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Abstract—
While current Cyber Physical Systems (CPS) act as the bridge between humans and environment, their implementation mostly
assumes humans as an external component to the control loops. We use a case study of energy waste on computer workstations
to motivate the incorporation of humans into control loops. The benefits include better response accuracy and timeliness of CPS
systems. However, incorporating humans into tight control loops remains a challenge as it requires understanding complex
human behavior. In our case study, we collect empirical data to understand human behavior regarding distractions in computer
usage and develop a human-in-the-loop control that can put workstations into sleep by early detection of distraction. Our control
loop implements strategies such as an adaptive timeout interval, multilevel sensing, and addressing background processing.
Evaluation on multiple subjects show an accuracy of 97.28% in detecting distractions, which cuts the energy waste of computers
by 80.19%.

Index Terms—Distraction, energy waste, energy saving, human-in-the-loop, computer, workstation

✦

1 INTRODUCTION

Cyber Physical Systems (CPS) feature a tight integra-
tion of computing resources and physical elements.
These systems have played a significant role in help-
ing humans understand and control the environment.
To do so, many CPS systems employ humans as
an external component, in addition to the control
loops. At a high-level, humans loosely couple with the
control loops. In some cases, humans have the ability
to take over the control loops when necessary or
desired. For example, automatic piloting of an aircraft
is subject to the pilot’s discretion of when to initiate
manual control. Another example is a cruise control
loop for automobiles that simply maintains constant
speed, without taking the driver’s behavioral state
into consideration.

Moving forward, we believe that CPS systems will
have a stronger tie between humans and control
loops, or the notion of human-in-the-loop control. Mov-
ing humans from outside to inside the loop, CPS
systems can provide better response accuracy and
timeliness. Continuing the example of automobiles,
we note that road safety is not just keeping a sufficient
distance between two cars, but also taking into ac-
count the driver’s physiological state (fatigue, anger,
drunk, etc.) and behaviors (distraction, erratic steer-
ing, etc.). When the driver is unfit to keep the safety or
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fuel efficiency of the current trip, the automobile can
immediately react and signal alarms, or even wrestle
control from the driver.

Human-in-loop control introduces challenges in the
design of CPS systems. Human behaviors can be
unpredictable (or partially predictable), which adds
uncertainty to the service guarantee of a tight control
loop (e.g., response accuracy and timeliness). Human
behavior modeling is the current practice to minimize
this uncertainty by predicting from learning. How-
ever, tight control loops in CPS systems mean the
behavior modeling needs to accurately respond in a
short period of time. This stringent requirement sug-
gests needed advances in human behavior modeling
and control theory.

This paper systematically incorporates humans into
a tight control loop to investigate a fundamental
CPS issue. We note that CPS domains have a wide
spectrum of issues and problems, so it is necessary
to amass examples of human-in-the-loop solutions for
multiple domains before general solutions and theory
will emerge. To this end, we develop human-in-the-
loop control models and mechanisms for reducing the
energy waste of computer workstations. Considering
that 72% of the total U.S. electricity consumption
occurs in residential and commercial buildings [1]
(with 30% of the energy consumed in buildings being
wasted [2]), any amount of energy saved has an impact
on society.

Our user study with 20 human subjects suggests
distractions as a major source of energy waste on
computers. However, current common practice for
detecting distraction in computer usage to reduce
energy waste is very coarse-grained. It is usually
based on a fixed timer that initiates the sleep mode



of the computer after several minutes of inactivity.
Our distraction detection addresses human behavioral
uncertainty with strategies such as adaptive timeout
intervals, multi-level sensing and addressing back-
ground processing.

The main contributions of this paper are:

• Collecting empirical data on software develop-
ment and research professionals to understand
their human behavior regarding distractions in
computer usage,

• Treating the main issues of computer use and
monitoring that includes human interaction as
well as background processing of many types,
and determining a distraction model of human
behavior for computer use, and

• Developing a human-in-the-loop feedback con-
trol solution for an important category of com-
puter users that detects distraction with 97.28%
accuracy and cuts energy waste by 80.19%.

2 PROBLEM STATEMENT

Computers are ubiquitous in homes and offices, and
they account for 40-60% of the energy consumption in
typical office buildings. Over the years, manufactur-
ers have developed and incorporated various power-
saving modes of operation. However, accurately acti-
vating the appropriate power-saving modes remains
a challenge.

Since the usages of workstations are mostly user-
driven, the current practice is providing users with
a nob for the sleep timer. In most cases, sleep mode
for the monitor and workstation is actuated after a
timeout and/or during typical non-working hours.
As Section 6 shows, this naive approach is coarse-
grained and suboptimal. Interestingly, this approach
of putting humans as an external element of control
loops also exists in many current CPS systems. In
this paper we demonstrate the benefits of moving
humans inside the loop by considering distractions
in computer usage.

We define distractions as periods when the user’s
current activities do not benefit from running the com-
puter, e.g., answering phone calls, having an office
meeting, or restroom breaks. The challenge is to detect
the distraction behavior as soon as possible without
impacting the user experience by considering the un-
certainty of human behavior in a tight energy-saving
control loop. We assume that a workstation includes
a motherboard, CPU, RAM, hard disk drives, and all
other components that usually reside in a computer
case. We also assume that a computer consists of a
workstation and (one or more) monitor(s). We main-
tain this definition of “workstation” and “computer”
throughout the paper.

3 APPROACH

In this section, we describe the baseline solution and
our proposed solution.

Fig. 1. Distraction Model

3.1 Baseline Solution

The current common practice of recognizing distrac-
tions is very coarse-grained: a timer that automatically
turns off the monitor and puts the workstation into
sleep mode after several minutes of inactivity. Similar
to bang-bang control, the system switches between
an active state and a sleep state. While the timeout
interval is configurable, we assume the default con-
figuration of Windows 7 machines, i.e., 10 minutes
for the monitor and 30 minutes for the workstation
as the baseline solution.

3.2 Our Solution

Our solution brings humans into the control loop. In
this section, we describe the control architecture and
different strategies employed by our control, includ-
ing an adaptive timeout interval, multilevel sensing,
and detection of background processing.

3.2.1 Control Architecture
In this section, we describe the overall architecture
of our human-in-the-loop control based distraction
detection system. Our solution enables building a dis-
traction model for research and software development
computer users. Intuitively, different users may have
their own working habits and attention spans. Our
distraction model aims to capture user-specific dis-
traction patterns, so that it can help detect distractions
early. Given that users regularly work on computers,
their distraction patterns and usage patterns can be
learned over time. We note that different users can use
a public computer. Here we assume that users must
login to their accounts before using the computer.

Our distraction model considers both user activities
and system activities, as shown in Figure 1. At the
user activity level, the model tracks gaze to detect if
the user is distracted. At the system activity level,
the keyboard and mouse events, CPU usage, and
network activities are monitored. Combining both
types of information enables the model to make a
quick assessment of the distraction status of the user.

Based on the user distraction model, we design
a human-in-the-loop control for reducing waste in
computer usage. As shown in Figure 2, this control
design consists of two loops: the inner loop within
the computing system and the outer loop that incor-
porates the user.



Fig. 2. Control Architecture for Energy Saving with
Human in the Loop

• The inner control loop monitors the system
IO, processing, and networking activities. Recent
keyboard/mouse events, high CPU utilization,
and networking bandwidth all represent feed-
back that the system is working effectively. On
the other hand, the system is idling if there are
no recent keyboard/mouse activities. The system
activity monitor also records when the user turns
on the computer, which serves as a negative
feedback if the user turns on the computer soon
after the controller puts it to sleep.

• The outer control loop detects user activities to
identify if the user is distracted from using the
computer. In this work, we mainly investigate
gaze detection. The gaze detection results serve
as the feedback to the energy controller.

The inner loop and outer loop are complementary
to each other. Existing solutions are mainly based on
system information represented by the inner control
loop that use same default timeout interval for ev-
eryone, which is not efficient in energy saving. Our
solution exploits an adaptive timeout interval (c.f.
Section 3.2.2) in the inner loop. Also, as a first step
towards the human-in-the-loop control, the outer loop
takes human behavior into consideration, generating
more accurate control designs by tracking eye gaze.
Note that we do not need to track the user’s gaze
all the time. It is only triggered by the outer loop to
verify user distraction when the inner loop detects
few recent system activities and that’s why we call it
multilevel sensing (c.f. Section 3.2.3). Also, the inner
loop checks if any effective background process (file
transfer, computation, etc) is running during human
distraction, which serves as negative feedback to the
energy controller (c.f. Section 3.2.4).

The energy controller takes the system activities and
user behaviors as inputs, and adaptively adjusts the
timeout interval as the control output. The control
decision is made based on the learned user distraction
patterns.

This control design maintains a consistent user
experience while reducing energy waste for the sys-
tem idle duration when the user is distracted. This
design represents a tradeoff between energy saving

and user experience. Although each user has his/her
own requirements, the controller provides different
control policies for different users. For users with
long attention spans and distractions, the controller
employs an energy saving policy. With this policy, the
controller aggressively adjusts the timeout interval, so
that computer is put to sleep as soon as distraction
is detected. Whereas for users with short attention
spans who usually get back to work shortly after
distraction, the controller employs a policy to improve
user experience.

3.2.2 Adaptive timeout interval
In this section, we describe a mechanism that is imple-
mented in the “System Activity Monitor” of Figure 2
as a part of the inner loop. We call it adaptive timeout
interval. The reason for using this strategy is, current
common practice basically uses a default timeout
interval for all people. Although people can change it,
usually they set a conservative timeout interval that
wastes energy, but reduces unintended sleep of the
workstation. We believe this timeout interval should
be learned and adaptive to individuals based on their
involvement with the workstation.

We collect data from the computer of ten software
development and research individuals for an entire
day of their office work, containing an average of 9.43
hours of computer usage per subject. We collect the
timestamps of using the keyboard and mouse. We ask
the subjects to provide the ground truth of when they
are working and when they are distracted (c.f. Section
5).

Let us define IPI be the Inter keyboard/mouse
Pressing Interval of a user. IPI is a random variable
and the Cumulative Distribution Function (CDF) of
IPI of the ten subjects is shown in Figure 3. Let us
define t98IPI be the 98-th percentile of the IPI . We
mark the t98IPI of the ten subjects in Figure 3. It shows
that t98IPI is 23 seconds for person 10, i.e., the IPI is
less than or equal to 23 seconds with 98% probability.
From Figure 3, we observe that (i) t98IPI spans from 23
seconds to 183 seconds for 10 subjects. So, the timeout
interval should be adaptive. (ii) For nine out of ten
subjects, t98IPI is less than 60 seconds. It means that for
most of the subjects, the IPI is usually much smaller
than 30 minutes with a very high probability.

The problem of detecting distraction boils down
to distinguishing the remaining 2% case where IPI
is greater than t98IPI and the user is either working
or distracted. Note that although IPI is greater than
t98IPI has only 2% probability, since the average num-
ber of keyboard/mouse events per day is 3255 per
subject, if we ignore this case, the solution will put
the computer into sleep 65 times per day on average,
which will be a huge disappointment for the users
as a significant portion of it will take place while
the user is working. To distinguish whether the users
are really working and taking more than t98IPI to use
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Fig. 3. Cumulative Distribution Function (CDF) of Inter
keyboard/mouse Pressing Interval (IPI) of the ten
subjects. It also shows the 98-th percentile of their IPI.

their keyboards/mouses or they are distracted, we
introduce multilevel sensing.

3.2.3 Multilevel Sensing

In this section, we describe multilevel sensing, a tech-
nique that is used by the “User Activity Monitor” of
Figure 2 as a part of the outer loop. The basic idea
is to track the eye gaze of the subjects when they
are working but not using the keyboards/mouses for
more than t98IPI (c.f. Section 3.2.2). When we collect ten
subjects’ data of computer usage of an entire day, we
instrument each of the ten subject’s workstation with
ITU Gaze Tracker [3] that uses a webcam to track the
subject’s gaze. It allows us to know if the subject is
looking at the monitor in every second.

Let us define td be the delay period for which
we monitor user activities after he/she is not using
the keyboard/mouse for more than t98IPI . For these
ten subjects, Figure 4 shows the average accuracy
of detecting if the user is working by using only
keyboard/mouse or gaze for various delay periods.
It shows that we can detect that the user is working
within 15 seconds with 91.27% accuracy if we track
the gaze. On the other hand, the accuracy reaches only
70.46% even if we wait for 2 minutes when relying
on only keyboard/mouse. This result indicates that
tracking gaze enables understanding user involve-
ment with the computer much quicker with much higher
accuracy than using only the keyboard/mouse.

Note that we do not need to run the webcam for
the whole duration of computer usage. We only need
to run it in the remaining 2% case when IPI is
greater than t98IPI . That’s why we call it multilevel
sensing. Because, we sense user involvement with the
workstation using keyboard/mouse first. If we see
that the user is not using the keyboard/mouse for
more than t98IPI , we turn on the webcam and monitor
the gaze for td period of time. Although a webcam
consumes additional power, its power consumption is
much smaller than that of a workstation. A detailed
analysis on power consumption is shown in Section
6.3.
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Fig. 4. Average accuracy of detecting that the subject
is working for various delay periods by using only
keyboard/mouse or gaze.

We use a threshold Tgaze tracker to determine if the
user is distracted or not at the time of tracking gaze.
Recall that we collect 1 gaze sample per second and
track gaze for td seconds. If the user is constantly
looking at the monitor and the gaze tracker is 100%
accurate, then the percentage of gaze events where
the user is looking at the monitor should be 100%.
However, a user may not look at the monitor all the
time while he is working and the gaze tracker is not
100% accurate. So, we consider the user is working
when the fraction of gaze events where the user is
looking at the monitor is greater than or equal to
Tgaze tracker.

3.2.4 Background Processing
In this section, we describe how we address back-
ground processing, which is monitored by the “Sys-
tem Activity Monitor” of Figure 2 as a part of the
inner loop. Note that detecting user involvement with
the workstation in terms of keyboard/mouse activ-
ities or gaze at the monitor is not enough to put
the computer to sleep. This is because people run
background processes. When we detect the user is
not directly involved with the computer, but some
background processes are being run, we turn off the
monitor, but keep the workstation running.

To understand how common it is to run background
processes during the office hours, we take a survey at
University of Virginia and Microsoft Research Asia.
We ask the following question:

During office hours, do you run any processes in the
background except music and remote desktop daemon for
which you don’t want your machine to go to sleep when
you leave your workstation?

We get 29 survey responses and 51.7% respond with
a ’No’. Although 48.3% respond with a ’Yes’, some of
them say:

Although I clicked yes, it is actually quite rare. On those
rare occasions, I can manually go to the power settings to
disable sleep time.

The survey responses are shown in Figure 5. Note
that “No Background Processing” in the figure actu-
ally means no background processing except remote



Fig. 5. Survey results on running background pro-
cesses during office hours.

desktop daemon and music. The reason for not con-
sidering these two cases is because, state of the art
techniques are available to address these issues. When
we say we put the workstation to sleep, we mean
sleep state S3 (suspend to RAM). At this state, the
workstation is not capable of responding to remote
desktop login requests. SleepServer [4] and Somnilo-
quy [5] allow computers to be responsive to network
traffic even if they are in sleep state S3. Monitoring
the sound card activity allows us to know if the user
is playing music. It is difficult to know if the user is
present and listening to music. Location aware power
management techniques [6], [7], [8], [9] can help in
this case. We did not implement this feature.

Figure 5 shows that most of the background pro-
cessing are either computation or network activities,
e.g., file download and file transfer. To address com-
putation intensive background processing, we moni-
tor CPU utilization of the workstation for the duration
of (t98IPI + td) before putting it to sleep. If average
CPU utilization is less than TCPU utilization then we
put the workstation to sleep, where TCPU utilization is
a threshold. A similar strategy should suffice in de-
tecting file transfer and file download related network
activities.

Since computers are used in a variety of ways, there
are still cases for which we shouldn’t put the worksta-
tion to sleep. Some of these cases appear in “Other”
of Figure 5. For example, when people run Instant
Messenger, e.g., Skype and wait for someone to call,
the keyboard/mouse usage, the gaze, the CPU utiliza-
tion and network activity are not sufficient indicator
to figure out that the workstation should not be put
to sleep. Note that if the users are not nearby, we can
put their workstations to sleep in some cases. When
they return and their workstations wake up, they will
receive the messages. One problem with this strategy
is that if the workstations go to sleep, the other side
of the messenger will see the users’ offline. To address
this problem, we can create a live messenger server
which will show the users online after putting their
workstations to sleep. If the users want to be notified
whenever new message arrives, the live messenger

server can use SleepServer [4] or Somniloquy [5] to
wake up their workstations and deliver the message.
Alternately, if the users want to be notified when they
are nearby, we can use this technique along with a
location aware power management technique [6], [7],
[8], [9] to figure out if the users are there. Address-
ing the messenger related background processing is
important as some people use it during office hours
and at home. However, addressing this problem is
just a matter of implementation and that’s why we
leave it to future work. At this time, to address the
exceptional cases related to background processing,
we maintain a list of exceptional processes Pexceptional.
When any process listed in Pexceptional runs, we do not
put the workstation to sleep. This list is created from
user feedback and it is the responsibility of the user
not to run these processes unnecessarily to take full
advantage of the energy saving. Note that if the user
wants to run background processes, then useful work
is being done and keeping the workstation on is not
an act of energy waste.

3.2.5 Parameter and Threshold Selection
The performance of distraction detection solution de-
pends on the selection of parameters and threshold
values. Our solution learns and adjusts thresholds
based on individual’s working and distraction be-
havior. In this section, we describe the strategy for
selecting these parameters and threshold values.

When our solution starts, it doesn’t know t98IPI of
the user. Initially, we assume t98IPI be 60 seconds for
an individual as we see in Section 3.2.2 that nine out
of ten subject has t98IPI less than 60 seconds. As we
get more keystrokes and mouse events, we accurately
compute t98IPI and update its value.

We define tdt be the distraction detection time of
an individual. It consists of two parts: t98IPI where we
monitor keyboard and mouse events, and td where
we track the gaze. We plan to detect distraction of
an individual within two minutes and set tdt to two
minutes. As mentioned before, initially t98IPI is set to
60 seconds. So, the initial value of td is 120 - 60 =
60 seconds. As we get more keyboard and mouse
events, we update t98IPI accordingly. We keep td = tdt
- t98IPI and make sure that td has at least 30 seconds
to track gaze as tracking 30 seconds of gaze allows
detecting the subject is working with high accuracy
(c.f. Figure 4). When t98IPI increases so much that (t98IPI

+ 30 seconds) exceeds two minutes, we update tdt to
accommodate.

Overall we use three thresholds in our solution:
tdt, Tgaze tracker, and TCPU utilization. tdt is initialized
to two minutes as mentioned above. TCPU utilization

is initialized with 0.4 as in [10]. Tgaze tracker is also
initialized with 0.4. When the user is distracted, we
do not get any feedback from the user. However, if the
user is working and we mistakenly put the computer
into sleep, we get a negative feedback. When that



happens, we adjust threshold values dynamically to
capture individual’s distraction behavior as follows.

Usually CPU utilization is higher when the user
is working and lower when the user is distracted
(and so not doing any background processing). We
need to update TCPU utilization in a way that when
the CPU utilization is higher than this threshold, we
can assume that the user is working. To do that,
we keep track of the average CPU utilization of the
computer when the user is working and when he/she
is distracted. We set TCPU utilization to be the value
that separates the two average values most, i.e., the
value that lies in the middle of these two averages.
Similarly, we keep track of the average fraction of gaze
events where the user is looking at the monitor when
the user is working and when the user is distracted.
We set Tgaze tracker be the value that separates these
two average values most.

Note that it is possible to have cases when CPU
utilization is very low and almost no gaze event is
detected, but the user claims to be working. In these
cases, changing TCPU utilization or Tgaze tracker is not
going to help much in differentiating the distraction
state from the working state. Instead, we need to
increase distraction detection time tdt. To address this
issue, we increase tdt by two minutes at a negative
feedback. It has a significant impact on energy waste.
So, instead of increasing it every time we get a nega-
tive feedback, we increase it every other time.

4 ENERGY WASTE MODEL

In this section, we design a model that analyzes the
energy waste of a generic distraction detection algo-
rithm. A specific algorithm may use several parame-
ters to capture distraction. For example, as mentioned
in Section 3.2, we use several parameters to capture
an adaptive timeout interval, multilevel sensing, and
background processing to detect distraction. This sec-
tion attempts to abstract away the internal details
of a distraction detection solution and defines some
parameters that captures its performance in energy
waste from a high level.

A distraction detection algorithm may take an ar-
bitrary amount of time to detect distraction and use
additional power for it, e.g., an algorithm may take
2 minutes of time to detect distraction with 5 W of
additional power. The question is, is it going to waste
energy by detecting distraction this way? If it does,
how much energy is wasted per person for an entire
day?

To answer these questions, we design a model that
takes into account the following factors:

1. Human Distraction Pattern The energy waste on
distraction largely depends on people’s distraction
pattern. We define two parameters that capture the
subject’s distraction pattern of an entire day. Let
{tWS

sleep1
, tWS

sleep2
, ... , tWS

sleepn
} be the durations of time

when the workstation could be put into sleep and
{tMN

off1
, tMN

off2
, ... ,tMN

offm
} are the durations of time when

the monitor could be turned off in an entire day.

2. Hardware Power We define PWS
on , PWS

sleep, and PMN
on

to be the power consumption of the workstation when
it is on, the power consumption of the workstation
when it is put into sleep, and the power consumption
of the monitor when it is on, respectively. Empirical
results with multiple monitors at our lab show that
monitors consume negligible amount of power when
they are off. So, we ignore that power consumption
from our analysis.

3. Algorithm Parameters We assume that a distraction
detection algorithm takes tdt amount of time and
Padditional amount of power to detect distraction. Note
that tdt can be different for the monitor and the work-
station depending on the algorithm. For example, the
baseline solution takes 10 minutes for the monitor and
30 minutes for the workstation to detect workstation
with 0 W of additional power in both cases. We
also assume that Padditional is consumed only for the
duration of tadditional in an entire day of computer
usage.

For simplification, the model assumes that monitors
and workstations can be put into sleep and awakened
instantaneously. We list all the model parameters in
Table 1.

We define the energy waste of an algorithm as the
energy it fails to save, as compared to the optimal
solution. We assume that the optimal solution detects
distraction immediately without consuming any addi-
tional power, i.e, the solution with tdt = 0, Padditional

= 0, tadditional = 0. Although the optimal solution
does not exist in practice, i.e., we do not actually
have a system that can detect distraction immediately
without any additional power, but measuring energy
waste with respect to the optimal solution gives us
an estimation about how much room we have for the
improvement.

Total energy waste of a distraction detection algo-
rithm is,

Ewaste = Emonitor
waste + Eworkstation

waste + Eadditional
waste (1)

Where, Emonitor
waste , Eworkstation

waste are the energy waste
due to running the monitor and workstation, respec-
tively. Eadditional

waste is the energy waste for taking ad-
ditional power. Now we estimate each of these three
terms.

A distraction detection algorithm wastes energy on
the monitor for running it for the time the user is
distracted. If the distraction time (tMN

offi
) is smaller

than detection time (tdt), then this distraction remains
undetected and energy is wasted for running the mon-
itor for the distraction time. Otherwise, the distraction
is detected and energy is wasted only for the time of
detecting distraction. So, energy waste for running the
monitor is,
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Fig. 6. Aeon Labs (a) Energy Plug Load and (b) Z-Stick. (c) Graze Tracker is tracking gaze.

Notation Parameter Definition

{tWS
sleep1

, t
WS
sleep2

, ...,

t
WS
sleepn

}

Durations of time when the workstation could
be put into sleep mode.

{tMN
off1

, t
MN
off2

, ...,

t
MN
offm

}

Durations of time when the monitor could be
turned off.

P
WS
on Power consumption of the workstation when

it is on.
P

WS
sleep

Power consumption of the workstation when
it is put into sleep.

P
MN
on Power consumption of the monitor when it is

on.

tdt Time to detect distraction.
Padditional Additional power consumption to detect dis-

traction.
tadditional Duration of time when Padditional is con-

sumed.

TABLE 1
Parameters for modeling the energy waste of a distraction detection

algorithm. The first two parameters describe human distraction

behavior, the next three parameters are specific to hardware power,

and the last three are related to the distraction detection algorithm.

Emonitor
waste =

m∑

i=1

min(tMN
offi

, tdt) ∗ P
MN
on

Similarly, energy waste on the workstation for run-
ning it for the time the user is distracted instead of
putting it into sleep is,

Eworkstation
waste =

n∑

i=1

min(tWS
sleepi

, tdt) ∗ (P
WS
on − PWS

sleep)

The algorithm takes Padditional additional power
to detect distraction and wastes energy for tadditional
time. The additional energy consumption by the dis-
traction detection algorithm is,

Eadditional
waste = Padditional ∗ tadditional

This model is very helpful in measuring energy
waste. It also gives us a deeper understanding about
various components that affect energy waste and
helps us to figure out the areas to improve. It en-
ables the direct comparison between two distraction
detection algorithms. For example, it allows us to
compute the energy waste of the baseline solution,
i.e., the solution with tdt = 10 minutes for the monitor
and 30 minutes for the workstation, and Padditional

= tadditional = 0. Now we can answer questions like,
is it going to waste less energy than the baseline
solution if we can detect distraction within 5 minutes,

but consume 2.5 W of additional power? We use
this model to compare our solution with the baseline
solution in terms of energy waste in Section 6.3.

5 DEPLOYMENT AND DATA COLLECTION

We deploy our distraction detection system to ten
individuals’ computers and collect data for an entire
day of their office work. The individuals represent an
important class of computer users as all of them are
involved in research and software development. The
collected data contains an average of 9.43 hours of
computer usage per subject. We ask the subjects to
provide the ground truth of when they are working
and when they are distracted in two ways: (i) they
write the ground truth on a paper log and (ii) they
use a software to log the ground truth. This two
level of ground truth collection reduces the chances
of forgetting to log the distraction episodes. We cross
check these two versions of ground truth and find
consistency.

Our deployed system consists of three components:
energy load sensing, computer activity tracking, and
human activity recognition.

Energy Load Sensing We use Aeon Labs Smart En-
ergy Plug Load [11] to measure the workstation and
the monitor energy consumption (c.f. Figure 6). The
Plug Load sends a power reading to the Z-Stick USB
dongle [12] every 10 seconds. We log the energy
consumption during both the active use and the sleep
state.

Computer Activity Tracking We run a key logger
program at the subject’s computer to record the time
of keyboard and mouse activities. We record the CPU
utilization every five seconds by averaging 10 samples
collected at an interval of 500 milliseconds.

Human Activity Recognition To detect if the subject
is looking at the monitor, we use ITU Gaze Tracker [3],
an open source gaze tracking software. The software
uses a webcam to estimate the coordinate of the
monitor display area where the subject is looking
at every second (c.f. Figure 6(c)). We run the Gaze
Tracking software on a separate computer to prevent
introducing noise to CPU utilization monitoring.



(a) Monitors

(b) Workstations

Fig. 7. Percentage of time during a day users indicate
that monitors or workstations are not needed.

6 EVALUATION

In this section, we evaluate the performance of our
human-in-the-loop control based distraction detection
system. We start with a user study on 20 people
that shows tremendous prospects in reducing energy
waste by early detection of distraction. Then we show
the accuracy of our distraction detection system. Next
we compare our solution with the baseline solution
in terms of energy waste. Finally, we show the loss of
comfort in using our solution.

6.1 User Study Results

Our first evaluation step is to demonstrate the po-
tential gain of our system over the baseline solution
by providing both solutions with real-world user
behaviors. We collect real-world data traces by con-
ducting a user study among researchers and software
developers at University of Virginia and Microsoft Re-
search Asia. We instruct subjects to record their daily
computer usage for several days. And, for each dis-
traction, the logs include both the length and whether
turning off monitors and/or putting the workstations
into sleep mode is appropriate. In total, we receive
34 responses from 20 people with an average of 9.41
hours of computer usage per day.

Figure 7 shows the percentage of time during a day
that users indicate that they do not need monitors
or workstations to stay on. In fact, the results show
a significant space for energy saving. Specifically,
monitors and workstations are not needed 36.04% and
31.35% of the working hours, respectively.
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(b) Workstations

Fig. 8. Comparison of energy waste if computers adopt
the baseline solution and our proposed solution.

Next, we evaluate how well the baseline solution
and our solution perform for the ground truth in
Figure 7. Intuitively, since our solution not only moni-
tors computer activity, but also monitors user activity
by bringing a human into the loop, it can detect
distraction much earlier and turn off monitors and
put the workstations into sleep much more quickly.

Figure 8 shows the energy waste of the baseline
solution and our solution based on the data trace
collected from the user study. Here, our proposed
solution takes two minutes to detect distraction ac-
curately from the past behavior of the user and puts
the workstation into sleep immediately. The reason
for choosing two minutes is because, although the
timeout interval is adaptive to user behavior, we find
that t98IPI is less than one minute for nine out of
ten subjects (c.f. Section 3.2). Therefore, two minutes
seems to be a reasonable interval for detecting distrac-
tion for the large majority of the people in our sample.
For some people, two minutes is not enough and our
adaptive solution adjusts parameters depending on
their behavior and reduces less energy waste from
their computers as shown in Section 6.2.

Figure 8(a) shows that the baseline solution fails to
save about 34.43% energy waste for the monitor on
average. For some subjects, all the distraction dura-
tions are less than 10 minutes causing the baseline
solution to fail to save 100% energy waste. And, this
figure reduces by a factor of 3.56 (to about 9.67%) with
our solution. Much of the improvement comes from
early detection of distractions by bringing humans
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Fig. 9. (a) Accuracy, (b) False Positive Rate and (c) False Negative Rate of the Human-in-the-loop based
Distraction Detection Algorithm.

into the loop. Similarly, Figure 8(b) shows an energy
waste reduction by a factor of 8.43 (from 61.92% to
7.34%) on workstations with our solution. The reason
for better performance for the workstation is because
the baseline timeout interval for the workstation is 30
minutes which is larger than that of the monitor (10
minutes).

6.2 Accuracy of Distraction Detection

In this section, we evaluate the performance of
our human-in-the-loop based distraction detection in
terms of accuracy (% of time we correctly classify
distractions and non-distractions), false positive rate (%
of time we classify the subject distracted while he/she
is actually working) and false negative rate (% of
time we classify the subject is working while he/she
is actually distracted). To evaluate the performance
of our system, we instrument ten human subjects’
workstations and monitors for an entire working day
as mentioned in Section 5. This experiment requires
subjects to specify the ground truth in two levels (c.f.
Section 5) of when they are distracted and whether
their workstations should stay on during each of
the distractions at a minute level of granularity. The
collected data contains an average of 9.43 hours of
computer usage per subject.

We divide the computer usage data of a whole
day of each subject into a number of time slots. The
length of each slot has a duration of tdt, which is the
distraction detection time. At the time of computing
the accuracy, false positive rate, and false negative
rate of our solution, we compute the performance in
classifying these time slots. We choose thresholds as
described in Section 3.2.5. Since none of the subjects
use any background processing while they are dis-
tracted, we don’t have the opportunity to evaluate the
solution on background processing.

Figure 9 shows average accuracy, false positive rate,
and false negative rate of the distraction detection
algorithm. It shows an average accuracy of 97.28%,
which suggests that the system can detect users’
working and distracted states with high accuracy. The
average false positive rate is only 1.04%. The reason
for this false positive is because of two reasons. First,
after interviewing a subject, we come to know that
there are times when it is really hard to say whether

someone is distracted or not. Because, sometimes the
subject was reading (that does not involve monitor)
and using the computer intermittently. During the
whole time, he/she recorded that he/she was work-
ing with the computer in the ground truth. But in
actual practice, he/she was reading sometimes. These
types of incidents increase false positive rate. Second,
sometimes the gaze tracker can not track eyes, because
the subject is not looking at the monitor directly, or
due to environmental factors, e.g., if the eye comes
too close or goes too far from the webcam. The
average false negative rate is 4.89%. The reason for
this false negative rate is due to the fact that when
the subject is distracted, the gaze tracker can still
track eyes, because sometimes the subject is still there,
and other times the subject has left, but the gaze
tracker mistakenly classifies other objects as eyes, e.g.,
some black object at the background, or other people’s
movement. Although 4.89% false negative rate is non-
negligible, it helps keeping the false positive rate low
and enables reducing significant energy waste at the
cost of low loss of comfort as shown in the next two
sections.

6.3 Energy Waste Reduction

In this section, we compute the energy waste of the
baseline solution and our solution for the 10 sub-
jects based on their computer usage of an entire day
using the model specified in Section 4. We choose
two variations of our solution. In one variation, we
assume that we can detect distraction perfectly within
2 minutes. In another variation, we use the actual
human-in-the-loop based feedback control system to
detect distraction.

The model parameters are chosen in the following
way. There are 3 types of model parameters: hu-
man distraction pattern, algorithm parameters, and
hardware power. For the human distraction pattern,
we use the ground truth of the distraction durations
of the 10 subjects for the baseline solution and our
solution that assumes perfect distraction detection.
For the actual case of our solution, instead of using
the ground truth, we use our solution to detect dis-
traction. For algorithm parameters, for the baseline
solution, we set tdt = 10 minutes for the monitor
and 30 minutes for the workstation, and Padditional
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Fig. 10. Comparison between our solution and the
baseline solution for energy waste.

= tadditional = 0. For the perfect detection case of our
solution, we set tdt = 2 minutes for all the subjects.
For the actual case of our solution, we initialize tdt
= 2 minutes for all the subjects and update it based
on their behavior as described in Section 3.2.5. We
measure the hardware power of the computers of
each subject using techniques mentioned in Section
5. We use a Lenovo USB webcam that draws 480 mA
current from the USB port. The USB port provides
a 5V supply. So, the webcam consumes 480 ∗ 5/1000
= 2.4 W of power, which is Padditional. Since we use
multilevel sensing, we only turn on the webcam when
the user is not using the keyboard/mouse for more
than t98IPI and keep it on for td duration. Let’s say such
events occur k times per day. We compute k from the
data trace and set tadditional = k*td.

We compute the energy waste of the baseline so-
lution and two variations of our solutions using
equation (1) and show it in Figure 10. We see that
the baseline solution wastes 698.12 KJ of energy on
average per day per computer where our solution
with human-in-the-loop control wastes only 138.28
KJ of energy per day per computer, which is about
19.81% of the baseline solution. So, our solution cuts
energy waste by 80.19% of the baseline solution on
average, which can have a huge impact on the society.
For example, in 2003, 77 million people in the U.S.
used a computer at work [13]. Assuming 8 hours
of computer use per work day and 250 work days
per year (excluding weekends and 10 holidays), our
projected annual savings would be 2.54 billion kWh
nationwide. It will be even more if we consider dis-
tractions in computer use at home.

In Figure 10, we also see that subject 3 has the
smallest energy waste whereas subject 10 has the
largest energy waste for the baseline solution. We use
the model specified in Section 4 to figure out the
underlying reasons of this difference. Table 2 shows
some major differences. We see from Table 2 that sub-
ject 10 spends more time with his/her computer per
day as well as gets distracted for longer periods. Also,
subject 10 uses a desktop computer whereas subject
3 uses a laptop with an external monitor. Thats why
the average workstation power of subject 10 is much

larger than that of subject 3. The combined effect of
all these differences constitutes a larger energy waste
for subject 10.

Note that there is a difference in energy waste be-
tween the two variations of our solution. The solution
with perfect distraction detection wastes 88.49 KJ of
energy per day per computer on average whereas
our actual solution wastes 138.28 KJ of energy per
day per computer. For subject 5, this difference is
very clear. The reason is, for subject 5, the perfect
detection version of our solution takes 2 minutes
to detect distraction. On the other hand, our actual
solution starts with two minutes of detection time
and based on the subject’s behavior the detection time
increases to 7 minutes. So, our actual solution fails
to save 5 minutes of power consumption in every
subsequent distraction episode. Similarly, for subject
6, distraction detection time increases to 5 minutes
in our actual solution. For some subjects, e.g., for
subjects 3 and 9, there is a difference between the
two versions of our solution although the distraction
detection time remains two minutes in the actual
solution. The reason for this difference is because of
the 4.89% false negative rate. Note that the solution
with perfect detection does not exist. The energy that
we sacrifice for the false negative rate pays off in
terms of comfort of the user as shown in the next
section.

6.4 Loss of Comfort

The above evaluation shows significant reduction in
energy waste by using a human-in-the-loop solution.
However, it is important to assess if this gain is
at the cost of loss of comfort. Measuring comfort
is extremely challenging since the notion of comfort
varies from person to person and even with a single
person, it varies over time. In this work, we define loss
of comfort to be when a computer is put to sleep, but
this is incorrect for the user. Note that although it is
said in the literature [10] that it takes about 10 seconds
to wake up a computer from the sleep state, based
on our deployment experience with 10 computers, we
find that it takes only about 2-5 seconds to wake up
modern windows 7 machines. We suggest that these
2-5 seconds of wakeup time are not significant and

Criteria Subject 3 Subject 10

Total computer on time per day 9.05 hours 11.53 hours
Total distracted time per day 3.9 hours 8.16 hours
Total number of distraction episodes per day 9 6
Average distraction episode length 25.98

minutes
81.65
minutes

Standard deviation of distraction episode
length

28.15
minutes

57.24
minutes

Average monitor power 29.26 Watt 22.07 Watt
Average workstation power 30.68 Watt 85.53 Watt

TABLE 2
Comparison between subject 3 and subject 10 for their distraction

behavior in computer usage
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Fig. 11. Loss of comfort in using our distraction detec-
tion solution. It also shows the advantage of tracking
eye gaze.

not a discomfort if the user was really distracted and
experiences this wakeup time when he/she returns
to work from a true distraction. On the other hand,
a put to sleep event will cause a major discomfort if
the computer is put to sleep when the subject is still
working. In this section, we compute the number of
instances where we put the computer to sleep while
the subject is working and call these instances as
discomfort events.

To estimate the number of discomfort events per
day, we use the same data and keep the parameter
values the same as described in Section 6.2. We divide
the entire day of computer usage of each subject into
a number of time slots, each having tdt duration,
and compute the number of time slots where our
solution would put the computer to sleep. To assess
the effectiveness of the keyboard/mouse and gaze
techniques, we separately evaluate them. We use three
variations of our solution. In one variation, we only
use keyboard, mouse and do not use anything else.
In another variation, we use keyboard, mouse, and
gaze. The third variation is our actual solution that
considers keyboard, mouse, gaze, and CPU utilization
altogether as in Section 3.2.

The result is shown in Figure 11. It shows that
subject 9 does not really need a gaze tracker as he/she
types very frequently while working. Subject 7 uses
the keyboard, mouse infrequently and using gaze
tracker reduces the number of discomfort events from
29 to 1 per day! Comparing with Figure 9(c), we see
that several subject’s (e.g., subject 1, 2 and 3) high
false negative rate allows us to focus more on comfort
and reduce their discomfort events. Subject 5 and 6
experience 3 discomfort events per day when our
solution relies on keyboard, mouse, and gaze. Subject
5 uses his/her computer for 8.82 hours and all the
3 discomfort events take place within first 7% time
of his/her computer usage. During these time slots,
no keyboard/mouse event is detected. The fraction
of gaze events looking at the monitor is 0 in two
of the three time slots and in the other slot it is so
low that does not pass the initial value of Tgaze tracker

threshold. These discomfort events perform as a neg-

ative feedback to our solution. After these events,
the parameters are adjusted as described in Section
3.2.5 and the subject does not observe any discomfort
event in the remaining 93% time of his/her computer
usage. However, subject 6 uses his/her computer for
11.90 hours and the discomfort events take place dur-
ing the first quartile, second quartile and the fourth
quartile of his/her computer usage when we just use
keybaord, mouse, and gaze. Using CPU utilization
saves from the last discomfort event, thus reducing
the number of discomfort events to 2 per day.

Figure 11 shows that the gaze tracker is very ef-
fective in reducing discomfort events for most of
the subjects. On average, the solution that relies on
keyboard and mouse causes 6.0 discomfort events
per day, whereas including the gaze tracking reduces
discomfort events to only 0.90 per day. Including CPU
utilization reduces it to 0.80 such events per day. This
shows that using the human-in-the-loop solution is
not only very effective in minimizing energy waste,
but does so with minimal discomfort.

7 RELATED WORK

Human-in-the-loop is not a new concept. It has been
studied in the human computer interaction (HCI)
area [14], [15], [16]. However, these works focus on
human computer interface designs. Our work focuses
on energy saving for CPS systems.

Control designs with a human as part of the loop
have been used in physiological control systems [17],
[18], mobile sensing and computing systems [19],
[20], [21], thermal control systems [22], [23], [24], and
robotic systems [25]. These works demonstrate that
feedback control can be effectively used to control
computing systems with feedback directly from the
user. In this work, we apply human in the loop control
to save energy in the context of user distractions,
which is the first work in this direction to the best
of our knowledge.

Monitoring energy consumption to identify poten-
tial source of energy saving has been an active area
of research [26] [27] [28]. But most of the saving is
achieved by detecting occupancy and learning appli-
ance usage patterns, and using these patterns to turn
off appliances automatically when they are not in use
[22] [29] [23].

Location-aware power management techniques [6],
[7], [8], [9] exploit users’ location information for
power management decisions of the computer. These
techniques either require very accurate location es-
timation using ultrasonic systems, or require users
to carry some devices. Also, these techniques do
not differentiate monitor from workstation for power
management decisions, and may miss the opportunity
to save energy when the user is nearby, but not using
the computer. SleepServer [4] allows end hosts to
utilize low power sleep modes without sacrificing



availability. [10] uses a power management software
to put the computer into sleep mode after 10 minutes
of idleness with CPU utilization less than 40%.

8 DISCUSSION

Bringing humans into the control loop is a challenge
for CPS applications as it requires modeling of com-
plex behavioral, psychological, or physiological as-
pects of human beings. The level of modeling for each
of these aspects depends on application requirements.
One very important behavior to model for many ap-
plications is human distraction. For example, detect-
ing a driver’s distraction is important for safety. Here
the distraction itself and the underlying behavioral
and physiological aspects of the driver may also be
necessary for accurate and timely detection of distrac-
tion. On the other hand, modeling of distraction alone
is enough for detecting distraction in computer usage
as the goal is to save energy. Many other applications
are also affected by human distraction. A human
distraction in a home health care application may
cause someone to forget to take his/her medication or
to turn a stove off. In an industrial plant a distraction
may cause injury to a human operator. While each of
these applications where models of human distraction
may prove useful may seem different, there are also
similarities. For example, learning user specific timing
thresholds for when something is a distraction, adjust-
ing any parameter over time as individuals change
their behavior, and using different sensing modalities
(e.g., gaze) to best detect the distraction are central to
all solutions. We believe that it is necessary to begin
to create individual human-in-the-loop solutions for
distraction behaviors before general principles will
emerge. In this paper, we start with designing a
human behavioral model that captures distraction in
computer usage and saves energy by employing a
human-in-the-loop feedback control system for one
important category of computer users that are in-
volved in research and software development. As
we find solutions to various other CPS applications
involving humans, we will be better able to find
general principles that are common across these CPS
applications.

9 LIMITATIONS AND FUTURE WORK

In this section, we discuss two limitations of our user
study. First, the number of subjects involved in the
user study is very limited and so it is hard to draw
a statistically significant conclusion from the study.
However, the class of people we consider in the study
represents an important class of computer users, i.e.,
people involved in research and software develop-
ment. In the future, we will consider other computing
professionals to cover other categories of computer
users. For example, people involved in the wall street
business enterprises may have different distraction

patterns, but the same model can be used to capture
their distraction behavior. Also, we plan to conduct a
larger user study in the future. Second, for obtaining
ground truth, we rely on the self reporting of the
subjects about when they are working and when they
get distracted. Using a camera offers a more reliable
way for collecting ground truth. However, using a
camera in the computing environment is privacy inva-
sive. Alternately, taking surveys is a widely accepted
approach in the medical field for collecting ground
truth and we find it accurate enough in the user
study.

10 CONCLUSIONS

We believe that human-in-the-loop control can offer
better response accuracy and timeliness. As a first step
towards controlling energy consumption for comput-
ers, this work presents a control algorithm based on
users’ distractions. Our experiments reveal different
distraction patterns from different users. Such obser-
vations guide us to design user-specific models to
detect distractions. Each user’s distraction model is
learned from a combination of system level events
(keyboard, mouse, etc) and gaze monitoring of that
user. Different from existing approaches, the modeling
and monitoring of user behavior put users into a tight
control loop. Therefore, the derived energy control
algorithm detects distraction early and significantly
reduces energy waste when the user is distracted.
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