chest devices.

Chest devices are widely used for stress detection in medical
settings. However, wearing devices on the chest is not as
convenient as a wrist device, particularly in daily life. As
a result, any solution that requires wearing devices on the
chest is likely to be less acceptable to the users. On the
other hand, in the past wrist-worn devices proved to be far
less accurate than the chest devices [2]. However, the recent
proliferation of consumer grade wearable devices and their
capability have opened the opportunity to monitor stress and
affect states continuously in daily life and free-living contexts.
But most recently, most of the state-of-the-art solutions use
either chest-worn or wrist-worn devices for stress detection;
none of these focus on achieving the performance as good as
the chest sensors using only wrist sensors.

In this work, we emulate the chest sensors data using the
data from the wrist sensors for stress detection. As a result,
our solution allows the users to avoid wearing devices on the
chest, but provides improved accuracy by using the emulated
data. For the emulation, it is necessary to effectively learn
a mapping or translation model between the physiological
signals available from the wrist and the chest sensors. There
are several challenges in developing and validating such a
model. First, there is no standard translation model for raw
physiological signals. Though several translation models have
been used for audio signals translation [3], image translation
[4] [5], and text translation [6] tasks, no research has been done
to show how these models would perform on physiological
signals. Second, unlike other translation models, where both
the source and target domains are both either audio signals,
texts or images, translation between wrist and chest modalities
involves a variety of physiological signals such as Electroder-
mal activity (EDA), Blood Volume Pulse (BVP), Electrocar-
diogram (ECG), and Electromyography (EMG) that are often
sampled at different frequencies. Third, a translation model
needs to be evaluated in the application domain. For example,
keyword spotting is used in the audio translation models,
while image segmentation or object detection is used in the
image translation models. There is no such solution available
for stress detection. Fourth, stress detection is challenging
because there exist many confounding variables. For example,



physiological arousal that should be indicative of stress can be
easily confounded by different non-stressful situations. So, it is
challenging to develop a translation model that could properly
learn the mapping and work well for stress detection.

In this paper, we address each of the above challenges and
present a solution for stress detection using wearable sensors
by incorporating sensor translation between the chest and
wrist modalities. Our work emulates signals for the chest-worn
sensors using signals from wrist-worn sensors. However, our
goal is not to ensure the goodness of generated signal or it§
properties. Rather we are interested in the features of the signal
those are vital for stress detection, and those which translate
well. Our solution reduces the burden of wearing chest devices
while it improves the accuracy of stress detection. The main
contributions of our work are summarized below.

1) We present a novel solution for stress detection using
wrist-worn sensors. Our solution improves accuracy
by emulating the data for chest-worn sensors without
imposing additional burden on users to wear any chest
device.

2) We develop the first models for translation between
physiological signals obtained from the wrist and chest
modalities in the wearable stress detection domain. We
also use a feature translation model by identifying
the situation where the features can not be effectively
generated from signal translation.

3) We conduct extensive experiments on a publicly avail-
able dataset using different translation models and
demonstrate that our solution using only wrist sensors
detects stress with accuracy comparable to the golden
standard based on chest sensors for all the models.

II. BACKGROUND AND PROBLEM FORMULATION
A. Physiological Signals for Stress Detection:

Several physiological signals can be captured using wear-
able sensors, particularly using wrist-worn and chest-worn
sensors. As background, some of the important physiological
signals for stress detection are discussed below.

1) EDA: An EDA sensor captures the electrodermal ac-
tivity of the skin arising from emotional stimulation,
or physical or cognitive activities. An EDA signal has
two main components, a slowly varying tonic compo-
nent that represents the current skin conductance level
(SCL), and a rapidly changing phasic component, that
represents skin conductance response (SCR). Both of
these components are vitals for stress detection [7].

2) ECG and BVP: ECG refers to the Electrocardiogram
and BVP refers to the Blood Volume Pulse that are usu-
ally measured from the chest and the wrist, respectively.
The BVP is also known as Photoplethysmogram (PPG).
It measures the blood volume changes of the heart by
measuring light transmission or reflection. Both ECG
and BVP signals are used to calculate the heart-rate
and the heart rate variability (HRV). The HRV is an
important indicator of stress [8].
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3) Respiration: Different studies have reported the re-
sponse of the human respiratory system to mental stress
[9]. Moreover, respiration rate increases during stressful
situations compared to a resting condition [9].

4) EMG: Electromyography (EMG) refers to the electri-
cal activity produced by the skeletal muscles. Previous
research have shown that stress can lead to increased
EMBG in specific muscles of the body [10].

5) Temperature: Body temperature can be measured using
both the wrist and the chest sensors. It has been shown
that the human skin temperature uniformly increases in
response to stress. [11].

B. Problem Formulation:

Chest sensors in combination with wrist sensors provide
better results for stress detection compared to using wrist
sensors only [12]. A general pipeline for stress detection using
chest and wrist sensors is shown in the figure 1. In this
approach, features are extracted from the physiological signals
of wrist and chest sensors, and then the features are combined
and used for the stress classification task [12].

The focus of this paper is to detect stress using only the
wrist modalities, and still get as good performance as that
using the chest modalities, and thereby to eliminate the need
of using the chest devices in stress detection. To solve this
problem, we need to develop a translation model which can
emulate the chest features using the data from wrist sensors,
as shown in the figure 2. At first, the chest features which are
important for stress detection needs to be determined. Next,
the translation model has to learn the mapping between the
wrist and the chest modalities. So, the key research goals of
this paper are:

1) Finding the features from the chest modalities that are

good indicators of stress.

2) Developing a translation model to emulate the chest

features from Wrist Sensors.

3) Developing classification models for stress detection

using the translated features as well as original features
from the wrist sensors.



III. METHODOLOGY

In this section, we discuss the methodology followed for
achieving the research goals identified in the previous section.

1) Feature Selection from Chest Modalities: A number of
feature selection techniques can be used for selecting the best
features from the chest modalities which are good indicators of
stress. In this paper, we use the Recursive Feature Elimination
(RFE, Guyon et al. (2002) [13]), a greedy algorithm that fits a
model with the training data and removes the weakest features
one by one until reaching the desired number of features.

2) Translation model for Generating Features: We use
two kinds of translation to generate chest features from the
wrist sensors, which are briefly discussed below.

« Signal translation: It is the process of emulating a signal
(target signal) from other signal (source signal) using a
translation model (Figure 3). Previous studies showed that
neural networks can be effectively used for translating
data sequences between the correlated sensors [14].

o Feature Translation: In feature translation, a feature is
generated from a set of selected features (Figure 3). The
source features are chosen on the basis of their relative
importance to the target feature from the training data.

3) Stress classification using translated features: For
feature extraction, the sequences of the sensor signals are
segmented into windows using a sliding window method.
The chosen important features available from these signals
are computed and extracted from these windows. In case
of feature translation, the features are already generated via
translation. The features from the signal translation and the
feature translation models are then combined to form the
emulated feature set. The emulated set of features is then used
for the stress classification.

Primer on GAN: We use Generative Adversarial Networks
(GAN) for signal translation between two homogeneous sig-
nals, because GANSs are very effective for generating plausible
transformation of any source data sequences via generative
modeling, and is widely used for image translation [5]. A
GAN consists of two neural networks competing with opposite
goals, the generator and the discriminator. In each training it-
eration, the generator tries fool the discriminator by producing
realistic fake samples from a random distribution, while the
discriminator tries to correctly discriminate between the real
and the fake samples. In this work, we have implemented a
GAN similar to Pix2Pix [4], a type of a Conditional GAN,
where the generation of the target data sequence is conditional
on source data sequence.

Primer on bi-directional RNN: We also use bi-directional
Recurrent Neural Networks (RNNs) for signal translation,
as RNNs are very effective for modeling sequential data.
This is because the RNNs have hidden states which allows
the network to remember the contextual information about a
sequence. Moreover, a bi-directional RNN works better for
translation than the uni-directional RNN [6], because it can
capture the contextual information from both sides.
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IV. SOLUTION AND IMPLEMENTATION OF THE
TRANSLATION MODELS

In this section, we focus on the 3 main solution steps for
translation to emulate the top chest features.

1) A GAN-based translation model is used for translation
between two homogeneous signals. For example, to
generate a top chest EDA feature, we use the wrist EDA
signal to chest EDA signal translation.

2) A RNN-based translation model is used for translation
between two heterogenous signals, if the signals have
some correlated underlying attributes. For example, to
generate a top chest ECG feature, we use the wrist BVP
signal to chest ECG signal translation. Because an ECG
signal is unavailable on the wrist, however a wrist BVP
signal shares some attributes similar to an ECG signal.

3) An MLP-based feature translation model is used other-
wise. For example, to generate a top chest EMG feature,
we use feature translation from the features available
from the wrist sensors. Because neither an EMG signal,
nor any other correlated signal is available on the wrist.

The implementation of the three translation models are
discussed below.

A. GAN-based Signal Translation Model

1) Network Architecture: The generator () in the transla-
tion model takes a source data sequence as input, and outputs a
target sequence. Inspired by the work of [15], we implemented
G using a U-Net architecture. G consists a combination of
layers of encoder and decoder. The skip connections were used
to connect layers in the encoder with corresponding layers
in the decoder, thus resulting a U-shape, which is shown in
the figure 5. The encoder layers encodes the input sequence
signal down to a bottleneck representation through a number
of convolution layers. Batch normalization was also used both
during the training and the testing to ensure that the statistical
values were computed for each batch. A LeakyRelu activation
function was used on the encoder part. The structure of the
decoder part is opposite to that of the encoder. It takes the
bottleneck representation as input and it uses the transpose of
convolution layers to upscale to the required output sequence
of the signal. A kernel size of 4 and stride size 2 were used in
the convolution and it’s transpose layers. Dropout layers were
used in the encoder-decoder structure to introduce randomness
during training.
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The discriminator (D) of a translation model takes samples
from both the source and target data sequence, and it aims
to figure out whether the target sample (y) is a plausible
transformation of the source sample (). D was implemented
by a convolutional PatchGAN classifier. It is designed in a
way that each output of the model maps to a patch of the input
data sequence. A combination of convolution layers along with
Batch Normalization were used to implement D.

2) Training details: The generator G of the translation
model is trained via the adversarial loss (L¢). Lo makes the
generator generate samples of the target signal in such a way
that those cannot be distinguished from samples of the real
signal by D. G is also updated via L, loss. An L; loss is
measured between the translated data generated by itself and
the expected output data (y). This additional loss encourages
G to move the distribution of the translated samples as close
as possible to real distribution of the samples in the target
domain. The loss function (G*) of the translation model is
shown below, where A is the regularization parameter:

G* = argmin max Le(G, D) 4+ AL1(G)
G

Lo = E, yllogD(x,y)] + Eg »[log(1 — D(z,G(z, 2))]
Ly = Epy:llly — G, 2)|]]

The discriminator (D) was trained on both real chest sam-
ples and fake chest samples for the corresponding real wrist
signal samples. Next the generator (G) was trained on batch
with real wrist and chest samples, so that it is able produce
the fake (translated) chest samples. While training G, weights
of D were kept frozen. D verified the output of G and tried
to predict the goodness of the translated fake chest samples.
In this way through each training iteration, G' kept minimizing
it§ loss. Typically a GAN model does not converge, instead,
an equilibrium is found between the G and D. Therefore, the
training was stopped when more iterations did not significantly
change the loss of the G or the D. The model was optimized
using binary cross entropy optimizer, and a weighting is used
in a way that the updates to the model have half (0.5) the usual
effect. This weighting was chosen to decelerate the changes
to D, relative to G.

B. RNN-based Signal Translation Model:

We used a bi-directional LSTM network, a kind of RNN
for translation between the heterogenous sensing modalities.

A sequence of sensor signals are provided as input to the bi-
directional LSTM that generates output for each of the input
samples. The output of the LSTM network is the emulated
signals for the target chest sensor. For implementing the
architecture, a bi-LSTM layer with 32 units was used, followed
by a dense layer with a ReLu activation function. Moreover,
the return sequences option was enabled, meaning the RNN
layer returned the full sequence as the output instead of
returning only the last hidden state output.

C. MLP-based Feature Translation Model:

We argue that any random signal should not be emulated
using some other signals by neural network models. Some
correlation must be present between the source and target
signals, particularly over the sequence. It is possible to build
a neural network model that memorizes all the training data,
but such a model would perform very poorly on test data. So,
signal translation would not perform well where the correla-
tion between the signals is not sufficient enough to achieve
acceptable accuracy. For the top features which could not be
generated via signal translation, we used feature translation.
The intuition behind this is a feature on a chest physiological
signal might have a strong or weak correlation with one or
a number of features from the wrist physiological signal.
So, using feature selection on the training data, we try to
select a feature or set of features from the wrist data which
are relatively important for predicting that chest feature. We
use the feature(s) to train a multilayer perceptron (MLP). A
multilayer perceptron (MLP) is a simple feedforward artificial
neural network with several fully connected layers that takes
a number of features as input and generates a set of outputs.
In this paper, an MLP was created with two dense layers,
followed by ReLU activation function, and was trained with
the features selected from the wrist modalities.

V. EXPERIMENTS

We present a thorough evaluation to highlight the per-
formance improvement achieved by our solution. The key
research questions that drive our evaluations are:

1) How accurate are the emulated features compared to the
original chest features?

2) Does the translation model improve the stress and affect
detection performance using the wrist sensors?

3) Can the translation model eliminate the need of placing
sensors on the chest (which is not practical in the wild)
for detecting stress?

A. Data Description

We have evaluated our solution using WESAD [12], a
publicly available dataset for stress and affect detection. We
use WESAD because it is the only publicly available dataset
that contains synchronized data from both the wrist sensors
and the chest sensors required for emulating chest features
on the wrist. The dataset has three kinds of labels for stress
classification for a total of 15 subjects, namely, the baseline
(neutral) condition, the amusement condition, and the stressed



TABLE I
WESAD DATASET STATS

Features Modalities Sampling rate | No. of samples

Wrist Modalities | EDA 4 Hz 347472
BVP 64 Hz 5559552
Acceleration | 32 Hz 2779776
Temperature | 4 Hz 347472

Chest Modalities | EDA 700 Hz 60807600
ECG 700 Hz 60807600
EMG 700 Hz 60807600
Respiration 700 Hz 60807600
Acceleration | 700 Hz 60807600
Temperature | 700 Hz 60807600

condition. Both the baseline and amusement conditions repre-
sent the non-stressful situations. Table I presents the signals
in the WESAD dataset along with the sampling frequencies.

B. Data Pre-Processing

First the synchronized raw data files were loaded for all
subjects. To map between the wrist and the chest samples,
downsampling, a commonly used signal processing technique
was used. The EDA signals were passed through a low
pass filter corresponding to the EDA sampling rate, and then
were passed through cvxEDA [16], an algorithm which uses
different convex optimization methods for the analysis of
EDA signals. The phasic and the tonic, the two important
EDA components for stress detection, were extracted using
this algorithm. An additional component called SMNA (Su-
domotor Nerve Activity) was extracted from the signal. This
component is another vital element for stress detection. Some
pre-processing was also needed to remove the noisy artifacts
from the signals. The raw accelerometer data was passed
through a FIR (Finite Impulse Response) filter to filter high-
frequency vibration noises. The net acceleration was measured
on the accelerations along the X, Y and Z axes.

C. Signal and Feature Translation

Being homogeneous signals, a translation between the wrist
EDA and chest EDA signal was done. Among the heteroge-
neous signals, the wrist BVP to chest ECG, and the wrist
BVP to chest Respiration signal translations were carried
out. Because both the wrist BVP and chest ECG signals
contains some stress indicative heart-rate related parameters
[8]. Moreover, previous studies used BVP/PPG signals to
estimate the respiratory rate [17], which is a strong indicator of
stress. Feature translation was used for the top features coming
from the signals not involved in the signal translation.

To make the model general and not be overfit to any training
samples, we performed leave-one-subject-out (LOSO) cross
validation in both translation models. Previous studies have
shown that LOSO increases the generalization capabilities of
the models against the real-world unseen data [18]. Using
the LOSO scheme, a model was trained on data from all
subjects except one, data from that one subject was used
as test data. The parameters were optimized for each of the
models. Following the translation, the generated signals and

the original chest and wrist signals were pre-processed and
features were extracted for classification.

D. Feature Extraction

We windowed the pre-processed data with a window size of
60 seconds, and a sliding length of 5 seconds per window. This
window size was picked according to the paper in which the
dataset was originally published [12]. Once the windows were
generated, we extracted different features from the windows.
The mean, standard deviation, minimum and maximum values
of a window were found for the modalities. The features from
the modalities were then fused together to form a combined set
of features. A total of 36 and 44 features were derived from the
original wrist and chest signals, respectively. Top 15 features
from the chest sensors, as listed in Table IV, were derived
through translation. Twelve of the features are extracted from
the translated signals, and the remaining features are derived
through feature translation.

E. Translation Results

Our translation models effectively learnt the mapping be-
tween the wrist and the chest modalities. However, any loss
in the translation process will result in error in the translated
signals and the features extracted from the translated signals
when compared to the original signals or the features extracted
from the original signals. We demonstrate both these errors
by computing Mean Average Error (MAE), a commonly used
performance metrics. The MAE between the original signal
(Xoriginialy and the translated signal (Xtrenstated) jg:

1 = original translated
S M R BT

Table II shows the performance of the two translation mod-
els across different signals. The feature level translation errors,
that is, the MAEs of the translated features compared to the
original features, are shown in Table III. For space limitation,
we opt to show the average MAE for all the subjects. The
features are ranked in the order of their importance to detecting
stress. The MAEs for the emulated top 15 features are shown
in Table IV.

Results show that the GAN translation works better than
the RNN when the signals are homogeneous, that is, the
data are of similar kind. For example, the wrist EDA to
chest EDA translation using RNN incurs a MAE of 0.944,
whereas that using GAN incurs a MAE of 0.842, leading to a
10% reduction of error rate. This is because GANs are very
effective for producing fake samples that resembles the actual
data, as it uses generative modeling. However, RNN model
provides slight improvements for heterogeneous signals. So,
for stress classification, we opt to use GAN translated signals
for homogeneous translations, and RNN for the heterogeneous
ones. It must be also mentioned that the claim of this paper is
not to ensure the goodness of generated signal or it§ properties.
Rather we are interested in the features of the translated signal
those are vital for stress detection, and those which were
translated well, so that we get the best translated chest features



TABLE II
MAE OF THE TRANSLATED SIGNALS
Source Signal | Target Signal MAE - GAN MAE - RNN
Wrist EDA Chest EDA 0.8420 0.9445
Wrist BVP Chest ECG 0.5130 0.5026
Wrist BVP Chest Resp 0.7271 0.7100
TABLE III

MAE OF THE TRANSLATED FEATURES

Source Feature Target Feature MAE - MLP
Wrist- All Features | EMG_Raw_mean | 0.0007
Wrist- All Features | EMG_Raw_std 0.0046
Wrist- All Features | Temp_Raw_std 0.0909
Wrist- All Features | Temp_Raw_mean | 0.0794

for stress detection. Therefore, the features translated with high
error, such as, EDA_Tonic_max, and EDA_smna_mean were
not considered for stress classification.

E. Classification Results

We evaluated the performance of both the original features
and the translated features for stress detection. Classification
for the stress detection was carried out with different feature
sets as mentioned below.

1) Wrist Only: Features extracted from the original wrist
signals are used.

2) Chest Only: Features extracted from the original chest
signals are used.

3) Wrist and Chest: Features extracted from both wrist
and chest signals are used.

4) Wrist using Translation: Features extracted using the
translation model on the wrist are used (our solution).

We used some of the most widely used machine learning
algorithms for classification. The WESAD dataset is labeled
with three main classes, namely, baseline, stress, and amuse-
ment. Similar to the paper that presents WESAD [12], we car-
ried out three-class (stress vs baseline vs amusement) and two-
class classification (stress vs non-stress). We detected stress
using Random Forest (RF), Extra Trees (EXT), Decision Trees

TABLE IV
TorP RANKED CHEST FEATURES AND MAE ON TRANSLATION

Rank | Features Modality | MAE Translation Type
1 ECG_Raw_std ECG 0.0526 Signal-Signal

2 EDA_Phasic_std EDA 2.4750 Signal-Signal

3 EDA_Tonic_max EDA 35.0474 | Signal-Signal

4 EDA_Tonic_std EDA 2.2260 Signal-Signal

5 EDA_smna_min EDA 0.0001 Signal-Signal

6 EMG_Raw_mean EMG 0.0005 Feature-Feature
7 EMG_Raw_std EMG 0.0046 Feature-Feature
8 RESP_Raw_max RESP 0.0152 Signal-Signal

9 Temp_Raw_std TEMP 0.0909 Feature-Feature
10 EDA_smna_mean EDA 29.3640 | Signal-Signal

11 Temp_Raw_mean TEMP 0.0794 Feature-Feature
12 RESP_Raw_std TEMP 1.1252 Signal-Signal
13 EDA _Tonic_max EDA 0.5381 Signal-Signal
14 EDA_Phasic_mean | EDA 1.7358 Signal-Signal
15 ECG_Raw_max ECG 1.1372 Signal-Signal

(DT), Linear discriminant analysis (LDA), Logistic Regression
(LR) and Multi-Layer Perceptron (MLP). We evaluated the
performance of our solution using Accuracy and F1-score, the
most commonly used performance metrics for classification.

The results of the 3-class classification and the 2-class
classification are presented in the tables V and VI, respectively.
We make the following observations from the results:

1) In general, the chest sensors work better than the wrist
sensors for stress detection by about 4-5% for accuracy,
and the combination of both chest and wrist sensors
works better than using sensors on the wrist or chest
only. Chest sensors are less affected by motion artifacts
than wrist sensors, and also most physiological signals
are better captured at the chest than the wrist due to the
internal structure (e.g., location of heart) of the human
body. These results justify the use of chest sensors for
stress detection in terms of classification performance if
user convenience is not considered.

2) Classification performance is improved when original
data from wrist are combined with translated data in-
stead of using data from the wrist only. The improve-
ment in the performance is achieved without sacrificing
user convenience as users need to wear a device on the
wrist only, not on the chest. It should be noted that data
from both wrist and chest are used for training purposes.
Once the translation models are built, our solution only
needs data from the wrist.

3) For 3-class classification, our solution improves stress
detection accuracy and Fl-score by an average of 5-6%
compared to the wrist only modality. The improvement
is smaller for the 2-class classification than 3-class clas-
sification, because the latter is relatively less complex,
and benefits more from the extra information available
in the translated data.

4) Using both modalities in the original form, that is origi-
nal data from both the wrist and the chest sensors, gives
the best performance for all the models. However, our
solution provides accuracy comparable to that in most
cases. For example, the best stress detection accuracy
using chest only sensors in 80.5%, that with the same
classifier using both the wrist and chest sensors is 81.6%,
while our solution achieves 81.4%. It validates that
our solution ensures user convenience with very little
compromise on accuracy.

5) The ensemble based classifiers, the Random Forest and
the Extra Trees gives the best performance for both
the classification tasks. Because the ensemble methods
reduce variance by combining results from a number of
underlying weak classifiers, and thus are less prone to
overfitting. Among the other classifiers, Linear Discrimi-
natory Analysis performs better in both the classification
tasks. We also observe that the Decision Tree shows
different results than those of the other classifiers. This
is because it is highly prone to overfitting to the training
data, and performs poorly on the testing data.



TABLE V
CLASSIFICATION ACCURACY AND F1-SCORE, 3 CLASS (BASELILNE/STRESS/NON-STRESS)

Classifier Accuracy F1-Score

Wrist Only | Chest Only | Wrist + Chest ‘X::litg Translation Wrist Only | Chest Only | Wrist + Chest ‘Z::;tg Translation
Random Forest 75.6 80.5 31.6 81.4 71.5 67.1 75.8 74.5
Extra Tree 74.1 79.1 83.4 80.6 66.8 61.2 72.8 65.2
Decision Tree 72.8 76.4 71.5 75.3 66.7 63.8 63.3 64.5
Linear Discriminatory Analysis | 70.5 73.0 75.1 74.1 64.8 58.5 69.6 67.5
Logistic Regression 68.6 71.9 72.2 72.3 64.3 56.2 65.1 65.0
Multi-Layer Perceptron 70.2 70.9 72.9 71.6 63.2 62.7 67.8 65.8

TABLE VI
CLASSIFICATION ACCURACY AND F1-SCORE, 2 CLASS (STRESS/NON-STRESS)

Classifier Accuracy F1-Score

Wrist Only | Chest Only | Wrist + Chest | ' 5st .| Wrist Only | Chest Only | Wrist + Chest | "V 0st )

using Translation using Translation

Random Forest 89.9 90.0 94.7 92.1 87.6 87.5 93.4 89.7
Extra Tree 88.6 91.1 93.7 90.6 86.4 90.2 92.2 91.4
Decision Tree 85.1 88.1 82.9 85.8 824 85.9 80.2 85.8
Linear Discriminatory Analysis | 89.2 90.2 90.7 90.6 86.8 87.8 88.4 88.1
Logistic Regression 84.9 87.0 85.9 86.2 82.0 84.3 82.5 83.8
Multi-layer Perceptron 83.0 89.1 91.6 88.3 79.6 86.3 89.6 86.5

Overall, the translation results show that our translation
models using only the wrist sensors are able to generate
the best features of the chest which are indicators of stress.
The best stress detection performance on the wrist device
(75.6% accuracy, obtained from the Random Forest classifier)
was beaten by a 5%-6% improvement by our solution by
using the same classifier (81.4% accuracy). By doing do, our
solution also achieves a stress detection performance on the
wrist essentially the same as using chest sensors too (81.6%
accuracy, using the same classifier). For the other classifiers
too, the stress detection performance using our wrist-based
solution are very close to that using the chest sensors.

VI. RELATED WORKS

Stress Detection using Wearables: Several papers [19]
[12] detected stress using different physiological signals
recorded from the chest modalities, such as, ECG, respiration,
acceleration, EMG, etc. Authors in [20] detected stress with
high accuracy from chest ECG and respiration signals using
a DNN-based framework. On the other hand, authors in [21]
[7] used different physiological parameters obtained from the
wrist modalities such as, BVP, EDA, skin temperature, and
acceleration to detect stress. Authors in [12] combined both
the wrist and chest modalities to achieve higher stress detection
accuracy than the independent modalities. Authors in [22]
developed a new wearable capable of measuring a person’s
cortisol levels from their sweat to detect stress. However, none
of the works focused on bridging the gap between the stress
detection performance on the chest and wrist wearables.

Other Works on Stress Detection: Authors in [23] sum-
marizes stress and other affective states detected from different
sensor modalities. Authors in [24] used wristbands to measure
stress among dementia patients. Authors in [25] studied the
effect of heart-rate related features in stress detection.

Data Translation Models: Pix2Pix [4] is a general purpose
image-to-image translation model, while the CycleGAN [5]

model is used to perform translation between domains with
unpaired images. On the other hand, the Recurrent Neural
Networks (RNNs) are widely used for text translation models
[6]. However, for the acceptability of these translation models,
the translated data from these models were evaluated on the
application domain. For example, spotting the keywords in
translated audio signals [3], detecting and counting the objects
in the translated images [4]. However, there is no standard
translation model for translating data sequences across differ-
ent kinds of physiological signals, and no research has been
done to show how these state-of-the-art models could perform
in stress detection domain.

Works on the Physiological Signals: RespNet [17] is
a deep learning based framework that performs the task of
extracting a respiration signal from a PPG signal. Several
other works [18] [26] focuses on extracting or estimating the
physiological parameters such as, heart-rate, respiratory rate
from the signals, such as PPG or ECG. None of the works
provide any solution for mapping physiological signals or
features from one domain to another domain. Moreover, none
of these works are targeted for stress detection.

VII. DISCUSSION AND LIMITATIONS

We argue that translation should not be done between
any two random physiological signals. Only the signals that
are similar or have correlated underlying attributes should
be selected for translation. Because most of the signals for
stress detection from the chest and wrist modalities are either
the same, or they share similar physiological parameters, our
translation models were able to effectively translate the wrist
signals into the chest signals.

Our solution with translation works better than using the
original wrist data, because we chose the best features of
the chest data that represent stress, generated those features
from the related wrist data, and then picked only the features
with low translation error for classifying stress. Moreover, our



solution uses both GAN, which is very popular for generative
modeling, and RNN which is very effective for modeling
sequential data.

An alternative solution without translation is to train a
classifier for detecting stress directly from the wrist data. But
to match the performance of the chest sensors, the classifier
would need large amount of training data to automatically
learn the best features from the wrist. However, this data is
not available among the existing datasets. On the other hand,
our solution generates the best stress indicator features for the
chest modalities via translation.

The wrist and chest sensors are subject to real-world noise
and motion artifacts. Although some preprocessing were done
to handle these motion artifacts, this paper does not focus
on handling the noise and motion artifacts of the data. Further
research is needed to improve the robustness of the translation
model against these problems.

This paper focused on how the translation models improve
the stress detection performance using the wrist sensors only.
Based on application requirements and resource availability,
the translation models can be deployed in different platforms
like wrist devices, smartphones, and servers in the cloud. Fu-
ture works include implementation and resource requirement
analysis for the translation tasks on the different platforms
both for online (real-time) and offline stress detection.

VIII. CONCLUSION

Smart wrist devices are becoming more prevalent for well-
ness and healthcare. In this work, we leveraged the stress
detection performance on the wrist by emulating the chest
features from the wrist signals using a novel collection of
3 translation schemes. Our overall translation solution is the
first of its kind that tackles the problems of achieving stress
detection performance using the wrist sensors close to the level
as using the chest sensors.
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