EnviroTrack: Towards an Environmental Computing Paradigm for Distributed
Sensor Networks*

Abdelzaher T., Blum B., Cao Q., Chen Y., Evans D., George J., George S., Gu L., He T., Krishnamurthy S.,
Luo L., Son S., Stankovic J., Stoleru R., Wood A.
Department of Computer Science, University of Virginia, Charlottesville, VA 22904

Abstract type of addressing is convenient for applications that need to
monitor environmental events. For example, a surveillance ap-

viable embedded computing platforms. Current techniques forplication .that m.onitors vehicle_ mgv_ement be_hind enemy lines
programming sensor networks are cumbersome, inflexible, and"® sssut;)n uggque Ia(tj)et:s toflndlwdual \r’]eh'd?st; ITh(IE\;Ir State
low-level. This paper introduces EnviroTrack, an object-based ©&" then be addressed by reference to these labels. Moreover,

distributed middleware system that raises the level of program-Compuung or actuation objects can be attac.hed.to mcﬂwdual
ming abstraction by providing a convenient and powerful in- addresse; in much the.same way computation is assigned to
terface to the application developer geared towards tracking P hO.StS in-an Intgrngt-hke envwonment: Such atta_ched com-
the physical environment. EnviroTrack is novel in its seamlessPUtation or actuation is the_n performed in the physical nglgh—
integration of objects that live in physical time and space into borhood of the named entity. Hence, for example, a micro-
the computational environment of the application. The perfor- phone could be tqrneq on at some netwgrk address (g.g., one
mance of an initial implementation of the system is evaluatedthat names a vehl'cle n t'he external epvwonment) to "Ste”"r?
on an actual sensor network based on MICA motes. Resultsonthe corresponding environmental object. As the named vehi-

demonstrate the ability of the middleware to track realistic tar- cle moves, the middleware will tumn on the approprlgte nearby
gets. node microphones such that a non-interrupted audio stream is

delivered to the receiver despite the mobile nature of the source.
k-Communication can also occur between two mobile endpoints.
For example, a walking soldier with a PDA may track the po-
sition of a suspect vehicle detected elsewhere in the network.
1 Introduction In short, we (i) export a novel logical address space in which
))) . external environmental objects are the labeled entities, and (ii)
The work reported in this paper is prompted by the increas- 5y arbitrary data, computation, or actuation to be attached to
ing importance of large-scale wireless sensor networks [15] s ,ch |ogical network addresses. These data, computation, and
a future platform for a growing number of applications such 4o ation are encapsulated in an abstraction weteatking
as habitat monitoring [7, 21], intrusion detection [29], defense, objects
and scientific exploration. Advances in hardware miniaturiza-
tion [10] have made it economically viable to develop embed- The EnviroTrack middleware I|br§1ry _|mplements a set of
ded systems of massively distributed disposable sensor nodegrptocqls that gff-load from.an .appllcz.atlon de\{gloper the de-
tails of inter-object communication, object mobility, as well as

characterized by coordination of a very large number of tiny h) h K bi d thei It ab
wireless computing elements. A great impediment to rapid de-I"€ Maintenance of tracking objects and their state. It abstracts

ployment of such systems lies in the lack of distributed soft- away the fact that computation associated with the object may

ware and programming support for sensor network applica—,be distributed and performed.by all sensor nodes irj the vicin-
tions. A new distributed computing paradigm is needed that 'Y of the tracked physical entity. As the tracked entity moves,
the identity and location of the sensor nodes in its neighbor-

exports appropriate abstractions and implements e1‘ficientinf0r-h deh but the tracki biect ting it ins th
mation management protocols in large-scale sensor networks,00¢ change, butihetracking object representing it remains the

EnviroTrack is an attempt to develop such a paradigm. same. The programmerthus intera}cts with a changing group pf
EnviroTrack is a middleware layer that exports a new ad- sensor nodes through a simple, uniquely addressable, object in-

dress space in the sensor network. In this space, physical evenfgrface_' _
in the external environment are the addressable entities. This EnviroTrack has been implemented and tested on a pop-
*The work reported in this paper was supported in part by the National ular sensor network platform based on MICA motes [16]'

Science Foundation grants EHS-0208769, CCR-0205327, and CCR-00-929450Ur initial implementation of this infrastructure uses compiled
DARPA grant F33615-01-C-1905, and MURI grant NO0014-01-1-0576. NesC [13] programs on TinyOS [15], an operating system for

Distributed sensor networks are quickly gaining recognition as

Keywords: sensor networks, programming paradigms, trac
ing, QoS, distributed systems

sensor networks. Recent advances in programming support Context type: CAR Context type: FIRE
for sensor networks, such as the development of a virtual ma- Context Label: Car02 Context Label: Fire01
chine [19], will significantly simplify the code development

and dissemination effortin the future. We present evaluation re-
sults, which illustrate how typical sensor-network applications

Vehicle

that use EnviroTrack will perform on the current hardware plat- ggj%%{‘s’ gt%?éeg. étga?éeg.
form.

The rest of this paper is organized as follows. Section 2
defines the tracking problem in more detail, describes our pro- Sensor Network Abstraction Layer
gramming system architecture, and elaborates on the main ab-
stractions provided by EnviroTrack. Section 3 illustrates how IR o o o
a sample tracking application can be written in EnviroTrack. oo © Y O o /- T .
Section 4 provides implementation details. Section 5 presents | O\‘ O O e O ©o |
a performance evaluation. An overview of related work is pre- ' Group O | o Group O '
sented in Section 6. The paper concludes with Section 7. ' Sensing CAR, ‘\\ Sensing FIRE |

\\ - ~ -

2 Programming Model

The programmer’s view of an application written in Enviro- Figure 1. Programming Model

Track is depicted in Figure 1. Sensors which detect certain

user-defined entities in the physical environment form groups, sya1e is shared by all tracking objects attached to this label.
one around each entity. A network abstraction layer associateg;a is declared by defining an aggregation functiatte, ()

a context labelwith each such group to represent the corre- -+ - ts on the readings of all sensors for whiehse, () is
sponding tracked entity in the computing system. Context la-y o o \as true within a recent past defined by a freshness
bels can be thought of as logical addresses of virtual hosts (cong) straint. The aggregation is carried out locally by a sen-
texts) which .follow the external tragked entity around in the (- 04 that acts as the group leader of all sensors sensing
physical enqunment. In the folloyvmg, we use contexts and the named target. The aggregation function can also include
context labels interchangeably. Objects can be attached to cong yitical mass constraint that specifies the minimum number
text Iabels_ to perform contex.t—spec.ific computation. These at- ¢ <ansors that must be involved in the aggregation for the re-
tached objects are callddacking objects Th_ey are executed g s 5 pe statistically meaningful. EnviroTrack provides a li-
on the sensor group of the context label. Since the actual Iocabrary of the most common distributed aggregation functions
tion of the tracking object is the nodes in the physical vicinity . .1 Jose from, such as addition, averaging, and median com-
of the target, the object can perform local sensing and actuation,, yation These functions can also be location-aware, for ex-

to interact directly with the target’s locale. For completeness, ample, to compute the center of gravity of the measurements.

EnviroTrack also supports conventional static objects that arére nderlying infrastructure includes a data collection proto-

not attached to context labels.) i col executed by the leader to collect, timestamp, and log sensor
Context labels have types depending on the entity tracked.data (i.e., the arguments for theate, () function) from sen-

For ex.ampéle, a ant_fthJabFI of type ?Alt?llsbczee;ted threversor group members satisfyisgnse. (). Thestate.() function

a car '3 oﬂserr\]/e : I? dec are a con ﬁx abel of SOMe &ype 5 than applied on the collected data in a way that satisfies the
(named after the tracked eventtype), the programmer must SUPgeshness and critical mass conditions. Finally, the program-
ply three pieces of information. First, the programmersuppllesmer specifies which objects are to be attached to the context

a functionsense. () that describes the sensory signature iden- |opo| ~Attached object code can reference the aggregate state
tifying the tracked environmental target. For example, if the maintained by the leader in this context

;%:f;ﬁgpgf';fg'g:g%trg?\ggg ;egzglﬁgsggg)r?;%?;;’; The . !N the following, we describe in more detail the network ab-

middleware watches for the specified sensory pattern in the en” traction layer, tracking objects, and aggregate state.

vironment and creates a sensor group around the detected target i

when the pattern occurs. This function is also used to maintain2-1 Network Abstraction Layer

the membership of the sensor group around the tracked target

when the target moves. Group membership, in this case, is reContext labels abstract sensor groups for the programmer. The

stricted to those nodes that sense the given target (i.e., for whiclprogrammer is aware that a distributed computation, associ-

sense.() is true). ated with the context label, is executed on multiple sensors in
Second, the programmer declares what constitutes the envithe vicinity of a tracked entity. The programmer, however, is

ronmental state to be encapsulated in the context label. Thisiot involved in managing the membership, leader election, and

leader handoff in the sensor group. e Critical massN,. The critical mass is an integer that de-

A sensor node joins the sensor group of a particular con- notes the minimum number of sensor nodes that should
text when its local sensor readings satisfy the boolean condition be involved in the aggregation for the returned value to be
sense(). It leaves the group when this condition is no longer valid. Only readings produced within the freshness thresh-

satisfied A sensor node can be part of multiple groups at one old can contribute to the critical mass threshold.
time. Programs running for different groups are effectively in-
dependent. The sensor group associated with a context lab
maintains two invariants. First, all members of a group at time
t satisfy the conditiosense. (). Second, the group is not parti- : . i
tioned. All members of a sensor group can communicate with WNereéd is an estimate of maximum message delay and pro-

each other possibly using multiple hops through other member$€SSINY t!me W'th'? the gtr)oup.d This ensures tkc'j"?‘t the rrlesults of
of the same group. This physical continuity constraint is intro- aggregation are always based on sensor readings that are not

duced to ensure that groups formed around different entities molder thanL. The leader mamta_lns apprpxmate_ aggregate
hatate by performing the aggregation function periodically on

the same type remain distinct and do not merge as long as t 8 . oS L . X
tracked entities are physically separated. all.the messages .rece|ved W|th!n a s!ldlng .wmdovw'fgftlme

units. The state is tagged valid (usingvalid flag) if more
than N, messages were received within the window. The ap-
plication code running on the leader, can perform asynchronous
read operations on aggregate state variables, which return their
The tracking objects attached to a context label consist ofcurrent value and validity status.
methods that are invoked either by the passage of time (time- Figure 2 shows the overall internal structure of the middle-
triggered), or by the arrival of messages that carry method in-ware, illustrating both member and leader code. As seen in
vocation requests. Object code is executed on a single nodefigure, the main function of members is to report their read-
In the current implementation, this node is the sensor groupings periodically to the group leader. The leader computes the
leader of the enclosing context. Object code may make refer-aggregate state and runs the application, which may communi-
ences to the aggregate state maintained by the enclosing corcate with remote contexts using a message transport protocol.
text, returned by thetate. () function. This state is collected A distributed group management protocol keeps track of group
by a distributed data collection protocol which constitutes the membership and leader election. Observe that each sensor node
distributed part of the objects’ computation. Note that the codehas both member and leader code. The role taken by the node
is independent of the number and identity of participants of is chosen by the group management protocol.
the distributed data collection protocol. It can assume, how-

ince freshness is decided at configuration time, nodes that join
the group associated with a particular context label periodically
send to the leader their measurements at a petiod L. — d,

2.2 Tracking Objects

ever, that the aggregation results always satisfy the semantics [§edon -
. . . o —= Application
of aggregate state (i.e., they are in accordance with the specified
freshness and critical mass requirements). References to state
- L eader Member
Timer
2.3 Aggregate State E 'A:\gr?&ei%?]t_ion Periodic
SendiReceivel State, I Sensor Reporting
The functionstate.() is configured by declaring aggregate StarusmpT
state variables for context The definition of a state variable Message | [Trigger Trigger
in the enclosing context specifies three important pieces of in- fransport Fgﬁ on: — Fggn lon:
formation: . s
. . . . Leader
e Aggregation function. Aggregation functions produce Enable/Disable | Join/L eave Join/L eave
scalar values from sets of sensor readings. Several ag-
gregation functions are provided in a library that can be Lightweight Group Management and L eader Election
extended by the programmer.
e Freshnesd,,. The freshness threshold tells the system Figure 2. Middleware Architecture

how long sensor readings can be used before they are con-
sidered stale. Only readings taken within the prescribed

freshness time are used to compute the value of an aggre3 Language Features and Application Example

ate state variable. - . .
g To facilitate the use of our middleware, we developed simple

LAlternatively, a separate deactivation condition may be written. language support for declaring context labels and aggregate

(1) begin contexttracker this context type is encoded by the boolean functioag-

(2) activation: magneticsensorreading() neticsensorreading() This function is written in NesC. It re-

() location : avg (position)confidence2, freshness-1s turns a true value when a vehicle is detected. Line 3 defines

(4) one aggregate variable, namely, the average pogii@ition.

(5) begin objectreporter It specifies that the value éfcation returned upon a reference

(6) invocation: TIMER(5s) must represent the average of at least 2 sensor node readings

(7) reportfunction(){ measured no earlier than 1 second ago. HenAte= 2 and

(8) MySend pursuer, sel f.label, location); Le=1.

(9) } Lines 5-10 describe the attached computation. Line 6 speci-

(10) end fies when the computation is invoked. It dictates that the report

(11) end context function be invoked periodically with a period of 5 seconds.
This is followed by the code of the function. This code simply

Figure 3. Sample EnviroTrack Code makes a call tdlySend(which in turn calls the routing layer to

send the message to the pursuer. Two parameters are passed in

) ~ the message, a handle of the originating context label obtained
state variables. A preprocessor uses the stated declaration tEr'sing sel f.label and the aggregate state variabdeation in-
emit appropriate code that initializes the middleware and con-gjicating the average position of all sensors currently detecting
figures thestate, () andsense. () functions. The preprocessor he reported vehicle (i.e., the estimated position of the vehicle).
t_hen configures the trigger conditions for membership in par- The above code will generate multiple instances of the
ticular contexts, and replaces references to the aggregate staig;cker if multiple vehicles are present. Further, even though
variables by middleware function calls that evaluate and returnihe venicles move and the sensor nodes comprising their corre-
them at runtime. sponding contexts will change, the context labels will not. This

An EnviroTrack program consists of a list of context decla- sjgnificantly simplifies the programmer’s interaction with the
rations such as the one shown in Figure 3. Each context declagayying sensor group tracking each vehicle.

ration includes a@activationstatement specifying thense. ()
condition for creating new instances of the declared context .
type. The activation statement is followed by aggregate state4 Implementation
declaration for the created context. This declaration consists ofin this section, we describe implementation issues in Enviro-
alist of variables, each with its own freshness and critical massTrack. Our implementation is built on TinyOS [15], an op-
constraints. The declared aggregate state variables are conerating system kernel developed exclusively for sensor nodes.
puted for the context at run-time as described in Section 2.3.Tinyos provides support for communication, multitasking, and
This computation is performed independently of application code modularity. Geared towards communication-intensive ap-
code. Finally a list of objects is attached. Each object may plications, it exports the abstraction of components, which can
have NesC functions with optionalvocationconditions. In- pe integrated into structures similar to a protocol graph. Each
vocation conditions may be written in terms of aggregate statecomponent consists of command handlers, event handlers and
variables defined in the enclosing context. They state when thesimple tasks. Communication protocols can be constructed eas-
particular method is to be invoked. All static objects are de- jly in a modular manner by developing the appropriate han-
clared separately within thaefaultcontext type. dlers independently of others. The implementation of the En-

We illustrate our programming syntax by an application ex- viroTrack programming system consists of the following main
ample. A typical sensor network application is one in which modules:
a dense network of motes is deployed to track the location of
moving vehicles. For simplicity of illustration, we assume that e The EnviroTrack preprocessor: This preprocessor trans-
the presence of the vehicle is determined using a magnetic sen- lates EnviroTrack declarations such as the one shown in
sor. In our application, sensors that detect magnetic distortion Section 3 into NesC code which calls run-time libraries
caused by the vehicle form a group abstracted by a context la- implementing group management, data aggregation and
bel. Note that several context labels may be instantiated, de- ~ communication.
pending on the number of vehicles sensed. In each context la-
bel, the attached object periodically reports the vehicle’s loca-
tion to a preselected mote interfaced to a mobile pursuer. The
pursuer (a laptop) monitors all vehicles at all times and records
their tracks. The program in Figure 3 shows how the vehicle- o Routing services: These services implement a communi-
tracking context is defined. Pursuer code is not shown. cation protocol between different context labels.

The example in the figure defines a context of tyaeker.
Line 2 specifies that the activation conditiosgnse.(), for These modules are described next.

e The group management protocol: This protocol maintains
the membership of the sensor group associated with a sin-
gle context label.

4.1 The EnviroTrack Preprocessor a group of sensors identifying tlemme entityn the environ-
ment produce a&ingle context label. This label must persist
The input to the EnviroTrack preprocessor is the context de-and remain unique even as the membership of this sensor group
scription file, such as the one shown in Section 3. The pre-changes. Ideally, to maintain context label coherence, at any
processor patches a set of NesC program templates using thgoint in time, nodes sensing the same external entity maintain
information gathered from the context description file to pro- 3 single “majority” leader.
duce the target NesC modules such as those implementing the
sense.() andstate. () functions. The programs are then com-
piled using the provided TinyOS development tools.

Contexts are created when a node first senses condition

sense.(). The node immediately starts a leader election pro-

The outer loop of our TinyOS program template code is im- cess in \{vhic.h it randqmly chooses a smallltimeo.ut v_alue.. A
node which times out first sends a message informing its neigh-

plemented as a timer hgnd.ler. This handler is quked on thebors that it is leader. Upon receipt of this message, other nodes
sensor group leader periodically and executes one iteration peéensing the samense, () condition become members. We re-
invocation. The handler maintains an array of contexts. Each ©

. : 7 quire that a node’s communication radius be larger than twice
entry represents one context and provides access (via funct|0ﬂs sensing radius such that all nodes sensing the same target
pointers) to that context's activation conditiarense. (), and

are within each other's communication range.

object code, as well as its status. The generic handler in the o .
template simply goes through this array checking if any con- An elected group leader sends periodic heartbeats, which

text satisfies the activation condition. The compiler emits an &€ received by aII. group mgmbers. Leader heartbeats have
initContextStructures() function that sets up this ar- thrée purposes. First, they inform current members that the
ray based on the context description file. At run-time, sensorléader is alive. Should the leader die, a new leader election

devices remain in this time-triggered mode until an appropriate!S Started after a timeout. Second, they carry application state
condition is sensed. Activation conditions of different contexts that must persist across leader handoffs. This state is recorded

are expressed in terms of boolean NesC functions which accesY &ll member nodes. This mechanism allows new leaders to
local sensory measurements. These functions are sensor depefntinue computations of failed leaders from the last state re-
dent. They can be written by the developer or chosen from aceived. An application can explicitly create persistent state us-
common library. ing a setState() primitive and read it usingetState(). Fi-
When an activation conditionsense.() is satisfied for a Nally, heartbeats are overheard past the group’s perimeter thus
context of typee, group management services are activated informing neighboring nodes of the existence of context label
on the motes sensing that condition. The execution of theset- NOdes that cannot sense the target themselves but know of
services creates a context label (of tyeand maintains its ItS €xistence from nearby leader heartbeats are caliedp

approximate aggregate statgate, (), on the current group followers If thgse nodes subseque_ntly sense thg condition
leader. Subsequent invocations of the timer handler check forsé75¢«(), they join the present group instead of forming a new
method invocation conditions defined in terms of this aggre- context label. The mechanism ensures that multiple spurious

gate state, and post TinyOS tasks to execute methods whosgPntext labels do not emerge around the same target. When
invocation conditions are satisfied. the leader gets out of sensory range from the target, it sends a

In the current implementation, objects are permanently at-leader haqdoﬁ message which initiates a new I(—;-ader eIectiqn.
tached to contexts. Each of the methods attached to a context "€ resulting behavior is that a group with a unique leader is
is emitted with their names mangled (by adding the context created around each target. Mem.bership changes and leader
name). The contents of each function are also parsed to replactAnd state) handoffs occur automatically as the target moves.
references to aggregate variables with function calls that re- A detailed simulation study of the above protocol appeared
turn the aggregate variable’s value in accordance with its specin [4] in which particular attention was paid to various failure
ified tracking QoS. Every possible aggregation for every sen-and message loss scenarios that result in election of spurious
sor value is available as a function call. The naming of theseleaders. It was shown that while spurious leaders do emerge,
functions is done based on a known scheme so as to allow th&ery simple techniques can substantially reduce their effect on
compiler to generate the correct call. Each aggregate variableystem behavior. For example, in the presence of message loss,
is associated with attributes of freshness and critical mass. The leader handoff may produce two nodes both of whom claim
functions (that return aggregate values) themselves are patchei@ be leaders of the same context label. However, since these
with the right value of freshness and confidence to produce thenodes are within each other's communication range, the one

specified QoS. with the higher node identifier can eventually force the other
to relinquish leadership. The same applies if a node elects it-
4.2 Group Management Services self as leader of a new context label for a target that is already

being tracked by another. The effect of such spurious context
Group management services, shown at the bottom of Figure 2abels is reduced by letting nodes that hear two nearby leaders
maintain coherence of context labels. That is, they ensure thatgnore the one with the smalleveight Each new context la-

bel is initially created with a leader weight of zero. Leaders of performance evaluation, it is interesting to node that the pro-
existing context labels accrue a weight equal to the number ofgramming interface imposed on top of our middleware does
messages received by the leader from members to date. Thigot interfere with its run-time performance. In fact, this inter-
weight is passed during leadership handoffs. Hence, leadergace was written by the authors after the tracking middleware
of spurious context labels will generally be ignored. Conse- was developed. It simply automates the process of configuring
quently, the abstraction of a single context label per target isthe middleware for tracking. Once the preprocessor has parsed
adequately maintained. the user’s context declarations and emitted the configured code,
The mechanism described above opens several importanthe middleware looks the same as if it was hand-coded. No
guestions for future research. One is what do when multiple performance penalty is associated with the improved level of
targets cross paths. In the present scheme a violation of conabstraction.
text label coherence may occur. For example, the “younger” With the above observation in mind, we now present the ex-
context label may disintegrate (be absorbed in the group of theperimental performance of tracking. We first establish a case
“older”) and later emerge as a different label when the targetsfor the viability of our middleware for tracking in practice. We
separate. Such anomalies should be dealt with at the applithen proceed with stress-testing EnviroTrack to explore the lim-
cation layer. It may be impossible to solve them in middle- itations of the current implemented prototype.
ware without complex signal processing as it may be impossi-
ble, say, for a magnetic sensor to identify which of two nearby 5 1 A case for Tracking
targets is responsible for its magnetic reading. From the appli-

cation’s perspective, the sensor network has a notion of granu- q is th K dei i)
larity which defines the resolution of target detection and is re- OUr case-study targetis the T-72 tank (made in Russia), moving

lated to the communication radius of nodes. If multiple targets IN @n off-road sensor field. This particular tank weighs 44 tons
fall within the same granule, they become indistinguishable. 21d has a maximum off-road speed of around 45 km/hr [12].

When they separate, they again become distinct targets. Sensors in the field are equipped with magnetometers. Honey-
well advertises magnetic traffic monitoring sensors which can

detect moving vehicles from a range of up to 30 meters [20].
These sensors operate by detecting slight disturbances to the
Earth magnetic field caused by ferrous objects. The magnitude
To route among different context labels, we use an algorithm of this disturbance depends on the amount of the ferrous mate-
similar to landmark routing [22]. Nodes are assumed to know rig| in the tracked object. Since the T-72 tank weights about 40
their location such that geographic routing can be used. Leadtimes the average vehicle in ferrous matter, its presence could
ers of established context labels who wish to communicatepe detected at a much larger distance than 30 meters. Magnetic
broadcast their existence and report their location to a land-effects are attenuated with the cube of the distance. Hence, we
mark. Other nodes route packets to the landmark, which in turnset the magnetic detection radius for the tank to approximately
forwards them to the leader of the context label. Upon leader3p « 40!/3 which amounts to about 100 meters. It is easy to
handoffs (the location of) the new leader is reported to the land-show geometrically that if the tank can be detected 100 meters
mark. In addition, a forwarding pointer is inserted at the previ- away, it is guaranteed that it is always within range from at least
ous leader to forward packets that are in transit. On top of thegne sensor as long as sensors are put on a grid about 140 meters
routing layer a simple demultiplexor is implemented that di- apart. We thus assume a rectangular grid of sensors with a per-
multiplexes incoming messages at the destination and forwardsop distance of 140 meters. Note that covering a border area of
them to one of several application modules. This allows imple- say 70 km x 5 km at this spacing would require roughly 18,000
menting remote method invocation. The destination address okensor devices, which is about the right size for the envisioned

the remove method contains the name of the context label andensor networks. Moving at its maximum speed, a T-72 tank
the method identifier. The latter is used by the demultiplexor to will cover one hop every 11.2 seconds.

4.3 Routing Services

identify the module implementing the needed method. We developed a testbed which provides a scaled down,
1000:1, model of this scenario. To experiment with variable
5 Performance sensor range more readily, we replaced magnetic sensors with

light sensors installed on MICA motes. The magnetic field of
In this section, we evaluate the performance of an actual imple-the target was emulated by moving a round object of a corre-
mentation of the presented tracking middleware service. Thesponding radius above the sensor field to block a strong light
implementation is on MICA motes running TinyOS. While source from the appropriate sensors. The field was arranged
some simulation studies have been performed on the groupnto a rectangular grid. In our first experiment, the tracked
management protocol [4] as mentioned in Section 4.2, this isobject was moved at a speed of 10 seconds/hop and 15 sec-
the first detailed report on the performance of an actual imple-onds/hop, which corresponds to an emulated speed of 50 km/hr
mented prototype of the complete service. In the context ofand 33 km/hr, respectively. A single context type was defined,

whose declaration is similar to Figure 3. At run-time a context the group management assumptions.
label was generated. Group management maintained a leader
for the context label. The leader sent to a base station the aver-
age position reported by nodes sensing the target at the current ® 1
time. After each run, logs on individual motes were inspected

to produce message loss and total throughput statistics. Mes-
sage loss was computed by counting the number of messages 501
sent but never received on any other mote.

Figure 4 shows the real and tracked object trajectory (re-
ported to the base station) in a representative run. The motes °©
were put at integers, y) coordinates. The horizontal line at
y = 0.5 is the real target trajectory. The tracking error oc-
curs because our sensors have no notion of proximity to the
target. Moreover, direction anomalies occur due to message
loss which causes sensor position aggregation to use a subset Finally, Table 1 shows sample communication data collected
of reporting sensors only. An application receiving this trajec- during our experiments for the second (correct) case above.
tory can presumably improve the results by applying filtering Each pointis averaged over three independent runs. In particu-
to the reported raw data. Results could be further improved iflar, we show the measured percentage of lost leader heartbeats

sensor nodes could perform ranging to estimate target proxim{HB l0ss), lost sensor messages incurred during data aggrega-
ity. tion (Msg loss), and the average useful link utilization (Link

Util). To compute the latter, we divided the total number of
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ bits sent per second by the total link capacity (50kbs for MICA
motes). Hence, this is a worst case estimate, since it assumes a
e broadcast model in which no two messages could be sent con-
VAN currently.

% successful leader handovers

|:| Propagate heartbeat past sensing radius

|:| Heartbeats only within radius

Tank Speed

33 km/hr 50 km/hr

Figure 5. Successful Handovers

] ﬁ‘< K- X X % -
The table demonstrates four important points. First, our sys-
o1 2 2 4 s s 7 8 5w tem operates correctly in the presence of message loss, which

is necessary in sensor network applications. Second, message
loss is not caused by link utilization, but rather by the unreli-
ability of the wireless medium (no reliability is implemented
, in the MAC layer of the MICA motes). Note that the effect
Figure 5 shows the percentage of successful context labely . jisions increases with target speed. Third, our communi-
handovers for two target speeds and two settings of group Mang4tion requirements constitute only a tiny fraction of available
agement parameters. A successful handover means that thg,, capacity. Hence, we have not yet stressed the limits of
context label successfully follows tank location by virtue of e system's capabilities. Fourth, link utilization increases only

leadership handoff from one member node to another along thejigntly with tank speed. Hence, the bandwidth requirements
target's path. An unsuccessful handover means a different cong the algorithm have potential to scale well with tracking dif-
text label is spawned at the new tank’s location, not realizing ficulty.

that it refers to the same tank as the current context label. This
case violates context label coherence.

Figure 4. Tracked Tank Trajectory

)) Speed % HB loss | % Msg loss | % Link Util
In the first group management parameter setting, leader [33%m/nr 708 3.05 254
heartbeats are not propagated past the sensing radius. As ex- 55 km/hr 55 69 17.05 588

pected, in this case it is more likely that multiple context labels
are generated for the same target since nodes which sense the
target for the first time might not be aware of the existing con-
text label. Figure 5 shows that a fraction of handovers will fail

in this case unless target speed is slow. Inthe second setting, the The aforementioned proof-of-concept results show that the
sensing and communication ranges are such that leader hearsevere limitations on the memory, CPU, and network band-
beats are propagated beyond the sensing radius. In this casgidth of the MICA motes do not prevent them from perform-

all handovers are successful at both emulated tank speeds. Thiag communication protocol stack processing, group manage-
is in agreement with expectations since the group managementent, leader handoff, and aggregate state computation associ-
algorithm in Section 4.2 requires that the communication rangeated with maintaining our context label abstraction. Moreover,
be larger than the sensing range. The experiment demonstratesith appropriate sensor selection and parameter settings, realis-
the importance of setting these ranges correctly not to violatetic targets can be successfully tracked. Next, we stress-test the

Table 1. Communication Performance Data

architecture to determine the maximum trackable target speed Several points can be made from this graph. First, for a large

as a function of various parameter settings of the middleware. range of parameter settings, the maximum trackable speed is 1-
3 hops/s, which is 10-30 times faster than the speed of the tank

5.2 Testing the Maximum Trackable Speed presented in the previous section. Thus, very fast targets can be
tracked, or alternatively, sensors with a much smaller sensing

The maximum trackable speed refers to the maximum speed Ladius can be successfully used to track realistic targets.

target can have without causing violations of context label co- S€cond, we see that events with a larger sensory signature
herence. If a target moves too fast it can be detected by nodetExPressed in figure in terms of multiples of average node sep-
who have not yet heard of it, which results in creation of spuri- &ration, orgrids) can be tracked at higher speeds. This may
ous context labels. The most important parameter which affectsS€€M intuitive, as larger targets should be easier to track.

the maximum trackable target speed in our architecture is the 1hird, we see that as the heartbeat period is reduced (send-

heartbeat period of the group leader. In the experiments coni"9 out more frequent heartbeats) faster targets can be tracked.

ducted, the timeout associated with failed leader detection (duel NS IS intuitive as faster heartbeat makes the group manage-

to absence of heartbeats) is set to 2.1 the heartbeat period. If"€Nt Meéchanism more responsive. Realizing that heartbeats
other words, we wait for two consecutive missing heartbeats@'® Pandwidth-consuming messages and that both CPU and
before initializing leader re-election. communication bandwidth are limited in our experiments, we

The maximum trackable speed is computed for the worst- stress tested the heartbeat period to determine where overload

case scenario, which is the case when the current leader fail§CCUrs- _ .
causing leadership takeover to take place. In this case, a slow 10 determine the identity of the bottieneck resource that
heartbeat period will allow the target to escape tracking during €2uses the decline in the maximum trackable speed at small

the leadership takeover. Consequently, several disconnectef€artoeat periods, we repeated the above experiment in the
groups will be formed (as the target is rediscovered indepen_presence of a substantial amount of cross traffic. The cross traf-

dently at different points along its track). The maximum track- fic was exchanged between motes that do not participate in the

able speed (the highest target speed at which the single grou nviroTrack protocol but rather generate "background noise”.
abstraction is maintained) observed in the experiment is shown! N€ Shape of Figure 6 in the presence of this cross traffic re-
in Figure 6 as a function of heartbeat period for two events: aMained largely unaffected. We therefore conclude that com-
narrow siganture event (outer bars), and a wide signature everfiunication bandwidth is not the bottleneck. The bottleneck
(inner bars). The figure also shows the trackable speed duringtPPears to lie in CPU processing. _

normal operation in which each leader willingly relinquishes ' Our next experiment, we test the effect of varying the ra-

leadership to another as the target moves out of its sensor rangd® Petween the communication radius (CR) and the sensing
This case is labeled “relinquish” in the figure and shows a max_radlus (SR) on the trackable target speed. We use explicit lead-

imum trackable speed that is independent of the heartbeat pe€ShiP handoffs in this experiment (as opposed to handoffs due

to leader failures). The results are shown in Figure 7. From

fiod. this figure, the most important point to note is that for a given
CR:SR ratio (which may or may not be a controllable param-
eter by system designers), larger events are trackable at faster
speeds. The direct cause of this is the number of leadership
handovers that occur. For a constant speed, when an event is
Maximum larger, the average time between handovers decreases (as a sin-
Speed gle leader can sense the target longer) requiring fewer messages
(grids / sec) to be processed. The lower communication overhead results

in a higher trackable speeds. The other point to note is that
our tracking architecture breaks down when the CR:SR ratio
falls below 1. This occurs because nodes outside of communi-
cation range from the leader also sense the event and concur-
rently form spurious groups thus violating context label coher-
ence. The performance improves as the ratio increases as two
nodes that sense the same target are less likely to be outside
each other’'s range.

HB Period (sec)

s
foos
=]
o
=
o
o

Figure 6. Effect of Timers on Maximum Trackable
Speed A growing challenge facing the distributed systems commu-
nity is to develop programming paradigms and run-time sup-

6 Related Work

lated to the notion of content-addressable networks [24] pro-
posed for an Internet environment, which allows queries to be
routed depending on the requested content rather than on the
identity of the target machine. We adopt a form of attribute-
7 based naming we catlontext labelsIn our architecture, how-

5 —8—Event- 1 grid ever, context labels amctiveelements. Not only do they pro-

; / Event - 2 grids vide a mechanism faaddressingiodes that sense specific en-

j’/ — —+Bvent-3grids|) yironmental conditions, but also they chast context-specific
e computatiorthat tracks the target entity in the environment.
Recent research on system software for sensor networks
0 2 4 B g has seen the introduction of distributed virtual machines de-

CR: SR Ratio signed to provide convenient high-level abstractions to appli-
cation programmers, while implementing low-level distributed

Effect of CR:SR on Trackable Speed

=N

%)

.

B Tyt ;
[d R W SRS IRAVENS N |

e

Maximum Speed (grids /sec)

protocols transparently in an efficient manner [27]. This ap-
proach is taken in MagnetOS [11], which exports the illusion
of a single Java virtual machine on top of a distributed sensor
network. The application programmer writes a single Java pro-
gram. The run-time system is responsible for code partition-
ing, placement, and automatic migration such that total energy
Lonsumption is minimized. Mat[19] is another example of a
virtual machine developed for sensor networks. It implements

Figure 7. Effect of Sensory Radius on Maximum
Trackable Speed

port for the operation of large-scale embedded sensor network
Classical distributed programming paradigms and middleware ; .))
such as CORBA [28], group communication [8], remote pro- its own byt(.acode.mterpret(.ar, built on top of TinyOS. Thellnter—
cedure calls [3], and distributed shared memory [6, 25] sharePreter prowdeg high-level |n§truct|oqs (such as an atomic mes-
in common the fact that their programming abstractions exist529€ Send) which the machine can interpret and execute. Each
in a logical space that does not represent or interact with 0b_wrtual machine |r]struct|on executes in its own Tl.nyOS task.
jects and activities in the physical world. Their main goal is A Somewhat different approach of providing high-level pro-
to abstract distributed communication rather than facilitate dis-9r@mming abstractions is to view the sensor network as a

tributed sensory interactions with an external physical environ-distributed database, in which sensors produce series of data

ment. In contrast, a new paradigm tailored for sensor should be’@/u€s and signal processing functions generate abstract data
pes. The database management engine replaces the virtual

centered around environmentally-driven abstractions aimed aly

simplifying the coding of interactions with the physical world machine in that it accepts a query language that allows appli-
that arise in distributed deeply embedded systems cations to perform arbitrarily complex monitoring functions.
The work reported in this paper is related to -several o This approach is implemented in the COUGAR sensor network

: . .) database [5]. A middleware implementation of the same gen-
centlprOJects, S#Ch as C”Ckit. [igll’ Selntlent Comp'utln%'[lr]] anderal abstraction is also found in SINA [26], a sensor informa-
gr%%é%ﬁloggc]j}sttri?)tu?égp:osripﬁn-ge;/;stgzrzrailglgmz Itr:) V;Ih:re zgrgion network!ng architepture that. abstracts the sensor network
ceptions of the physical world. These systems allow the Ioca—Into a coIIectlon_ of ghstnbutgd ObJE.:CFs' .

. . T Our system is different in that it is geared for environmen-
tion of entities in the external environment to be tracked. One

jor diff fth tems from EnviroTrackis that they & racking applications. To the authors’ knowledge, Enviro-
major difference of these systems from EnviroTrackis that they ., 1 i< the first programming support for sensor networks that

assume coopergtwe users who, fpr exam'ple, can wear beacoré‘xplicitly facilitates the coding of tracking applications. Its
ing devices that interact with location services in the infrastruc- novel abstractions and underlying mechanisms are well-suited
ture for the purposes of localization and tracking [23, 1]. Our

it Ci trast. is in situati h foni for monitoring targets that move in the physical world. Enviro-
Interest, in contrast 1S In STUALONS WNEFE NO COOPEration IS @S=r 5y therefore can have a major impact on application devel-
sumed from the tracked entity.

. opment for sensor networks.
In the absence of cooperation, several research efforts pro-

posed a]ternatwe .address'n.wg.sche'mes that do not rely on hav7 Conclusions

ing destinations with specific identities, but rather contact sen-

sor nodes in the vicinity of a phenomenon of interest based onThis paper introduced the design, implementation, and experi-
the attributes of data they sense. For example, DataSpace [17#hental evaluation of a new distributed programming paradigm
exports abstractions of physical volumes addressable by theiand experimental prototype for sensor network applications.
locations. Similarly, directed diffusion [18, 14] and the inten- The paradigm differs from existing distributed computing mod-
tional naming system [2] provide addressing and routing basecels in its central focus on abstracting interactions wigihgs-

on data interests [18, 14]. Attributed-based naming is also re-ical environmenproduced by a large array of distributed sen-

sors and actuators. The key advantage of this paradigm lieg11] R. B. et al. On the need for system-level support for ad hoc and

in its considerable potential to reduce development costs of
deeply embedded systems. This reduction comes from off-
loading from the application developer the details of managing

[12]

low-level communication, mobility, and group management is- [13]
sues in groups of redundant sensor nodes in tracking applica-

tions. Performance results show that in addition to convenient

abstractions, efficient implementation is possible in our archi-

tecture, in that target tracking is successful at practical target

speeds.

This paper might be a first step towards a predictable sen-

sor network “virtual machine” for writing distributed deeply-
embedded applications. Such a layer should export reliable[ls]

behavior and well-defined semantics, implemented on an un-

[14]

reliable, unpredictable, and resource constrained hardware and
communication infrastructure. The virtual machine would hide [16]
the complexity of sensor network programming from the appli-
cation developer, making a new more robust and more dynamic

realm of sensor network applications attainable to impact future

defense, surveillance, habitat monitoring, and disaster manage[17]
ment systems.

References

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles,

A. Ward, and A. Hopper. Implementing a sentient computing
system.|[EEE Computer34(8):50-56, August 2001.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.

The design and implementation of an intentional naming sys-
tem. INACM Symposium on Operating Systems Princijfeés
awah Island, SC, December 1999.

[3] A. Birrel and B. Nelson. Implementing remote procedure calls.

[4]

5]

[6] J. Carter, J. Bennet, and W. Zwaenepoel. Implementation and

ACM Transactions on Computer Syste(d), February 1984.

B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic. An entity maintenance and connection service for
sensor networks. linternational Conference on Mobile Sys-
tems, Applications, and Services (MobiSgan Francisco, CA,
May 2003.

P. Bonnet, J. Gehrke, and P. Seshardi.
systems. Ir2nd International Conference on Mobile Data Man-
agementpages 3—14, Hong Kong, January 2001.

performance of munin. IACM Symposium on Operating Sys-
tems Principlespages 151-164, October 1991.

[7] A.Cerp, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.

(8]

9]

(10]

Habitat monitoring: Application driver for wireless communica-
tion technology. IMACM Sigcomm Workshop on Data Commu-
nication, San Jose, Costa Rica, April 2001.

G. V. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: A comprehensive stuA€M Computing
Surveys33(4):427-469, December 2001.

P. Debaty and D. Caswell. Uniform web presence architecture
for people, places, and thing&EE Personal Communications
8(4):46-51, August 2001.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: Mobile networking for smart dustAdM
MOBICOM, Seattle, WA, August 1999.

[18]

[19]

[20]
[21]

[22]

(23]

24
Towards sensor databasL]

[25]

[26]

[27]

(28]

[29]

sensor networks.Operating System Review86(2):1-5, April
2002.

Federation of American Scientists Military Analysis Network.
http://www.fas.org/man/dod-101/sys/land/row/t72tank.htm.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to network
embedded systems. ACM SIGPLAN Conference on Program-
ming Language Design and Implementati®an Diego, CA,
June 2003.

J. Heideman, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin, and D. Ganesan. Building efficient wireless sensor net-
works with low-level naming. Operating Systems Review
35(5):146-159, December 2001.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensoré&3°LOS
Cambridge, MA, November 2000.

M. Horton, D. Culler, K. Pister, J. Hill, R. Szewczyk,
and A. Woo. Mica: The commercialization of mi-
crosensor motes. Sensors Online 19(4), April 2002.
http://www.sensorsmag.com/articles/0402/index.htm.

T. Imielinski and S. Goel. Dataspace - querying and monitoring
deeply networked collections in physical spatitEE Personal
Communications?(5):4-9, October 2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: A scalable and robust communication paradigm for sensor
networks. INnACM MOBICOM Boston, Massachusetts, August
2000.

P. Levis and D. Culler. Mate: A tiny virtual machine for sensor
networks. INASPLOS$San Jose, CA, October 2002.

Magnetic Sensors. http://www.magneticsensors.com/rdatktml.
A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wire-
less sensor networks for habitat monitoring. Hinst ACM In-
ternational Workshop on Wireless Sensor Networks and Appli-
cations Atlanta, GA, September 2002.

G. Pei, M. Gerla, and X. Hong. Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility. In
MobiHoc, Boston, Massachusetts, August 2000.

N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. WCM MOBICOM Boston,

MA, August 2000.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. Sigcomm San
Diego, CA, August 2001.

D. J. Scales and K. Gharachorloo. Towards transparent and effi-
cient software distributed shared memory. AGM Symposium

on Operating System PrincipleSaint Malo, France, October
1997.

C.-C. Shen, C. Srisathapornphat, and C. Jaikeo. Sensor informa-
tion networking architecture and applicationiEEE Personal
Communications8(4):52-59, August 2001.

E. Sirer, R. Grimm, A. Gregory, and B. Bershad. ‘design and
implementation of a distributed virtual machine for networked
computers. INPACM Symposium on Operating System Princi-
ples pages 202-216, Kiawah Island, SC, December 1999.

S. Vinoski. Corba: Integrating diverse applications within dis-
tributed heterogeneous environmentisEE Communications

Magazine 14(2), February 1997.
A. Wood and J. A. Stankovic. Denial of service in sensor net-

works. IEEE Computer35(10), October 2002.

