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Abstract

Homes are rich with information about people’s energy
consumption, medical health, and personal or family func-
tions. In this paper, we present our experiences deploying
large-scale residential sensing systems in over 20 homes.
Deploying small-scale systems in homes can be deceptively
easy, but in our deployments we encountered a phase tran-
sition in which deployment effort increases dramatically as
residential deployments scale up in terms of 1) the number of
nodes, 2) the length of time, and 3) the number of houses. In
this paper, we distill our experiences down to a set of guide-
lines and design principles to help future deployments avoid
the potential pitfalls of large-scale sensing in homes.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
Networks; C.3 [Special-Purpose and Application-Based
Systems]: Real-time and Embedded Systems

General Terms
Design, Experimentation

Keywords

Deployment, Buildings, Smart Homes, Sensor Networks

1 Introduction

On average, Americans spend 65% of their time in their
own homes [1]. Residential sensing systems can collect a
wealth of information about people, much of which can-
not be gathered in any other way. Sleep patterns, eating
habits, hygiene, and many other characteristics of a person’s
lifestyle manifest primarily in the home, and statistics about
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these activities of daily living (ADLSs) are valuable indica-
tors of health. Homes also constitute a large fraction of the
carbon and energy footprint over which a person has direct
control, and statistics about electricity, water, and product
consumption in the home are valuable for personal conser-
vation efforts. Finally, homes are the core of personal and
family life, and residential sensing can be valuable for as-
sisting, coordinating, and tracking personal activities such
as shopping, meal preparation, and vehicle sharing for after-
school activities.

Goals: In this paper, we discuss the challenges of design-
ing, deploying, and managing large-scale residential sensing
systems. The goal is not to make a scientific contribution,
but rather to summarize lessons learned from the experience
of deploying over 1200 sensors in over 20 homes over the
course of several years, including both commercial off the
shelf (COTS) devices and our own custom designs. Each of
these deployments was performed for a different application
or experiment, and in this paper we review all deployments at
once to distill out a single set of guidelines and design prin-
ciples supported by data, pictures, and anecdotes from our
own experience. We focus on common myths and miscon-
ceptions to help future deployments avoid potential pitfalls.
Most of the guidelines that we identify are simple common
sense, but are obvious only in hindsight; the contribution of
this paper is the collection of hazards and challenges that
make these guidelines appear obvious.

Findings: The key finding of our study is a phase transition
in which deployment effort increases discontinuously as res-
idential deployments scale up. Deploying a single sensor in a
home is nearly effortless: plug it into a wall socket and wire-
lessly relay the data to a local computer or remote server.
We pushed the scale of residential sensing deployments in
three dimensions 1) the number of nodes 2) the duration of
the deployment through time, and 3) the number of homes
in which the system is deployed simultaneously. We found
that each of these dimensions introduces its own challenges
and that, at scale, indoor sensing systems require no less de-
sign and preparation than outdoor deployments. Some of the
challenges that we encountered indoors are identical to those



already observed in outdoor deployments [2]. Other chal-
lenges however, were entirely unexpected or were analogous
but not identical to those outdoors. Our experience helped
to elucidate these similarities and draw analogies where pos-
sible. As we scaled up our deployments, some of our more
surprising findings included:

e Power became a scarce resource once the number of
sensors exceeded the number of 120V wall sockets
in each home (typically 20-30). Furthermore, wall-
powered nodes were 2.3x more likely to lose power than
battery-powered nodes.

Wireless connectivity in homes was worse than ex-
pected because sensors were often placed in exceptional
locations.

L]

Children, pets, and robotic vacuums became “environ-
mental hazards” once the number of sensors grew to
cover a substantial fraction of surfaces, appliances, and
fixtures in the home.

Houses became “remote environments” with limited
physical access once the deployments scaled to homes
other than the investigators’ own.

L]

User participation dropped precipitously as the time du-
ration of experiments grew.

L]

Aesthetic appeal became a limiting design factor once
the number of sensors grew large enough to be visually
salient, and time durations exceeded a few months.

Maintenance time grew quickly as we used a greater
number of different COTS platforms, because each new
platform introduced a new set of possible failures.

2 Related Work

Researchers have been deploying sensors in homes for
several decades, but few deployments reveal the same in-
sights about residential deployment challenges that ours do.
Most large-scale systems deployed to date have used a per-
manent installation of sensing infrastructure such as in-line
power, communication lines, and secure mounting loca-
tions for the sensors. In contrast, our deployments focus
on infrastructure-less systems that use surface-mounted sen-
sors, wireless communication, and wall sockets or battery
power. Infrastructure-less systems dramatically reduce in-
stallation cost and we therefore expect them to be the most
common type of smart home in the future, particularly for
do-it-yourself installations or for applications like home en-
ergy management (HEM) where the financial benefits do not
justify costly infrastructure. In recent years, infrastructure-
less sensing has become common, but deployments to date
have been limited in number (a few dozen sensors) and/or
duration (days to weeks). To our knowledge, our deploy-
ments are unique in that they scale up infrastructure-less res-
idential sensing in three ways simultaneously: 1) hundreds
of sensors per home 2) multiple months of deployment time,
and 3) multiple homes.

Infrastructure-based deployments: Many residential sens-
ing systems have been deployed with hundreds of sensors for
long time durations, but the homes were specially equipped

with data and communication infrastructure. For example,
the Neural Network House [3] at the University of Colorado
at Boulder is a long-term testbed in use since the mid-90’s
with an impressive array of instrumentation that senses and
controls light intensity, sound levels, temperature, motion,
the status of doors and windows, ceiling fans, space heaters,
furnaces, and water heaters. To implement the system, a
historical building was retrofitted with nearly five miles of
low-voltage conductor to collect sensor data and a power
line communication system to control actuators. The Aware-
Home [4] is a smart home designed at the Georgia Institute
of Technology during the late-90’s. The duplex home was
constructed from scratch and contains two identical living
spaces and a control room for centralized computation. The
building uses a high-bandwidth network to maximize the
information provided to occupants or their caregivers, and
uses an extensive sensor suite including cameras and micro-
phones. MavHome [5] is a long-term testbed deployed at
the University of Texas at Arlington since the early 2000’s.
It acts as an intelligent agent with the goal of maximiz-
ing occupant comfort while minimizing the operating cost
of the home. MavHome uses a wide array of sensors and
controllers that are supported by in-line power and commu-
nication over CATS cables. The PlaceLab is a laboratory
designed at MIT in the mid-2000’s for temporary living by
study participants. It has hundreds of sensors built into the
walls, fixtures, and cabinetry, including cameras and micro-
phones [6]. “Practical limitations” to installing portable sen-
sors in real homes were cited as a motivation for the con-
struction of the lab, but a detailed description was not given.

Infrastructure-less deployments: Several ubiquitous com-
puting studies have used infrastructure-less sensing for stud-
ies in real homes, but were limited to a few dozen sensors
and/or a few days or weeks of deployment duration. For
example, Tapia et al. deployed 77 contact sensors through-
out a house for two weeks [7]. Cook et al. deployed 18
motion sensors and 2 temperature sensors for four months
[8]. Kasteren, et al deployed 14 state-change sensors for four
weeks [9]. Most commercial home automation systems are
infrastructure-less. Early systems by X10 plugged into wall
sockets and used power line communication, while later sys-
tems are battery operated and wireless. Newer and more ex-
pensive systems, such as those that support the Z-wave pro-
tocol, are also designed to operate without a computer in the
home to act as a control station. These systems are installed
in millions of homes, but typically have only a few dozen
sensors. In Section 5, we describe several reasons why these
systems are difficult to scale to hundreds of nodes.

Lessons learned: Many of the lessons discussed in this pa-
per have undoubtedly been observed during other home sens-
ing projects, but other studies did not result in a compre-
hensive listing of these lessons or a distillation of guidelines
from which future projects could benefit. Papers that do re-
flect on guidelines do not focus on deployment and system
operation, as this paper does. For example, Edwards and
Grinter discussed seven challenges that must be overcome in
order for smart homes to be viable [10], including possible
social ramifications, the effect on home life, the challenges



#Homes Weeks | Motion | Object Door Wearable Light Power Power Power Water Custom Active Light/Temp
Use Height Tracking Switch (Plugs) (Circuits) (Mains) Mains Thermostat Register Humidity

A 11 1-2 25-30 12-20 - - - - - - - - - -

B 1 1 - - 12 12 - - - - - - - -

C 3 3-4 15-25 - - - - - - - - - - 12-25
D 1 2 4 - - - - - - - - - -

E 1 2 5 - - - - 1 - - - - -

F 1 28 65 13 13 16 22 - - 1 1 1 12 86
G 1 44 54 7 31 14 22 8 37 1 1 1 12 29
H 1 39 15 7 14 - 11 4 - 1 1 - - -

I 1 32 25 10 30 - 31 3 48 1 1 - - 8

J 1 25 14 5 17 7 2 - 1 1 -

Table 1. Over the course of several years, we deployed 100’s of sensors in over 20 homes, ranging from small, short-

term to large-scale and long-term deployments. This table summarizes our main deployments. One home was used for
deployments A, B and H, and another home was used for both deployments F and G.

of ambiguous data, and the lack of a system administrator.
They also discuss challenges due to the piece-meal addition
of technology to homes, the need for device interoperability,
and the complexity of designing heterogeneous systems. In
“Principles of Smart Home Control” [11] Davidoff et al. at-
tempt to rephrase the traditional question of “How can smart
home control systems help users regain control of their de-
vices?” to “How can smart home control systems help fami-
lies regain control of their lives?”” The authors provide design
principles that help focus design efforts on the targeted au-
dience rather than the devices being controlled. In contrast,
our paper focuses on practical guidelines intended to help
achieve reliable system operation during large scale, long du-
ration, infrastructure-less deployments.

A set of guidelines with a similar goal was summarized in
a “Hitchhiker’s guide for WSN deployments” [2]. However,
that guide focused on the challenges of outdoor deployments,
many of which are not relevant to indoor deployments. For
example, indoor environments are not subject to extreme
weather conditions or temperature fluctuations that can af-
fect clock drift, battery lifetime, and wireless connectivity.
Indoor sensors are typically one hop from a base station and
so they perform little if any distributed processing. There-
fore, it is much less important to have remote control over
sensors and visibility into their internal computations, or to
use simulation to test and debug distributed protocols. Fi-
nally, there is no clear distinction between a testbed and a de-
ployment: a single home serves both purposes. On the other
hand, there are also many similarities between indoor and
outdoor deployments: homes can have limited physical ac-
cess, similar to “remote” outdoor environments; LEDs must
be turned off, but for occupant comfort rather than for energy
efficiency; wild animals are not a threat indoors, but children,
guests, and robotic vacuums can be hazardous; preparation
and organization before deployment is necessary, but with
a very different checklist (bring a hand vacuum rather than
an ice-axe). In this paper, we reflect on our indoor deploy-
ments and identify similarities or draw analogies to outdoor
deployments when possible in order to strengthen and gen-
eralize the lessons learned from both, even if they are not
obviously comparable at first.

To our knowledge, this paper is the first compilation of
potential pitfalls, common misconceptions, and practical ad-
vice about indoor sensing in residential environments.

3 Overview of Our Residential Deployments

Over the past several years, we have deployed over 1200
sensors in over 20 homes in a series of residential sensing
experiments. The scale, duration, and the number of sen-
sors in each deployment varied from home to home, year to
year, and experiment to experiment, but the goal of all of
these sensing systems was to monitor human activity in the
home. Our deployments have collected over 17 billion data
points portraying various aspects of over 25 people’s lives,
including the use of appliances, water fixtures, lights, energy,
doors, and individual rooms. The data has been used for nu-
merous scientific studies [12, 13, 14, 15], many of which are
still ongoing, and as of this writing 5 deployments continue
to operate and collect data. The studies themselves are out of
scope for this paper. In this section, we describe the sensors
and the system architecture that we deployed in order to pro-
vide more focused context and perspective for the analysis
and design guidelines that follow.

Sensors and Controllers: The sensors and actuators in our
system changed with each home, each experiment, and each
generation of hardware. A summary of our main deploy-
ments is shown in Table 1, and images of some of the sensors
are shown in Figure 1. The full sensor suite includes over
200 different enclosures in a single home, many of which
contained several different types of sensors, for a total of well
over 350 different sensors.

Almost all deployments had at least one wall-mounted
motion sensor per room (Figure 1(d)). We used motion sen-
sors manufactured by X10 because they were inexpensive
($5 per sensor) and could be surface mounted using double-
sided tape. Depending on the visibility required for the ex-
periment, motion sensors were placed on walls, on walls next
to doorways, on both sides of every doorway, and/or on every
window. In one deployment, multiple simultaneous experi-
ments resulted in 65 motion sensors in a home with 9 rooms.

We used contact reed switches (latch sensors) to de-
tect the use of objects, including appliances, cabinets,
doors/windows, lights, and water fixtures (Figure 1(h). We
originally used X10 sensors due to cost. In later experiments
when the contact switches served as ground truth sensors,
however, we switched to Aeon Labs Z-wave devices that use
a reliable communication protocol. We found reed switches
to be too obtrusive to use on light switches for long-term de-
ployments, and so we iterated through a custom design based



(a) Three Generations of Light Switch Sensors (b) Plug Load Monitor

(d) Motion Sensor

(f) Power Meter

(i) Light Sensor on Window (j)  Temperature

Sensor
Figure 1. We deployed a wide array of sensors in homes, a subset of which are shown in this figure. We used commercial
products whenever possible and designed and integrated custom solutions when necessary. We used latch sensors de-
signed for doors and windows to detect use of other objects in the home, including appliances, cabinets, light switches,
and water fixtures (h). As we gained experience and as the requirements of our experiments changed, we used multiple
generations of hardware designs for several of the sensing sub-systems, including light switch sensors (a) doorway sen-
sors that measure occupant height, motion, and door open/close status (c) and active registers that control air flow into
each room (e).



on the synapse-wireless SNAP mote, and off-the-shelf GE Z-
Wave home automation switches (Figure 1(a)).

We deployed ultrasonic range finders above doorways
to measure the height of people as they walked throughout
the homes to provide weak biometric identification, and de-
signed three hardware generations using range finders man-
ufactured by GoMotion, MaxBotix, and PING (Figure 1(c)).
To evaluate our tracking system, we used wearable RF bea-
cons and the motetrack tracking software [16].

For energy metering, we used the TED 5000 for whole-
house power metering, the Powerhouse Dynamic eMonitor
for circuit-level monitoring (Figure 1(f)), and an Aeon labs
Z-wave meter for plug load monitoring (Figure 1(b)). We
used Shenitech’s ST301 transit-time ultrasonic flow meter
for water metering and hot water usage monitoring (Fig-
ure 1(g)). We used different platforms to monitor light, tem-
perature, and humidity levels, depending on requirements for
sensor accuracy, sampling frequency, and battery lifetime,
including telosB motes, La Crosse Weather Direct TX60U-
IT weather sensors, and Onset data loggers.

For actuation, we used a Web-enabled thermostat from
the BAYweb company to control the heating and cooling
equipment. We designed and deployed three generations
of active air vent registers that could be wirelessly opened
and closed to control air flow into each room individually.
We also designed and built a custom thermostat based on
the Synapse-wireless SNAP device that used relay circuits to
control the HVAC equipment and in-line duct dampers.

System Architecture: Our system consisted of over a dozen
sub-systems: groups of sensors that interoperate and rely on
the same power source, software stack, and wireless bridge
or communication path. Most sub-systems were made by
different manufacturers, e.g. X10 sensors, although some
were custom designs. Figure 2 illustrates the integration of
several sub-systems, including their power and communica-
tion resources. Because of this sub-system heterogeneity,
each failure mode in the system caused data loss in a dif-
ferent subset of sensors.

Some of our sensing sub-systems were robust to both
short-term power outages and broadband disconnections.
Our telosb-based light and weather systems were completely
battery powered and transmit data using a wireless bridge
connected by USB to the gateway machine, which was typi-
cally a laptop computer with up to 5 hours of batter life and
over 100GB of hard disk space for buffering data before it
was sent to a remote database server hosted in our lab.

Many of our sensing sub-systems did rely on AC power
at some point, and therefore lost data even during short-term
power outages. For example, our active registers achieved
very low power wireless communication by exploiting a
communication backbone that was plugged into wall sock-
ets. The X10 sensors and Weather direct weather sensors
were all battery powered but used AC power for the wire-
less bridge. Our 3rd generation light switch sensors used
in-line power from the lighting circuits. The doorway sen-
sors, motetrack beacons, water meters, power meters, and
thermostats were powered through wall sockets, sometimes
using low-cost 120VAC to USB (5VDC) converters.

Central Database

— e

Thermostat

()
é¢

Relay Machine

Doorway Sensors m

Figure 2. Our system architecture includes a heteroge-
neous array of sensing sub-systems, each of which is sub-
ject to a different set of failure modes.

Light Switches

Two of our sensing sub-systems lost data if the home’s
router or broadband connection failed because they con-
nected directly to the home’s router and sent data to a
server hosted by the vendor, from where it was retrieved
by the home gateway machine. These sub-systems include
the Web-enabled thermostat and the Weather Direct weather
sensors. Any sub-system failed if its own bridge or software
stack failed, and all sub-systems failed if the gateway failed.

4 Reliability and Failure Analysis

In this section, we examine the main failure modes of our
system during four recent deployments.

Failure Detection and Classification: We identify down
time intervals for each sensor by defining the longest accept-
able time interval T between two consecutive data points; any
interval longer than T with no data is considered a down time
interval for that sensor. Due to timestamp jitter, this param-
eter is set to be about five times larger than the sampling
period for all sensors that collect data periodically. For mo-
tion sensors and object use sensors that are event driven and
generate data only in response to occupant activity, this pa-
rameter is set to 36 hours. Table 2 summarizes the parameter
T used for each sensor type.

Once all down time intervals are identified for each sen-
sor, we identify the root cause of failure. To do this, we
exploit the fact that each failure mode of our system causes
data loss in a distinct subset of sensors, identifying the root
cause of each failure based on the set of simultaneous sensor
failures, as follows:

1. Wireless link loss: down time of a single wireless sen-
sor for less than 47!

2. Battery dead: down time of a single battery-powered
sensor for longer than 4t

"'Wireless link loss is not assessed for event-driven X10 and Z-
wave sensors because they do not transmit periodically.



Sensor Type T (in seconds)
Bayweb 3600
Water 2
Weather Direct 300
SNAP 60
TED 4
Light 120
E-Monitor 10
X10 129600
Z-Wave 129600

Table 2. We identified periods of down time for each sen-
sor type by defining the longest acceptable time period t
between two consecutive data points.

3. Plug disconnected: down time of a single plug-
powered sensor for longer than 4t

4. Sub-system down: simultaneous down time of all sen-
sors in a single sensor sub-system

5. Internet Down: simultaneous down time of all sensors
reliant on a broadband link

6. Power outage: simultaneous down time of all sensors
reliant on AC power

7. Gateway down: simultaneous down time of all sensors

If a down time interval satisfies more than one rule, only
the root cause that explains the largest number of simulta-
neous sensor failures is asserted. For example, if all plug-
powered sensors are down, each individual sensor failure
could be explained by either a plug disconnection and a
power outage. In this case, the system only asserts the power
outage failure because it explains a larger number of sensor
failures. This policy imposes a partial ordering on the fail-
ure explanations, and that ordering can be derived for each
house based on the sensors installed in the house (Table 1)
and the power, communication, and gateway or Internet re-
sources used by each sensor (Section 3).

Our approach to identifying the root cause of failures is
similar to that of Sympathy [17]. The key difference is that
our approach is designed to run post-facto using only data
loss to identify failures; it does not rely on meta-data collec-
tion about system operation. During system operation, we
did use custom scripts and a tool called Nagios to identify
failures and report them to the researchers, serving a pur-
pose similar to Sympathy. Due to its on-line nature, how-
ever, this system suffered from false failure detections or
mis-classifications due to short-term data delays. The post-
facto approach that we present here uses hindsight to im-
prove failure analysis.

Results: We executed the failure detection and classification
algorithm described above on the four deployments named
G, H, I, and J in Table 1 for the seven-month period from
January 1, 2011 to August 1, 2011. We measure the effect of
a system failure in terms of sensor down time, using a metric
we call sensor-days: the length of the failure in days, multi-
plied by the number of sensors affected by the failure. This
metric measures the importance of a system failure in terms
of the number of sensors that are taken down, and gives all
sensors the same level of importance. This metric avoids giv-

Root Cause House G | House H | HouseI | HouseJ
Sensing Sub-system 4107 642 4757 274
Gateway Down 5596 0 3 136
Plug Disconnected 509 30 474 10
Battery Dead 452 17 168 0
Wireless Link Loss 410 0 122 1
Internet Down 251 97 178 9
Power Outage 21 0 87 2

Table 3. The total sensor down time for four of the de-
ployments listed in Table 1, broken down by root cause
and measured in sensor-days: #days * #sensors.

ing a higher weight to sensors that sample data periodically
than to sensors that are event driven.

Table 3 shows the sensor down time due to each type of
system failure in each house, and Figure 3 shows how a sub-
set of these failures change over the seven month period.
This data illustrates several surprising trends. For exam-
ple, AC power plug disconnections account for 1018 sensor-
days of sensor down time while dead batteries account for
636 sensor-days. These 4 homes, however, contained 135
battery-powered sensors and only 93 sensors plugged into
wall sockets. Thus, in our deployments, sensors were 2.3x
more likely to lose data due to being unplugged than to bat-
tery failure. This statistic does not include any additional
data lost by wall-powered nodes due to power outages.

Our analysis indicates that power outages were a minor
cause of data loss, but this result can be misleading because
most data lost during a power outage was attributed to gate-
way failure once its battery power was exhausted. Houses
G and H both had frequent power outages, sometimes for
over 24 hours, but the gateways in these houses only had
battery power for 60 and 30 minutes, respectively. House I
had much longer battery life on the gateway, causing more
data loss to be attributed to the power outages even though it
had far fewer power outages that the other two houses.

Wireless link loss is often a main challenge for reliable
data collection, but in our deployments accounts for only 532
sensor-days of down time. This value is lower than other
sources of sensor down time. For example, a single failure
of the gateway’s hard drive in House G caused the machine to
be taken down, diagnosed, and reconfigured twice, causing
5590 sensor-days of sensor down time.

Failure of entire sensing sub-systems caused the largest
amount of down time in all homes, accounting for 9780
sensor-days of down time across the four homes. These fail-
ures had many causes. For example, failure of the Z-wave
or X10 wireless bridge would cause down time in the en-
tire Z-wave sub-system. Similarly, a software bug would
crash the software stack on the gateway that read data from
the wireless bridge. Configuration changes were also com-
mon when the gateway, USB hub, or the home router would
restart, for example after a power outage. In this case, the
software stack might fail to restart, or the wireless bridge
might acquire an new USB address and not be found by
the software stack. Sub-system failures was so common be-
cause our system used nearly a dozen different COTS sub-
systems, each of which failed infrequently but in aggregate
caused substantial down time. Sub-system failures became
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Figure 3. Total sensor down time for four deployments, broken down by root cause over time. Individual sensing
sub-system failure is the dominant cause of down time, followed by failure of the gateway machine.

worse in all homes after April 8th, the submission deadline
for this conference paper, when other priorities ensued and
the research team did not maintain these sub-systems with
the same urgency. This trend underscores the high frequency
of maintenance required to operate the system.

5 A Hitchhiker’s Guide

Based on our experience and analysis, we have created
a set of guidelines to avoid many of the pitfalls and failures
that we observed in our deployments. We believe that studies
will increasingly be deployed in multiple houses over long
time periods because every home and every person is differ-
ent and, even within the same home, patterns change dramat-
ically over the course of weeks, months, and even years. Fur-
thermore, these systems will also include an increasing num-
ber of sensors in each home for redundant sensing because
data validation becomes increasingly difficult over long time

durations as users have a lower tolerance for surveys and
continuous self-reporting. For these reasons, our guidelines
focus on those challenges that are exacerbated at scale as de-
ployments grow in terms of the number of sensors, the num-
ber of homes, and time duration.

5.1 Homes are Not a Power Panacea

Myth: Sensors in homes can easily be powered using the
wall sockets.

Fact: Wall sockets provide neither abundant nor reliable
power, especially when deploying hundreds of nodes.

The availability of 120VAC power in homes does sim-
plify some sensing tasks, but it does not eliminate power is-
sues and considerations. We explored three different ways of
powering sensors in homes and found that batteries still have
an important place in large-scale residential sensing systems.
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Figure 4. Solar energy can be harvested indoors for only
8-9 hours per day, despite much longer days and indoor
light usage, and the energy harvesting time period does
not necessarily correspond with times of human activity.
The average power that can be harvested changes dra-
matically in different rooms and even locations within a
room.

Wall Sockets: In our experience, several practical consid-
erations severely limited the benefits of wall power, particu-
larly when deploying at large scale. First, homes do not have
enough wall receptacles to support all sensors in a large de-
ployment, and when too many receptacles are used we found
that users unplug sensors for their laptops, hairdryers, or vac-
uum cleaners. This became salient in one deployment when
we used all but 6 out of 40 power receptacles in a house,
many of which were filled beyond normal capacity using ex-
pansion adapters and power strips (Figure 5(a)).
Furthermore, contrary to the popular belief that wired
power is more reliable than battery power, in our deploy-
ments a wall-powered node was 2.3x more likely to lose
power than a battery-powered node. Wires were snagged,
pulled, cut and disconnected. They are also of particular
interest to animals and small children, and in one house
many plugs were periodically pulled out by a robotic vacuum
cleaner. Using wall power for a large deployment requires a
vast amount of wiring, especially in older homes where re-
ceptacles are few and far between, and in one home we de-
ployed over 250 linear feet of wire to power only 13 doorway
sensors, 40 feet of which were for a single sensor, snaking

through a hallway and into another room to reach the near-
est receptacle. This wiring is both unsightly and a snagging
hazard, particularly when it must run through doorways (Fig-
ure 5(c)) or near frequently moving objects (Figure 5(b)). It
is inevitable to have periodic problems with this quantity of
wiring, especially because it is particularly challenging to
mount securely: in addition to the time and material cost for
repair, long lines of holes from wire staples are unattractive
and can be impossible to repair perfectly.

Not only do wall-powered sensors incur more data loss
than battery powered sensors, they also require more fre-
quent service calls. Over a 3 month period in 2 houses,
we performed approximately two dozen service calls for 40
wall-powered sensors, but only 3-4 for over 100 battery-
powered sensors. This is because battery powered sensors
fail in a very predictable and correlated fashion, and all bat-
teries can be changed at once after the first sensor fails. Thus,
a single service call maintains all battery powered sensors. In
contrast, wall-powered sensors fail independently, and each
failure requires a service call. As the number of sensors in-
creases, therefore, service calls for wall-power sensors be-
come more frequent.

In-line Power: Sensors can be wired directly into the house
wiring, avoiding the possibility of a plug disconnection.
Snaking wires and opening up walls for sensor installation
is expensive and undesirable unless doing a permanent and
long-term installation, but some sensors can cheaply ac-
cess in-line power if they are integrated into appliances or
switch/receptacle enclosures. In-line power, however, can
make software errors more difficult to recover from because
cutting power to reboot the devices can only be done at the
breaker box, in some sense rebooting the house. This is the
main reason we opted to use batteries for our second gener-
ation light switch sensor (Figure 1(a)): as an experimental
prototype, we expected the software to occasionally crash.
Alternatively, a physical power switch or watchdog timer
must be used.

In-line power is fairly reliable but is still subject to power
outages, which can be frequent in any house due to blown
fuses and electrical storms, and particularly in older houses
with older wiring and above-ground power lines. In the 7
months that we analyzed, two of our houses (in the same
neighborhood) both experienced about 2 power outages per
month on average. Power outages did not typically last
long, and accounted for a total of only 92 sensor-days of
down time across all 4 homes. However, these outages of-
ten caused software and configuration errors that resulted in
much longer down times. In comparison, most of our battery
powered devices operate for a year or more without losing
power. Thus, in-line power may incur fewer maintenance
calls than battery power, but it is not necessarily more reli-
able.

Indoor Solar: Indoor solar power is one alternative to wall
power and battery power. Figure 5.1 shows the waveform
indicating the closed-circuit current produced by a 6 x 9
cm solar panel located at four different locations indoors,
as measured by a Fluke 287 multimeter. This panel is a
reasonable size for a wall-mounted sensor, if not too large.



Sensor Average Power | Peak Power
Temperature 4.4 uW 0.6 mW
Motion 3.1uW 8.1 mW
Object use 3.1uW 7 mW
Height 18.1 mW 04 W
Active Register | 1.8 mW 1.5W

Table 4. The devices used in our deployments have a wide
range of average and peak power characteristics.

The waveforms show that the amount of energy that can be
harvested indoors varies greatly with the location of the so-
lar panel. Thus, just as 120VAC is constrained to sensors
that can be placed near AC wall sockets or integrated into a
switch/receptacle, the use of indoor solar is constrained by
the physical placement requirements of the sensors. Further-
more, the time of day that energy can be harvested does not
typically correspond with the times at which the room is oc-
cupied, as indicated by the motion sensor readings on each
graph, and the use of artificial lighting at night generates al-
most no current in any room besides the bathroom. This mis-
match necessitates energy storage management, which com-
plicates the use of indoor solar power.

The power generated by a solar panel depends on the ac-
tual load characteristics, but can be upper bounded by mul-
tiplying the closed-circuit current /. by the maximum open-
circuit voltage V,,, which was measured to be 0.8V. Thus,
average power is upper bound by about 0.1mW, which is
enough to power temperature/humidity sensors or motion
sensors, but not height sensors (Table 4). For comparison,
this same solar panel produced at most 102mW outdoors.

5.2 Homes Have Poor Connectivity

Myth: Communication in homes can be achieved with
single-hop wireless and/or power line modems.

Fact: Homes are small but can still be challenging RF envi-
ronments, particularly for large-scale, dense, and heteroge-
neous networks.

Homes are small geographically and can easily be cov-
ered by wireless technology such as WiFi. However, sensor
nodes are often placed in exceptional locations, resulting in
worse connectivity for sensors than is typical for laptops and
WiFi. In one home, we placed thirteen 802.15.4 devices into
metal duct work and 22 Z-wave light switches into metal
junction boxes. Wireless connectivity of both radio proto-
cols was dramatically reduced and many of these nodes had
connectivity with only 1 or 2 neighboring nodes. Mount-
ing nodes onto surfaces also introduces attenuation due to
plaster, masonry, or concrete construction, and heavy metal
appliances. We deployed in one house with concrete slab
flooring separating the three levels and copper siding that
produced a Faraday cage, isolating wireless sensors outside.
Our current deployments produce up to 150 KB of data per
second, which forces us to partition the network into multiple
wireless channels, further inhibiting wireless connectivity.
The network was further partitioned to separate the powered
sensors from the unpowered sensors because they use differ-

ent MAC protocols, and to separate devices made by differ-
ent manufacturers. Throughout our deployments, we used
five types of wireless networking schemes: one best-effort,
single-hop wireless network; one proprietary single-hop net-
work; one single-hop network with link-level reliability; and
two networks with end-to-end multi-hop reliability. While
the systems achieved fair delivery rates, link loss accounted
for 532 sensor-days of down time over the seven month pe-
riod, which is larger than expected over such short distances.

Power Line Communication: The electrical wiring in a
home can be used as a transmission medium for high-
frequency signals, providing another option for residential
deployments called power line communication. However,
power line communication is not always practical for low-
power sensors. As discussed above, a large fraction of sen-
sors in homes cannot connect to the home’s electrical sys-
tem due to the challenges of running new wires in the home.
Furthermore, power lines are notoriously noisy, so narrow-
band modems must make a trade off between cost, data rate,
and robustness to noise. Robust power line modems that
achieve 200 Mbps are commercially available, but cost more
than many low-power sensors themselves. The power line
modems typically used for low-power sensing devices such
as X10 devices and the energy detective (TED) power me-
ter are more likely to have low data rates and/or to be more
vulnerable to noise on the line. This noise is caused by
many electronic devices and can be difficult to avoid or fil-
ter because new devices are continuously added and moved
throughout the house. On-line forums for X10 devices are
rife with discussion of data loss as deployments scale to
dozens of devices, and in our deployments we have observed
up to two weeks of almost continuous data loss on the power
line communication system used by our TED power meters.

5.3 Homes are Hazardous Environments

Myth: Robust enclosures are only important for extreme
outdoor environments.

Fact: Homes are safe environments for humans but can be
hazardous for sensors, particularly when hundreds of sen-
sors are deployed over long time durations.

The calculus of mean time to failure (MTTF) applies to
residential sensors just as it does to outdoor sensors: a low
failure rate for a single sensor can translate to a high fail-
ure rate for dozens or hundreds of sensors. Through our
experience, we have identified a number of unlikely causes
of sensor failure in homes that, in the aggregate for hun-
dreds or thousands of simultaneously deployed nodes, lead
to weekly or even daily system maintenance. For exam-
ple, sensors should always be child-proofed because they are
both a curiosity and a choking hazard to toddlers and pets.
Bright and flashing LEDs only exacerbate this hazard (Fig-
ure 5(a)). Sensors installed on objects such as microwaves,
faucets, or light switches must be well secured to avoid be-
ing dislodged during normal use. For example, the wires on
our first-generation light switch sensors were easily snagged
(Figure 1(a)), and our faucet sensors were subject to both wet
surfaces and user interference (Figure 1(h)). The mounting



(a) Overloaded Sockets

(b) Snag Hazard

(c) Snag Hazard

Figure 5. Wires are hazardous for reliability and maintenance. Users unplug devices when sockets are overloaded (a),
and wires are often snagged, especially when they are near moving objects (b) or run through doorways (c).

techniques should not rely on users learning to accommodate
sensors, because a large fraction of dislodged sensors in our
deployments were due to guests, cleaning services, and other
non-residents. Sensors and wires near the ground must be se-
cured from brooms and vacuum cleaners, particularly of the
robotic variety (Figure 5(b)). Sensors installed on furniture
such as bookshelves may be moved or hidden and produce
changed, invalid, or unreliable data.

Verify Constantly: With high failure rates and data rates, it
is critical to quickly and automatically identify sensor fail-
ures. For example, during the course of several months
we had over 500 sensors deployed in a half dozen houses,
streaming on the order of 100 million data points per day. A
1-year mean time to failure per sensor translates to more than
one failure per day and, indeed, only one day went by during
that period with no sensor failures. To address this, we de-
ployed a set of automated scripts for both component-level
checks and end-to-end data verification. These include:

e Network down: ensure that the machine at each house
can be reached.

e Service down: ensure that the service collecting a cer-
tain type of data at a house is running.

e Last entry time: ensure that each sensor has reported at
least once within a certain period.

* Minimum frequency: ensure that each sensor is report-
ing with at least a minimum frequency.

e Calibration: ensure that the average value of a sensor is
correct.

e Time incorrect: ensure that the local time on the ma-
chine at each house is correct.

e Load high: ensure that the CPU load of the server or
machine at a house is sufficiently low.

e Space low: ensure that the disk space of the server or
machine at a house is sufficiently high.

e Timestamps incorrect: ensure that the timestamps asso-
ciated with a sensor’s output is as expected.

These scripts were executed by a tool called Nagios that
logged the results and reported them to the researchers. Get-
ting researchers to respond to such alerts is still an open chal-
lenge, especially when there are several failures per day: it
is important not to have too many or too few alerts. Our first
implementation used email alerts, but a large number of false
positives and transient failures caused researchers to ignore
these alerts. We then used repeated emails every 10 min-
utes, but most such emails were spam filtered. Finally, we
projected all critical alerts onto a wall in our lab, together
with the duration of the alert (Figure 5.4). This approach
was effective because the entire research team was aware of
all failures, without the need for intrusive alerts. The projec-
tion was no longer actively used by the research team after
April 8, which resulted in the large increase of un-repaired
sub-system failures shown in Figure 3.

5.4 Homes are Remote Environments

Myth: Maintenance visits are not a problem for homes.
Fact: Investigators have very limited access to deployments
not in their own homes.

Volunteers for sensor deployments must make a personal
time commitment for scientists to enter their home and de-
ploy or maintain the system. This time is precious and must
be used wisely by the scientists. Short visits constrain the
volunteer’s mobility and appointment scheduling, and vis-
its longer than 4 hours interfere with meals. Visits of a full
day or more will typically be extremely limited. Therefore,
deployment and maintenance visits must be highly efficient
and optimized: dozens or hundreds of sensors must be de-
ployed in a matter of hours. Configuring, installing batteries,
assembling parts, and mounting a sensor may only take 10
minutes, but for 200 sensors this adds up to over 4 days of
installation time, eight hours per day. Furthermore, sensor
repairs must be made in batches to minimize service visits,
which will increase the average time to repair. Sensor fail-
ures in researchers’ homes were typically repaired in a mat-
ter of days while failures in volunteers’ homes sometimes
waited several weeks due to coordination constraints.



Custom Tailor Each Deployment: In contrast to previous
outdoor deployments that used assembly lines and batch op-
erations to minimize total deployment time [18], we found it
also important to minimize on-site deployment time: system
building, configuration, and testing must be moved to the lab,
to the extent possible. Every house is slightly different, so
each deployment requires two on-site components: the site
visit and the deployment. During the site visit, scout out the
deployment position of every single sensor, take measure-
ments, photographs, and make records on a floor plan. These
measurements must then be used for lab assembly and con-
figuration of the sensors. If wires are to be run, the path of the
wires should be determined and exact measurements made
so that the wires can be cut to the length before soldering. In
our case, we needed to check the location of pipes, the num-
ber and locations of electrical panels, styles of faucet fixture,
the number of light switches and the number of switches in
each gang box, the heights and widths of doorways, if the
floors were wooden or carpeted, and if walls were plaster,
concrete, or wallpapered. If accessing a crawl space, be sure
somebody on site will be able to fit into it. Assess each loca-
tion for wireless or wired connectivity options.

After the site visit, fully assemble and configure all sen-
sors in the lab: give each node an ID and pre-determine its
location. Print the locations on multiple floor plans so that
multiple people can deploy the sensors in parallel. Put any
labels with location and/or sensor ID on the back of the sen-
sors so they are not eye-catchers for the users after deploy-
ment (Figure 1(d)). Cover LEDs before deployment; unlike
programmable LEDs on experimental platforms, LEDs on
COTS devices (Figures 5(a)) must be disabled or covered
with electrical tape. For COTS sensors, insert batteries and
remove any packaging material in the lab. Assign all de-
ployment tasks before arriving on site. When designing and
deploying, consider maintenance time requirements. For ex-
ample, it may be faster to assemble sensors by hand, but de-
bugging hand-soldered circuits on-site is challenging while
taking them back to the lab requires two visits. Have circuits
manufactured when possible, despite increased development
time. Use velcro to attach sensors when battery compart-
ments are only accessible from the back.

Any tools or items forgotten can add hours of delay dur-
ing deployment. Put each sensor type in an individual box to-
gether with the deployment chart. If removing anything from
the house, such as old light switches, bring extra boxes for
simultaneous removal and installation. Bring jars for screws,
wire nuts, and other small parts. Count the electrical sockets
and bring expansion adapters or extension cables as neces-
sary. Count the tools needed for each installation and bring
enough sets for parallel installation. Bring tool belts to avoid
putting tools onto fine surfaces. Bring flash lights, garbage
bags, and a handheld vacuum cleaner for clean up afterward.
Bring extra sensors to the site; some are sure to be broken.

Test Three Times: Several outdoor deployment studies have
emphasized the need for both lab testing and deployment
time validation [2]. In our deployments, we also found it
critical to test immediately after deployment, because sen-
sors that are designed to monitor people are greatly affected

Figure 6. Our system constantly verifies system operation
and critical alerts are project onto a wall in our lab.

by the experimenters themselves. Thus, we advocate test-
ing not just twice, but three times: before leaving the lab, at
deployment time, and immediately after leaving the site.

In one of our deployments we installed over 60 motion
sensors in a house and all motion sensors were transmitting
constantly due to the number of researchers in the house,
causing data loss due to wireless collisions and corruption.
Once the deployment was done, however, the motion sen-
sors responded normally. In another example, we installed
our second generation doorway sensors into a house and con-
firmed that the system was working properly: all sensors re-
sponded with accurate height measurements and very little
noise. However, immediately after the deployment far fewer
people were in the house and noise levels skyrocketed due to
an increase in ultrasonic multipath echoes.

5.5 Expect Limited User Participation

Myth: Users can help maintain the system, and can provide
validation data through surveys or questionnaires.

Fact: A user’s ability to monitor and report activities in the
home is limited by the need to do those activities, particu-
larly in long-duration deployments.

When scaling residential systems to a large number of
houses and long-term deployments, it becomes increasingly
difficult to collect ground truth: a true report of what re-
ally happened in the house, needed to validate results. Who
cooked dinner on March 12, and at what time? When was
the dishwasher turned on? Were the occupants sleeping, or
just reading in the bedroom? Previous studies have used an-
notated video of people in a home [4], a human observer in
the home [7], or controlled experiments with pre-determined
activities [19]. However, these approaches do not scale well
because they are very labor intensive and/or they interfere
with the true patterns and characteristics of the natural resi-
dential environment.



An alternative approach is to ask the users to provide
ground truth data through surveys or questionnaires. How-
ever, we have performed 5 such studies, each requiring a dif-
ferent level of user participation, and found that we could
collect data either with high accuracy or for long time pe-
riods, but not both simultaneously. In real-time tracking
studies that required constant participation, we could achieve
high quality data for at most a few hours at a time. In stud-
ies that used surveys and self-reporting, users would report
activity times with 1-minute precision several times per day
for a few days, or with 15-minute precision once per day for
a few weeks. Users could repair or report sensor failures for
over a year, but would sometimes wait days or weeks before
doing so. Interestingly, it was not feasible to infrequently
query users about things like sequences of rooms occupied
or light switch usage; even though the queries were very in-
frequent, it was too demanding to require people to contin-
uously observe and remember such details about their own
lives.

Much like the energy in a sensor’s battery, user partici-
pation appears to come in finite quantities and can either be
used intensely in short bursts or slowly over long periods. We
do not believe that this trend is due to a lack of motivation.
Would tracking, for example, have been more effective if we
replaced the RF beacons with cell phones, which people are
more motivated to carry? Our participants reported carrying
the sensors as much or more often than their cell phones, and
typically forgot to carry the sensors at the same times that
they might not carry their phones: immediately after wak-
ing up, changing clothes, showering, or returning home. The
length of time we could collect consistent data was not lim-
ited by the individual, but by aggregate group performance:
in a multi-person home, it was highly likely that at least
one person had not carried the device in any given time pe-
riod. We found that limits on participation applied to co-
investigators and non-investigators alike: it was not a lack of
motivation, but rather that personal and family activities are
a necessary part of life, even for co-investigators, and people
can only tolerate so much interference due to participation in
a residential sensing study.

Thus, ground truth validation is a potential pitfall of long-
term, large-scale residential sensing studies, and may not be
detected until weeks or months into a deployment. To ad-
dress this, be sure to use redundant sensing and multiple
ground truth techniques that can be validated against each
other. This can lead to an explosion in the number of sen-
sors. For example, one of our studies required only 2 sensors
at the electrical and water mains of the house, but we needed
to install over 100 sensors to validate our measurements by
monitoring all light switches, plug loads, faucets and wa-
ter fixtures, and major appliances. We also use these object
sensors as a proxy metric for other studies such as tracking
accuracy: the consistency between object use in the house
and a person’s predicted location. Redundant sensing and
self-consistency can serve as long-term proxies, validated by
higher-accuracy but shorter-term techniques such as surveys,
self-reports, video annotation, and controlled experiments.

5.6 Aesthetics Matter in Homes

Myth: Users won’t mind a few sensors around the house.
Fact: Aesthetics constrain deployments, especially at large
scale and over long time durations.

Many people will accept sensors into their homes to ben-
efit science, but few want them as decor. Aesthetic appeal
is not typically a concern for wireless sensor network de-
sign but is important in homes, particularly when hundreds
of sensors are deployed over long time durations. For exam-
ple, our early generation systems were too unsightly to have
long-term feasibility. The visual landscape of every room
was dominated by wires, exposed circuit boards, and dozens
of sensors hanging from the walls, doors, windows, and ap-
pliances. The first-generation light switch sensors were par-
ticularly obtrusive because they partially blocked the light
switch itself (Figure 1(a)). Due to push back from users, we
designed our later generation systems to “disappear into the
woodwork™, quite literally. For example, the height sensors,
motion sensors and latch sensors were all fit into a single
enclosure that snaps into place behind the door jamb (Fig-
ure 1(c)). The COTS light switch sensor hides the electronics
behind the switch plate (Figure 1(a)). When designing sen-
sors, choose consistent colors for all components, including
enclosures, wires, adapters, tape, and mounting putty. Fur-
thermore, design around enclosures and materials that come
in multiple colors, including wood grains if possible. De-
crease the visibility of surface-mounted sensors by placing
them to maximize balance, alignment and symmetry with the
surrounding windows, trim, and other objects.

Leave No Trace: In a residential environment, sensors must
not just meet aesthetic criteria when mounted, but also when
taken down. Unlike a lab or even an office building where
nails and staples may be acceptable, the materials, surfaces,
and finishes in homes are often highly refined. We used gen-
erous quantities of double-sided tape in our early deploy-
ments, but soon found that it peels paint and even plaster
from the walls when removed. This is expensive and time
consuming to repair, particularly in homes with a different
paint color in every room. Our later systems used painter’s
tape (Figure 1(c)), but even that peels paint when left too
long. Our next generation deployments used mounting putty,
which works for short-term deployments, but overnight tem-
perature changes will cause it to slowly harden and, in one
house with hundreds of putty-mounted sensors, eventually
lead to a cacophony of sensors crashing to the ground every
4-6 hours. So far, we found that stretch-release mounting
strips by the name brand “3M Command” are the only solu-
tion that does not require extensive cleanup and repair once
the deployment is over. In addition to paint and plaster, sen-
sors can also cause other surface damage: water near sinks
will probably not break sensors but does lead to rust stains
over time, and sensors placed on unfinished wood can cause
uneven fading from the sun.

No LEDs at Night : In residential deployments, turning
off LEDs is not just a power consideration; it is also an aes-
thetic consideration, particularly at very large scale. LEDs
are often considered an annoyance on home electrics devices



such as televisions and alarm clocks, but become a first-class
problem when scaling to hundreds of sensor nodes. LEDs
on our sensors were barely visible when deploying during
the day, but some users complained that the LEDs were so
numerous and so bright that it was pointless to turn the lights
out, and that the house became a “circus” or a “laser light
show” at night. We calculate that our sensors introduced
over 150 new LEDs into one home. When deploying at such
scale, all LEDs must be covered or turned off. It is even nec-
essary to disable LEDs that are placed into plastic enclosures
(Figure 1(c)) or deep inside air ducts (Figure 1(e)) because
indirect reflections cause these features to glow at night. The
short-duration, event-triggered LEDs on our light and faucet
fixture sensors (Figure 1(h)) were less of an aesthetic con-
cern, but some users reported that they affected user behav-
ior by making them more cognizant of electricity and water
usage, which can be a concern for the scientific validity of
some experiments. Even LEDs on outdoor devices should
be disabled to avoid the curiosity of animals or passers by.

No Noise: Devices that make noise are a direct risk to con-
tinuous data collection and a “deal breaker” for long-term
deployments. For example, the ultrasonic transducers in our
first generation height sensors (Figure 1(c)) made a constant
clicking sound during operation, causing data loss at night
when users were forced to disable them. Noise from air re-
sistance in our second-generation active registers was toler-
able for the short term, but caused enough noise that they
were removed after a few months. Be sure to check whether
each device could make noise, even if it typically does not.
For example, the occupants of one deployment disconnected
all data collection devices when an uninterruptable power
supply (UPS) began beeping incessantly at 5:30am due to a
power outage. Several days of data were lost, and the system
would actually have been brought back on-line much faster if
the UPS had never been installed in the first place. Some de-
vices such as our 120VAC-to-5VDC converters (Figure 5(a))
cause a high-pitched ringing sound that will cause users to
unplug the sensors. These sounds were the hardest to pre-
vent because only a small fraction of devices make the noise
due to the high manufacturing variation for cheap electron-
ics, and only some people can hear it due to the very high
frequency.

5.7 Simplify the Architecture

Myth: Industry has already produced a wide range of suit-
able residential sensing systems.

Fact: Many COTS devices were not designed for large scale
deployments, and integration of many COTS platforms in-
creases the possible modes of system failure.

Most large-scale outdoor sensing deployments to date
have used custom designs that integrate all sensors into a sin-
gle system using one wireless bridge, one well-tested soft-
ware stack, one power source, and a small number of sub-
systems that need fail safes and redundancy. In the resi-
dential domain, sensing and home automation are old indus-
tries with a wealth of commercial off the shelf (COTS) prod-
ucts, and in our deployments we used COTS devices when-
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Figure 7. As an increasing number of X10 motion sen-

sors are added to the network, packet deliver ratio (PDR)

drops from 100% to near 20%.

ever possible (Figure 1). These products reduce design time,
but complicate the system architecture by introducing mul-
tiple protocols and communication paths, multiple bridges
and gateways, and multiple software stacks. Deploying a
dozen different COTS products in a single home is akin to
maintaining a dozen sensor networks simultaneously, each
with independent failures, and we found that maintenance ef-
fort increases with the number of different sub-systems more
than it does with the total number of sensors.

For example, in our system, some sensor data was col-
lected by the gateway through a wireless bridge while other
sensor data was collected through the home WiFi network
and router. Therefore, data is lost if either the gateway or
the router fails. Furthermore, every new hardware configura-
tion necessitates new robustness mechanisms. For example,
our data buffering tools on the gateway provide robustness
to broadband connection failure, but not for COTS devices
that send data directly to the vendor’s server. Similarly, each
sensor system that requires a new wireless bridge also ne-
cessitates a new software stack on the gateway machine to
read from that bridge, which multiplies effort for software
development, testing, and on-line maintenance. Heterogene-
ity of COTS products also increases deployment time be-
cause all sensors cannot be prepared and deployed using
efficient batch or pipeline operations, such as those used
for large-scale outdoor deployments of homogeneous net-
works [18]. Each additional COTS product introduces an-
other set of tasks, checklists, and risks.

Additionally, most inexpensive COTS products are de-
signed for the hobbyist or enthusiast deploying small-scale
home automation or security systems; they are not designed
for large-scale deployment or scientific validation. For ex-
ample, none of the COTS devices have packet sequence
numbers, making it difficult to analyze data loss, and some
devices such as the TED power meter actually hide data
corruption by repeating the last valid value. The GE light
switch sensors (Figure 1(a)) do not have reliable transmis-



sion, and must be polled periodically, which increases jit-
ter on event timestamps. Furthermore, these devices are de-
signed to be installed in small numbers, and contain numer-
ous defects that make them very time consuming to install
at large scale, including the need for a neutral wire in the
gang box; the need to reverse-engineer all 3-way and 4-way
switches in the house; wire nuts that make it difficult to fit
more than one sensor in a gang box; and metal tabs that must
be broken off when installing more than one sensor in the
same gang box. These defects added an entire day to the
installation time for each house. Wireless devices manufac-
tured by X10 (Figures 1(d) and 1(a)) are designed for very
low traffic rates and therefore use a simple wireless protocol
with no media access, reliability, or error detection mecha-
nisms: when data needs to be sent it is simply transmitted
five times. When deployed at large scale, the packet delivery
ratio (PDR) quickly degrades and false data and node IDs
begin to appear due to packet corruption. We quantified this
performance in a controlled experiment with an increasing
number of sensors, using five trials per configuration (Fig-
ure 7) and showed that PDR drops to near 20% with as few
as 4 nodes in the same radio cell. Thus, COTS devices are a
mixed blessing: they shorten design time but increase inte-
gration, deployment, and maintenance time, and they are not
designed for scientific validation.

6 Conclusions

In our experiences deploying over 1200 sensors in over
20 homes, we observed numerous facts and insights about
the challenges, hazards, and pitfalls of residential sensing.
These experiences are key for success in future deployments,
and in this paper we analyze the full set of all deployments
to distill a single set of guidelines, each supported by data,
images, and anecdotes from our experience, with the hope of
preventing others from repeating our mistakes.

In many ways, the realization that residential sensing is
more difficult than just plugging in a sensor and using WiFi
is analogous to the earlier realization that deploying a wire-
less sensor network is more difficult than installing sensors
in a lab or testbed. Indeed, many of the challenges of res-
idential sensing are also similar to those first identified for
outdoor environments: scale, realities of a hazardous envi-
ronment, limited access, energy management, and wireless
communication. We acknowledge these similarities and em-
brace them, and have tried to articulate the challenges of res-
idential sensing in those same terms. By doing so, we are
also better able to articulate the differences: the nature of
limited access, the types of hazards in the environment, and
the reasons why large scale and long-duration deployments
become challenging.
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