
Dynamic Conflict-free Query Scheduling for
Wireless Sensor Networks

Octav Chipara†, Chenyang Lu† and John Stankovic‡
† Department of Computer Science and Engineering‡ Department of Computer Science

Washington University in St. Louis University of Virginia
{ochipara, lu}@cse.wustl.edu stankovic@cs.virginia.edu

Abstract— With the emergence of high data rate sensor net-
work applications, there is an increasing demand for high-
performance query services in such networks. To meet this
challenge, we propose Dynamic Conflict-free Query Scheduling
(DCQS), a novel scheduling technique for queries in wireless sen-
sor networks. In contrast to earlier TDMA protocols designed for
general-purpose networks and workloads, DCQS is specifically
designed for query services supporting in-network data aggre-
gation. DCQS has several important features. First, it optimizes
the query performance and energy efficiency by exploiting the
temporal properties and precedence constraints introduced by
data aggregation. Second, it can efficiently adapt to dynamic
workloads and rate changes without explicitly reconstructing
the transmission schedule. In addition, we provide an analytical
capacity bound for DCQS in terms of query completion rate. This
bound enables DCQS to handle overload through rate control.
NS2 simulation results demonstrate that DCQS significantly
outperforms a representative TDMA protocol (DRAND) and the
802.11 protocol in terms of query latency, throughput, and energy
efficiency.

I. I NTRODUCTION

Early research on wireless sensor networks (WSNs) has fo-
cused on low data rate applications such as habitat monitoring
[1][2]. In contrast, recent years have seen the emergence of
high data rate applications such as real-time structural health
monitoring [3] and preventive equipment maintenance [4]. For
instance, a structural health monitoring system may need to
sample the acceleration of each sensor at a rate as high as 500
Hz, resulting in high network load when a large number of
sensors are deployed for fine-grained monitoring. Moreover,
the system may have highly variable workload in response
to environmental changes. For example, an earthquake may
trigger a large number of new queries in order to assess any
potential damage to the structure. Therefore, a key challenge is
to provide a high-throughput query service that can collect data
from large networks and adapt to dynamic workload changes.

To meet this challenge we presentDynamic Conflict-free
Query Scheduling(DCQS), a novel query scheduling protocol
designed to meet the communication needs of high data rate
applications. DCQS can be integrated with query services
(e.g., TinyDB [5]) for WSNs. A query service allows an
application or user to submit queries that periodically collect
data from a number of sources through a WSN. To improve
performance and conserve energy, the query service usually
performs in-network aggregation [5] as data is routed toward
a base station. In contrast to earlier TDMA scheduling tech-
niques designed for general workloads and networks, DCQS is

unique in that it takes advantage of the common properties of
WSN query services to construct a conflict-free transmission
schedule dynamically.

Specifically, DCQS has the following salient features: (1)
By tailoring the transmission schedule to the common com-
munication patterns introduced by periodic queries and in-
network aggregation, DCQS can achieve the high throughput
and low latency required by high data rate applications. (2)
DCQS candynamically adapt the transmission schedule in
response to workload changes. As a result, queries may be
added, removed, or their rates may be changed without the
need to recompute the transmission schedule. This property
makes DCQS particularly suitable for applications with vari-
able workloads. (3) DCQS provides predictable performance
in terms of both the maximum achievable query rate and
power consumption. The predictability of DCQS enables it to
effectively handle overload through simple rate control tech-
niques and provide predictable network lifetime. (4) DCQS is
designed to work on resource constrained devices with limited
memory and processing power.

The remainder of the paper is organized as follows. Sec-
tion II compares our approach to existing work. Section III
describes the query and network models we adopt. Section IV
details the design and analysis of DCQS. Section V describes
how DCQS handles dynamic networks and workloads. Sec-
tion VI provides simulation results using NS2. Section VII
concludes the paper.

II. RELATED WORK

TDMA scheduling is attractive for high data rate sensor
networks because it is energy efficient and may provide higher
throughput than CSMA/CA protocols under heavy load. Two
types of TDMA scheduling problems have been investigated
in the literature: node scheduling and link scheduling. In node
scheduling, the scheduler assigns slots to nodes whereas, in
link scheduling, the scheduler assigns slots to links through
which pairs of nodes communicate. In contrast to earlier work,
DCQS adopts a novel approach which we callquery schedul-
ing. Instead of assigning slots to each node or link, we assign
slots to transmissionsbased on the specific communication
patterns and temporal properties of queries in WSNs. This
approach allows DCQS to achieve high throughput and low
latency.

Early TDMA scheduling protocols were designed for static
or uniform workloads [6][7][8][9]. Such approaches are not

suitable for dynamic applications with variable and non-
uniform workloads. Several recent TDMA protocols can adapt
to changes in workload. A common method to handle vari-
able workloads is to have nodes periodically exchange traffic
statistics and then adjust the TDMA schedule based on the
observed workload [6][10][11]. However, exchanging traffic
statistics frequently may introduce non-negligible communi-
cation overhead. In contrast, DCQS can efficiently adapt to
changes in workloads by exploiting explicit query information
provided by the query service. Furthermore, it features a local
scheduling algorithm that can accommodate changes in query
rates and completions without explicitly reconstructing the
schedule.

TinyDB [5] is a representative query service that allows a
user to collect aggregated data from a sensor network through
a routing tree. It employs a coarse-grained scheduling scheme
that evenly divides the period of a query into communication
slots for nodes at different levels in a routing tree. TinyDB
does not address scheduling for multiple queries with different
timing properties. Moreover, the schedule of each node is fixed
and does not adapt to the workload. DCQS can be integrated
with TinyDB to enhance its performance and flexibility in the
face of heavy and variable workloads.

III. SYSTEM MODELS

A. Query Model

DCQS assumes a common query model in which source
nodes produce data reports periodically. This model fits many
applications that gather data from the environment at user
specified rates. Such applications generally rely on existing
query services such as TinyDB [12]. A query is characterized
by the following parameters: a set of sources that respond to
a query, a function for in-network aggregation [5], the query
period Pq, and the start time of the queryφq. Based on the
temporal properties of a query,query instancesare released
periodically to gather data from the WSN. We use the notation
Iq,k to refer to thekth instance of queryq. The query instance
Iq,k is released at timeRq,k = φq + k · Pq which we call the
release time ofIq,k.

A query service usually works as follows: a user issues
a query to a sensor network through a base station, which
disseminates the query description to all nodes. The query
description includes all query parameters. To facilitate data
aggregation, the query service constructs arouting treerooted
at the base station as the query is disseminated. The execution
of a query instance entails in-network data aggregation. Ac-
cordingly, each non-leaf node waits to receive the data reports
from its children, produces a new data report by aggregating
its data with the children’s data reports, and then sends it to
its parent. We assume that there is a single routing tree that
spans all nodes and it is used to execute all queries. This
assumption is consistent with the approach adopted by existing
query services [5]. During the lifetime of the application the
user may issue new queries, remove queries from execution, or
change the parameters of existing queries. DCQS is designed
to support dynamic queries efficiently.

Query services designed for WSNs usually support a wide
range of aggregation functions (e.g., min, sum, average, and
histogram) to improve the energy efficiency and performance
of queries. In spite of the diversity of queries that may be
issued, it is often the case that the communication workload
induced by different queries may be similar due to in-network
aggregation. For example, in TinyDB [5] queries for the
maximum temperature and the average humidity in a building
induce the same workload in the network: each node receives a
packet from every child, and then sends a packet to its parent.
For the max query, the outgoing packet includes the maximum
value of the data reports from itself and its children. For the
average query, the packet includes the sums of the values and
the number data sources that contributed to the sum. Therefore,
with respect to the communication requirements, these queries
are indistinguishable. Each aggregation function has an upper-
bound on the number of packets a node transmits. LetWq,a

be the number of packets nodea must transmit to satisfy
the workload demand of a queryq. We introduce the concept
of query classto denote those queries that induce the same
workload demand.

B. Network Model

DCQS works by constructing a conflict-free sched-
ule for query execution. To facilitate this we introduce
the Interference-Communication (IC) graph. The IC graph,
IC(E,V), has all nodes as vertices and has two types of
directed edges:communicationand interference edges. A
communication edge

−→
ab indicates that the packets transmitted

by a may be received byb. A subset of the communication
edges forms the routing tree that is used for data aggrega-
tion. An interference edge

−→
ab indicates thata’s transmission

interferes with any transmission intended forb even thougha’s
transmission may not be correctly received byb. The IC graph
is used to determine if two transmissions may be scheduled
concurrently. We say that two transmissions,

−→
ab and

−→
cd are

conflict-free (
−→
ab ‖

−→
cd) and may be scheduled concurrently

if (1) a, b, c, and d are distinct and (2)
−→
ad and

−→
cb are not

communication or interference edges inE.
The IC graph accounts for link asymmetry and for the

irregular communication and interference ranges observed in
WSN [13]. The IC graph may be stored in a distributed
fashion: each nodeonly needs to know its incoming/outgoing
communication and interference edges. It is feasible for a node
to determine its own communication and interference edges.
A practical solution for constructing the IC graph is presented
in [13].

IV. PROTOCOLDESIGN

DCQS has two core components: aplannerand ascheduler.
First, for each query class, the planner constructs atransmis-
sion plan according to which query instances of that class
are executed. A transmission plan is an ordered sequence of
steps, each comprised of a set of conflict-free transmissions.
To reduce the query latency, the planner minimizes the length

of the transmission plan while enforcing the precedence con-
straints required by data aggregation. Second, the scheduler
dynamically determines in what time slot each step in the
transmission plan should be executed. The scheduler executes
a step by executing the set of transmissions it contains.
To maximize the query completion rate, the scheduler may
overlap the execution of multiple query instances (of one
or multiple queries) by executing a step in each of their
transmission plans in the same slot. The scheduler ensures
that the transmissions executed in a slot are conflict-free by
enforcing a minimum inter-release time between the times
when a node starts the execution of two consecutive query
instances. This is a key feature of DCQS.

In presenting DCQS, we assume that clocks are synchro-
nized and the slot size is sufficiently large to transmit a
single packet. Clock synchronization is a fundamental service
in WSN as many applications must time-stamp their sensor
readings to infer meaningful information about the observed
events. Several time synchronization protocols for WSNs have
been proposed [14][15]. We also assume that the routing
tree and the IC graph are constructed in a bootstrapping
phase. In the rest of this paper, we first present a centralized
planner, which serves as a starting point for the design of the
distributed protocol. We then describe the local scheduler and
the distributed planner.

A. The Centralized Planner

In this section we present a centralized version of the
planner. In presenting the centralized planner we assume
the node executing the planner knows the entire IC graph.
The decentralized planner (see Section IV-C) removes this
assumption.

Definitions. A transmission planis an ordered sequence
of stepsthat executes a query instance. Instances of queries
belonging to the same query class have the same transmission
plan. This property allows DCQS to amortize the cost of
constructing a query plan over many queries and hence it
effectively reduces its overhead. A transmission plan has the
following properties: (1) In each step a set of conflict-free
transmissions are assigned. (2) The transmission plan respects
the precedence constraints introduced by data aggregation:
a node is assigned to transmit in a later step than any of
its children. (3) Each node is assigned in sufficient steps to
meet its workload demand. We useTc[s] to denote the set of
transmissions assigned to steps in the transmission plan of
query classc. Lc is the length of the transmission plan.

Since the execution of a query instance entails a node
performing a data aggregation operation, a node must wait to
receive the reports from all its children before it may transmit
the aggregated data report to its parent. Therefore, to minimize
the query latency, the planner assigns the transmissions of a
node with a larger depth in the routing tree to an earlier step
in the transmission plan. This strategy reduces query latency
because it reduces the time a node waits to receive the data
reports from all its children.

The pseudo-code of the centralized planner is shown in
Fig. 1. The centralized planner works in two stages. In the
first stage the planner constructs areversedtransmission plan
(Rc) in which a node’s transmission is assigned to anearlier
step than its children. In the second stage it constructs the
actual plan (Tc) by reversing the order of the steps to enforce
the precedence constraints. The planner maintains two sets
of nodes:completedand eligible. Node n is a member of
the completedset if the planner already assigned sufficient
steps to meetn’s workload demand. The seteligible contains
nodes whose parents are in thecompletedset. Initially, the
completedset contains the root and theeligibleset the children
of the root. The planner considers the eligible nodes in order
of their priority and assigns steps in which they transmit to
their parents. The priority of a node depends on its depth,
number of children, and ID. Nodes with smaller depth have a
higher priority. Among the nodes with the same depth the ones
with more children have higher priority. Node IDs are used to
break ties. After the planner assigns steps forn to transmit to
its parent, it movesn from the eligible set to the completed
set, and addsn’s children to theeligible set. The first stage
is completed when thecompletedset contains all the nodes
in the network. In the second stage, the planner reverses the
order of the steps in the reversed transmission plan to obtain
the actual plan (see line 7).

Let us consider how the scheduler assignsn’s transmissions
to its parentp in the reversed transmission plan. The planner
associates with each node two pieces information.n.minStep
is the step number in which the planner attempts to assignn’s
transmission top. In the field n.assignedSteps the planner
maintains the number of steps in whichn is assigned to
transmit. Since nodes with smaller depth have a higher priority,
p’s transmissions to its parent has already been assigned to
enough steps. Lets be the last step in the reversed planRc

in which p transmits to its parent. In the reversed plan the
earliest step in whichn may transmit its own data report
to p is Rc[n.minStep], where n.minStep = s + 1. This
means that, in the actual plan,p must transmit its data report
to its parent at least one step before the parent transmits
its data report. To determine if the transmission−→np may be
assigned toRc[n.minStep] without conflict, n must verify
that all transmission pairs that involve−→np and any transmission
already assigned toRc[n.minStep] are conflict free. The
planner assigns noden to transmit in multiple steps until its
workload demandWq,n is met.

Fig. 2 shows an example topology and the transmission plan
generated by the central planner. All nodes have a workload
demand of one packet. Initially, the children of the roota are
eligible. The planner starts by schedulingd since it has the
highest-priority among the eligible nodes (i.e., a’s children).
The planner assign

−→
da to step 1 sinceRc[1] = ∅. Next, b

becomes the highest-priority eligible node. The first step in
which

−→
ba may be assigned is step 1. However, since

−→
ba ∦

−→
da,−→

ba cannot be assigned to that step. We assign
−→
ba to step 2

sinceRc[2] = ∅. Similarly, −→ca and−→ea are assigned to steps

centralized-planner:
1: completed = {root}; eligible = children(root);
2: while (completed 6= V)
3: Let n be the highest-priority node ineligible
4: invoke assign-steps(n)
5: completed = completed ∪ {n}
6: eligible = eligible ∪ children(n)
7: reverse plan:Tc[s] = Rc[L− s]
assign-steps(n):
9: Let p be n’s parent and assigned.
10: Let Rc[s] be the last step in which a transmission−→np is assigned
11: n.minStep = s + 1; n.assignedSteps = 0
12: while (n.assignedSteps < Wq,n)

13: if −→np does not conflict with any transmission
−→
ab ∈ Rc[n.minStep]

14: Rc[n.minStep] = Rc[n.minStep] ∪ {−→np};
15: n.assignedSteps = n.assignedSteps + 1;
16: else n.minStep = n.minStep + 1

Fig. 1. The centralized planner.

a

b

c

d

e

f

g
r

h

k

s

j

t

I

m
z

w

n
o

p q 12

2

3

3

3

3

4

4

4

4

4

5

5

5

5

3

6

6

7

a d b c e m j hg
1
2
3
4
5
6
7

d
b
c
e

m
j
l

g

f
h
k o

n
z

w
t r

s

o

p
q

Reversed
Plan

1
2
3
4
5
6
7

Actual
Plan

Fig. 2. Example transmission plan. The edges without arrows are bi-
directional. The solid lines denote communication edges and the dotted lines
interference edges.

3 and 4, respectively. When the planner completes assigning
e’s transmission to its parent (−→ea), m becomes the highest-
priority eligible node. Since

−→
da is assigned to step 1, the first

step to which
−→
md may be assigned is 2. Since inRc[2] only−→

ba is assigned and
−→
md ‖

−→
ba, we assign

−→
md to step 2. A more

interesting case occurs whenf becomes the highest-priority
eligible node. The earliest step to which

−→
fb may be assigned

is 3, since the transmission of its parent’s transmission
−→
ba is

assigned to step 2. The planner first attempts to assign
−→
fb to

steps 3 and 4, but fails.
−→
fb cannot be assigned to step 3 due

to
−→
gb.

−→
fb cannot be assigned to step 4 because−→ea ∦

−→
fb due

to the interference edge
−→
eb. Since no transmission is currently

assigned toRc[5],
−→
fb is assigned to it. The first stage of the

planner continues to produce the transmission plan shown in
the table. In the second stage, the planner reverses the order
in which the steps are executed. Accordingly, the last step
in the reversed transmission plan (Rc[7]) is the first step in
the transmission plan (Tc[1]), the second to last step in the
reversed transmission plan (Rc[6]) is the second step in the
transmission plan (Tc[2]), and so on. The rightmost column of
the table shows the step assignment in the actual transmission
plan Tc.

B. The Scheduler

In this subsection, we first describe how to construct a
global conflict-free schedule. We then present an efficient local
scheduling algorithm. For clarity, we initially assume that all

queries belong to a single query class. Consequently, all query
instances are executed according to the same transmission
plan. Next, we extend our solution to handle multiple query
classes.

Definitions and notation. Each query instance executes an
instanceof the transmission plan. We useEq,k[s] to denote
the set of transmissions assigned to steps of Iq,k ’s instance of
a transmission plan. We say that two steps of query instances
Iq,k andIq′,k′ areconflict freeEq,k[s] ‖ Eq′,k′ [s′] if all pairs
of transmissions inTc[s] ∪ Tc′ [s′] are conflict free. We also
use the notationEq,k[s] ∦ Eq′,k′ [s′] to denote that the two
steps conflict with each other. The schedule should have the
following properties: (1) All steps scheduled in a slot are
conflict-free. (2) The relative order of the steps of the same
query instance is preserved: if stepEq,k[s] is scheduled in time
slot i, stepEq,k[s′] is scheduled in sloti′ and s > s′ then
i > i′. This ensures that the precedence constraints required
by aggregation are enforced.

The Brute Force Approach. Let us consider a brute-
force way to dynamically determining what steps should be
scheduled in the same slot. We say stepEq,k[s] is ready
if Eq,k[s − 1] has been executed. The first stepEq,k[1] is
ready when the query instanceIq,k is released at timeRq,k.
Intuitively, the brute force approach schedules in each slot
multiple conflict-free and ready steps. Priority is given to
executing steps in the transmissions plans of query instances
with earlier release times. To determine what steps may be
scheduled in a slot, we need to know if any two steps in the
transmission plan conflict. To facilitate this we construct a
conflict table of sizeLq×Lq that stores the conflicts between
any pairs of steps in the transmission plan of the query class.
Fig. 3(a) shows the conflict table of the transmission plan
presented in Fig. 2. Fig. 3(b) shows the transmission schedule
constructed using the brute force approach under saturation
conditions when a query instance is released after the first
step in the previous query instance was executed.

The brute force approach constructs the schedule as follows.
Initially, Eq,1[1] is the only step ready and it is scheduled
in slot 1. In slot 2, the stepsEq,1[2] and Eq,2[1] are ready.
However, the earliest slot whenEq,2[1] may be scheduled is
slot 4 since according to the conflict tableEq,2[1] ∦ Eq,1[1..3].
So, in slot 4 we scheduleEq,1[4] and Eq,2[1]. A more
interesting case occurs when scheduling the steps in slot6. In
slot6, Eq,1[6] is scheduled since it has the earliest release time.
Eq,2[3] cannot be executed in slot6 sinceEq,2[3] ∦ Eq,1[6].
However,Eq,3[1] is ready and its execution does not conflict
with Eq,1[6]. Therefore, it is also scheduled in slot6. The
process continues to construct the schedule presented in Fig.
3(c).

Unfortunately, the brute force approach is impractical due to
its high computation and storage costs. The computation time
for determining what steps to schedule in a slot is quadratic
in the number of ready steps in all query instances that
have been released. The memory cost for storing the conflict
table is quadratic in the length of the transmission plan. As
a result, the brute force approach cannot scale effectively

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(a) Conflict table.

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(b) Brute force approach.

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(c) DCQS approach.

Fig. 3. Scheduling approaches.

in large networks with multiple concurrent queries running
on resource constrained devices. To alleviate these problems
we may trade some of the throughput in favor of reduced
computational and storage costs. To this end, we impose the
additional constraint that the execution of a query instance
cannot bepreempted. The execution of a query instance is not
preempted if, once its first step is executed, the subsequent
steps of its transmission plan are executedwithout gapsin
the following slots. For example, in Fig. 3(b), the schedule
constructed by the brute force approach does not meet this
constraint because the execution ofIq,2 is preempted in slot
6.

Minimum inter-release time. We define theminimum inter-
release time, ∆, as the minimum number of slots the execution
of Iq,k must be delayed after another query instanceIq′,k′

starts executing such that the execution ofIq,k and Iq′,k′

are conflict-free. In other words, any two query instances are
conflict free as long as their inter-release time is no lower than
∆.

Consider the execution of two consecutive query instances
Iq′,k′ and Iq,k (from one or two queries). If the inter-release
time betweenIq,k and Iq′,k′ is δ and the execution of query
instances cannot be preempted, then the stepsEq,k[1] and
Eq′,k′ [δ+1] are scheduled in the same slot of the transmission
schedule. Hence,δ must be selected to ensure thatEq,k[1] ‖
Eq′,k′ [δ + 1]. However, the execution ofIq,k may start in any
slot afterδ steps in the transmission plan ofIq′,k′ are executed.
Therefore, we must guarantee thatEq,k[1] does not conflict
with Eq′,k′ [δ + 1] and any of the subsequent slot executions
i.e.,Eq,k[1] ‖ Eq′,k′ [δ+ i+1] for all i ∈ [0, Lc−δ−1], where
Lc if the length of the transmission plan of query classc. ∆ is
the smallest number such that the execution of any stepEq,k[s]
does not conflict withEq′,k′ [s + δ + i + 1] wheres ≤ Lc and
i ∈ [0, Lc − s− δ − 1]. Thus, the minimum inter-release time
is:

∆ = minδ∈[1,Lc](Eq,k[s] ‖ Eq′,k′ [s + δ + i + 1])
∀i ∈ [0, Lc − s− δ − 1], s ≤ Lc (1)

The Scheduler. Each node employs alocal scheduler
that schedules the transmissions of all query instances. The
scheduler maintains a queue of all query instances that have
been released and not completed. The query instances are
ordered by their release times. The scheduler starts executing
the first step of the first query instanceIq,k in the queue if the
minimum inter-release time constraint is satisfied: ifIq′,k′ is
the last query instance executed and its first step was scheduled
in slot i′, then the scheduler executes the first step ofIq,k,
Eq,k[1], in slot i′ + ∆. The execution of a query instance

cannot be preempted: the stepEq,k[s] is executed in the next
slot afterEq,k[s− 1] was executed until the query instance is
completed.

The scheduler executes the current step as follows: (i) If
there exists a transmission in the step in which the local node
is the sender, the scheduler submits the packet of the query
instance to the MAC layer for transmission. (ii) If there exists a
transmission in the step for which the local node is the receiver,
it keeps the radio active to receive the incoming packet. If
the local node is neither a sender nor a receiver in any of the
transmissions in the current step, it turns the radio off until the
next slot in which the local node is a receiver or sender. As a
result, the radio is active only when it is needed for sending
or receiving packets resulting in maximum energy savings.

The scheduler is simple and efficient making it feasible to
run it on resource-constrained devices. The time to determine
what steps are scheduled in a slot isO(1). Consequently, a
node may construct the transmission schedule dynamically.
Second, the memory cost of the algorithm is also significantly
lower than the brute force approach. The scheduler maintains
only the minimum inter-release time and a queue of query
instances.

Fig. 3(c) presents the schedule constructed when the mini-
mum inter-release time∆ is 4 slots. The constructed schedule
has slightly lower throughput than the one constructed using
the brute force approach. This illustrates our decision to trade-
off throughput to reduce the memory and processing costs.
However, our simulation results show that DCQS still achieves
significantly higher throughput than existing solutions. (see
Section VI).

Analysis. In the following we prove three properties of
the DCQS scheduler. First, we prove that the scheduler never
schedules conflicting transmissions in the same slot. Second,
we analyze the network capacity in terms of query completion
rate under DCQS. This result is important because it enables us
to prevent drastic performance degradation using rate control
(as described in Section V-B). Finally, we characterize the
energy consumption of a node.

Theorem 1:The scheduler executes conflict-free transmis-
sions in all slots.

Proof: Consider the scheduler constructing a
schedule for the following sequence of query instances
Iq1,k1 , Iq2,k2 , Iq2,k2 · · · . We will prove that the scheduler
does not execute in a slot conflicting steps in the execution
of query instancesIq1,k1 and Iqi,ki

. Consider the case when
Iq1,k1 and Iqi,ki

overlap. Let s1 and si be the steps in
the plans ofIq1,k1 and Iqi,ki

that the scheduler assigns in
the same slot. Since the scheduler enforces a minimum

inter-release time of∆ between consecutive query instances
then s1 − si ≥ (i − 1) · ∆ ≥ ∆ becausei ≥ 2 Thus, the
scheduler executes conflict-free transmission in any slot.

Theorem 2:The maximum query rate of DCQS is
1

∆·slotSize where slotSize is the size of a slot in seconds.

Proof: A query instance can be released every∆ slots.
Therefore the maximum query completion rate that can be
achieved is 1

∆·slotSize .
A network running DCQS has predictable power consump-

tion. DCQS keeps a noden awake only when it or one of its
children are scheduled to transmit a data report. Otherwise,
noden is scheduled to sleep. Therefore, the power consumed
by n to execute a queryq is:

Pwrn(q) =
1
Pq
·(Pwrrecv ·

∑
c∈child(n)

Wq[c]+Pwrsend·Wq[n])

(2)
The rate of queryq is 1

Pq
. Wq[c] is the maximum number of

packets a childc transmits ton to satisfy the workload demand
of q. Wq[n] is the maximum number of packets transmitted by
n to its parent.Pwrrecv andPwrsend is the power consumed
in receiving and transmitting a packet, respectively. Based on
Equation 2 the network lifetime may be computed.

Handling Multiple Query Classes. We now extend our
scheduler to the case when there are multiple query classes.
To this end, we must refine the definition of minimum inter-
release time to accommodate the case when query instances
have different transmission plans. We define∆(c, c′) as the
minimum number of slots a query instance of classc must
wait after a query instance of classc′ started its execution such
that there are no conflicts. Note that∆ is not commutative.

Given the minimum inter-release times between any ordered
pairs of query classes, the scheduler needs to control the inter-
release times of two consecutive query instances based on their
query classes. We note that the storage cost of multiple class
scheduler is quadratic in the number of queryclasses, since
we must store the minimum inter-release time of each ordered
pair of query classes. However, as discussed in Section III-
A, usually only a small number of query classes are used in
practice.

C. Distributed Planner

In this subsection we present a distributed planner which
uses only neighborhood information in constructing trans-
mission plans. Specifically, a node knows only its adjacent
communication and interference edges (e.g., by executing the
RID protocol [13]). We say that a node is inn’s one-hop
neighborhoodif there is a communication or interference edge
between it andn. n’s two hop neighborhood includesn’s
one-hop neighbors and their one-hop neighbors. After running
the decentralized planner a node knows itslocal plan which
contains the step assignments for its two-hop neighbors.

To construct a local transmission plan, a node communi-
cates only with its one-hop neighbors. However, some of the

neighbors may lie outside the node’s communication range. A
routing algorithm or limited flooding may be used to commu-
nicate with these nodes over multiple hops. Alternatively, the
transmission power of the sender may be increased to reach
the one-hop neighbors in a single hop. Like RID [13], our
implementation in the simulations adopted the latter approach.

A node n constructs a transmission plan in three stages:
plan formulation, plan dissemination, and plan reversal. The
formulation stage starts when a noden becomes the highest-
priority eligible node in its one-hop neighborhood. When
this occurs,n broadcasts aPlan Requestpacket to gather
information about transmissions which have already been
assigned steps. To construct a conflict-free plan,n must know
the steps in which its two-hop neighbors with higher priorities
were assigned. Upon receiving thePlan Requestfrom n, each
one-hop neighbor checks if there is a node in its own one-
hop neighborhood that has a higher priority thann. If no such
node exists, the receiver responds with aPlan Feedbackpacket
containing its local plan. Otherwise, the node does not reply.
After a time-out, noden will retransmit thePlan Requestto get
any missingPlan Feedbackfrom its one-hop neighbors. Since
all Plan Feedbackare destined forn, to reduce the probability
of packet collisions, nodes randomize their transmissions in
a small window. Oncen receives thePlan Feedback, it has
sufficient information to assign its transmissions to its parent
using the same method as the centralized planner. In the
second stage,n disseminates its local plan to its one-hop
neighbors via aPlan Sendpacket. Upon receiving aPlan
Send, a node updates its plan accordingly and acknowledges
its action via aPlan Commitmessage.

To ensure that DCQS constructs a conflict-free schedule,
neighboring nodes must have consistent transmission plans.
We note that the distributed planner achieves this objective
through retransmission when needed. If aPlan Feedback
message from some neighbors are lost, noden assumes that a
higher priority node has not yet been scheduled and retransmits
thePlan Requestuntil it has received Plan Feedback from each
neighbor or reached the maximum number of re-transmissions.
Similarly, during the plan dissemination stage, noden retrans-
mits the plan until all its neighbors acknowledge the correct
reception of itsPlan Sendvia thePlan Commitmessage.

Finally, the planner reverses the transmission plan. To do
this, a node must know the length of the global transmis-
sion plan. We take advantage of the routing tree and data
aggregation to compute the length of the transmission plan as
follows. A node computes the length of its local transmission
plan length based on the maximum step number in which
a transmission/reception is assigned. The node aggregates its
local length of the transmission plan with that of its children
by taking the maximum of the two. The result is sent to its
parent. At the base-station, the plan length may be computed.
The root then uses the routing tree to disseminate this value
to each node. Upon receiving the plan length a node reverses
its transmission plans.

Distributed computation of minimum inter-release
times. An important feature of DCQS scheduler is that they

are localized. Node will independently construct the same
transmission schedule as long as they have a consistent
view of the query parameters, local transmission plans and
the minimum inter-release time. The query descriptions are
disseminated to all nodes in the network so that they can
determine whether they should respond to a query. We now
enhance the distributed planner to compute the minimum inter-
release times.

The key to compute the minimum inter-release time in a
distributed manner lies in the observation that a node may
compute its local value for the minimum inter-release time
based on the its local transmission plan and its local knowledge
of the IC graph according to (1). The minimum inter-release
time of the global plan is the maximum of the minimum inter-
release times of the local plans. This suggests that, similar to
the length of the transmission plan, the global minimum inter-
release time can be computed using in-network aggregation.
In fact, the two may be computed concurrently. Once the
aggregation process is complete, the root can compute the
length, and minimum inter-release time of the transmission
plan and then disseminate them to all nodes in the network.

V. HANDLING DYNAMICS

A. Dynamic Workload

DCQS can efficiently adapt to changes in the workload
including arrival, deletion, and rate change of queries. Con-
sider the case where a user issues a new query. The query
service disseminates the query type and parameters to all
nodes in the network. Next, DCQS checks if a transmission
plan for the issued query was previously constructed. If no
transmission plan was constructed, DCQS uses the decen-
tralized planner to compute a new transmission plan and the
minimum inter-release times. DCQS isolates the execution of
current queries from the setup of new queries by periodically
reserving slots for protocol maintenance. During the protocol
maintenance slots, the planner computes the transmission plan
and minimum inter-release times. Once they are computed, the
scheduler has sufficient information to construct a conflict-free
schedule which accounts for execution of the new query.

If a query from the same class was previously issued, a
transmission plan for that class has already been constructed.
As previously mentioned, queries from the same class share
the same transmission plans and minimum inter-release time.
Since usually there are only a small number of query classes,
it is likely that DCQS already computed the transmission plan
and minimum inter-release times of a class. In this case, DCQS
can handle the new query without any additional overhead.
Similarly, DCQS can also handle query deletions and rate
changes of existing queries without any overhead.

B. Preventing Overload

A key advantage of DCQS is that it has a known capacity
bound in terms of the maximum query completion rate, as
shown in Theorem 2. This bound enables DCQS to easily
detect overload conditions which obviates the need for com-
plex congestion control mechanisms. When the user issues a

query, DCQS computes the total query rate
∑

q
1

Pq
(including

the query to be issued). If the total query rate is smaller than
the network capacity, then the query can be admitted to the
network. Otherwise, we consider the following two options.
First, the user may be notified that the query will not be
executed because the network capacity would be exceeded.
Second, DCQS may reduce the rates of existing queries to
allow the new query to be executed. For example, a simple
rate control policy is to reduce the rates of all queries propor-
tionally by multiplying their rates byα = (

∑
q Pq

∆·slotSize). This
rate control policy is used in our simulations. As discussed in
the previous section, DCQS may modify the period of a query
without recomputing the transmission plan or minimum inter-
release times. Therefore, the only overhead is to disseminate
the new rates of the existing queries to the network.

C. Handling Topology Changes

We now describe how DCQS handle topology changes due
to node or link failures. For DCQS to detect topology changes,
we increase the slot size to allow a parent to acknowledge the
correct reception of a data report from its child. A child can
detect the failure of its parent or their link if it does not receive
ACKs from its parent for several consecutive transmissions. A
parent detects a child failure if it does not receive any data
reports from that child for a number of query periods.

For all nodes to maintain a consistent schedule, DCQS
must ensure the following: (1) thetwo-hop neighborsof a
node have a consistent view of its local transmission plan,
which dictates when the node transmits and receives data
reports; (2)all nodeshave consistent information about the
length of the transmission plans and the minimum inter-
release times. In response to topology changes, the routing
tree must be adjusted. Consider the case when a noden
detects that its parentp failed and, as a result, it must select
a new parentp′. This entails the planner assigning a step in
the transmission plan for

−→
np′, while the step in which the

transmission−→np is scheduled must be reclaimed. If
−→
np′ can be

assigned to the step in which−→np was scheduled or a different
step without conflictsthen DCQS only needs to update the
local transmission plan. This involves noden disseminating
its updated transmission plan to its two-hop neighbors. If this
is not possible, then DCQS must start recomputing a new
transmission plan. We note that the computation of the new
plan affects only nodes with lower priority thann. If during the
computation of the plan either the minimum inter-release times
or the transmission plan lengths are modified, this information
must be disseminated to all nodes in the network. Consider the
case when a child nodec of n failed. In this case, the step
in which c is assigned should be reclaimed. To reduce the
overhead, DCQS reclaims such slots only when other topology
changes occur.

To reduce the cost of handling topology changes, we now
describe an approach to constructing robust transmission plans
that can tolerate some topology changes. To handle this we
change the mechanism used to adapt the routing tree in
response to link or node failure. We allow a node to change

its parent in the routing tree as long as the new parent is
selected from a predefinedset of potential parents. Our goal
is to construct transmission plans that are insensitive to a
node changing its parent under the constraint that the new
parent is in the set of potential parents. To this end, we
introduce the concept ofvirtual transmissions. Although node
n actually transmits to a single potential parent, we construct
the transmission plan and compute the minimum inter-release
times as ifn transmits toall potential parents. We trade-off
some of the throughput in favor of better tolerating topology
changes. This trade-off is similar to other TDMA algorithms
designed to handle topology changes [16][17]. To implement
this strategy in DCQS, we refine the definition of conflict free
transmissions. We define avirtual transmissionof node n,
v(n), as the set of transmissions betweenn and its potential
parents. We say that two virtual transmissionsv(n) andv(m)
are conflict free if there is no pair of transmissions,

−→
ab ∈ v(n)

and
−→
cd ∈ v(m), such that

−→
ab and

−→
cd conflict.

VI. EXPERIMENTS

We implemented the distributed version of DCQS in NS2.
Our simulation settings are similar to 802.11b radios. This is
because we are interested in high data rate applications such
as structural monitoring and preventive maintenance. Sensor
nodes used for such applications often adopt high-bandwidth
radios. For example, the DuraNode [4] designed for structural
health monitoring is equipped with an 802.11b WLAN card.
Some applications may adopt hierarchical network architec-
tures that integrate high-bandwidth wireless networks with tra-
ditional low-bandwidth sensor networks. For instance, Intel’s
sensor network deployed for preventive maintenance employs
an 802.11 ad hoc network with a lower-tier mote network [4].

In our simulations, the network bandwidth is 2Mbps. The
communication range is 125m. The power consumed for trans-
mitting and receiving a packet is 1.6W and 1.4W, respectively.
The size of a packet is 2040 bytes, of which 20 bytes are used
for packet headers. Based on packet size and bandwidth we
computed the slot size to be 8.16ms. The queue size is 10
packets. Each experimental run takes 200s.

In the beginning of the simulation we construct the IC graph
and the routing tree. The IC graph is constructed similarly to
the method described in [13]. The routing tree is constructed
as follows. The node closest to the center of the topology is
selected as the base-station and is the root of the routing tree.
The base station initiates the construction of the routing tree
by flooding setup requests. A node may receive setup requests
from multiple nodes and selects the node with the latest depth
as its parent. Each node in the routing tree performs in-network
aggregation when executing a query. We assume that each
aggregated data report fits in a single packet. The queries
issued involve all nodes in the network. In all experiments
the queries belong to the same query class.

For performance comparison we ran two baselines:
802.11b[18] and DRAND[19]. 802.11b is representative
CSMA/CA-based protocol, while DRAND is a representative
node-scheduling TDMA protocol. Unlike DCQS, DRAND

does not account for the interference relationships among
nodes. Hence, the schedule it constructs may still result in
collisions. To avoid this problem, we modified DRAND to
treat the interference edges in the IC graph as communication
edges. We augmented DRAND with a sleep-scheduling policy:
a node is kept awake if DRAND schedules it or one of its
children to transmit; otherwise, the node is put to sleep to
conserve energy.

We evaluated the performance of DCQS and the baselines
according to four metrics: query completion rate, query fi-
delity, query latency, and energy efficiency. The query comple-
tion rate is defined as the number of query instances completed
per second during a run. A query instance is complete if
the base station received at least a data report from its
children. During the simulations data reports may be dropped
preventing some sources from contributing to the query result.
We quantify the quality of a query result using the query
fidelity metric. The query fidelity is the ratio of the number
of sources that contributed to the query result received by the
base station and the total number of sources. We measure the
energy efficiency by dividing the total energy consumed in a
run by the total number of data reports that contributed to the
query results.

We start by evaluating the performance of DCQS when there
is a single query executed in the network. This experiment
is designed to validate the analytical results on network
capacity and power efficiency presented Section V. The next
experiment compares the performance of DCQS to that of the
baselines when multiple queries are executed in the network
and the workload is varied by changing the period of the
queries. The last experiment shows the scalability of DCQS
compared to that of DRAND when the number of nodes in
the network is varied.

A. Single Query

The first experiment is designed to validate our capacity
result and to show the effectiveness of our rate control policy.
We ran DCQS with both the rate control policy and without
it. DCQS-RC denotes DCQS running in conjunction the rate
control policy.

A single query is executed in the network. The results are
obtained from a topology of size 675m×675m. The topology
is divided into grids of 75m×75m. In each grid a node is
placed at random. Under these settings, DCQS constructed
a transmission plan with∆ = 26 slots. According to Theo-
rem 2 the maximum query rate that DCQS may support is

1
26·8.16ms = 4.7Hz. The vertical lines in Fig. 4 indicates the
network capacity. To validate the capacity bound the query
rate is varied between 4.1Hz to 4.9Hz in increments of 0.1Hz.
Each result obtained in this experiment is from a single run.
We chose to present results from a single run, because for
different topologies DCQS constructs transmission plans with
different ∆ values.

Fig. 4(a) shows the query completion rate. We observe that
the increase in query rate is matched by an increase in the
query completion rate until the network capacity is reached.

 0

 1

 2

 3

 4

 5

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 c

om
pl

et
io

n
ra

te
 (

H
z)

Query rate (Hz)

1/∆ = 4.712 Hz

DCQT
DCQT-RC

 0

 1

 2

 3

 4

 5

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 c

om
pl

et
io

n
ra

te
 (

H
z)

Query rate (Hz)

1/∆ = 4.712 Hz

(a) Query completion rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 fi

de
lit

y

Query rate (Hz)

1/∆ = 4.712 Hz

DCQS
DCQS-RC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 fi

de
lit

y

Query rate (Hz)

1/∆ = 4.712 Hz

(b) Query fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 la

te
nc

y
(s

)

Query rate (Hz)

1/∆ = 4.712 Hz

DCQS
DCQS-RC

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 4.2 4.4 4.6 4.8 5

Q
ue

ry
 la

te
nc

y
(s

)

Query rate (Hz)

1/∆ = 4.712 Hz

(c) Query latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 4.2 4.4 4.6 4.8 5

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

da
ta

 r
ep

or
t (

J)

Query rate (Hz)

DCQS
DCQS-RC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 4.2 4.4 4.6 4.8 5

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

da
ta

 r
ep

or
t (

J)

Query rate (Hz)

(d) Energy efficiency

Fig. 4. Throughput, fidelity, delay and energy for a single query when the query rate is varied.

 0

 1

 2

 3

 4

 5

 6

 2.5 3 3.5 4 4.5 5

Q
ue

ry
 c

om
pl

et
io

n
ra

te
 (

H
z)

Total query rate (Hz)

DCQS
DCQS-RC

802.11
DRAND

(a) Query completion rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2.5 3 3.5 4 4.5 5

Q
ue

ry
 fi

de
lit

y

Total query rate (Hz)

DCQS
DCQS-RC

802.11
DRAND

(b) Query fidelity

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2.5 3 3.5 4 4.5 5

Q
ue

ry
 la

te
nc

y
(s

)

Total query rate (Hz)

DCQS
DCQS-RC

802.11
DRAND

(c) Query latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2.5 3 3.5 4 4.5 5

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

da
ta

 r
ep

or
t (

J)

Total query rate (Hz)

DCQS
DCQS-RC

DRAND

(d) Energy efficiency

Fig. 5. Throughput, fidelity, delay and energy for a four queries are executed and their base rate is varied.

When workload exceeds the network capacity, the performance
of DCQS degrades drastically. As discussed in Section V-
B rate control may be used to avoid triggering the capacity
bottlenecks. As shown in the figure, DCQS-RC which uses
rate control maintains its good performance even when the
offered load exceeds the network capacity.

Fig. 4(b) shows the data fidelity. DCQS provides 100%
query fidelity up to the maximum query rate. This result
shows that the schedule constructed by DCQS is conflict-
free, validating the correctness of our algorithms. In addition,
DCQS-RC, which uses the rate control policy, avoids the drop
in query fidelity under overload conditions. A similar pattern
may be observed in terms of delay as shown in Fig. 4(c). Both
DCQS and DCQS-RC have similar latencies up to the network
capacity. If the capacity is exceeded and the rate control is not
used, the query latency increases sharply. In contrast, DCQS-
RC is unaffected by the overload conditions.

Fig 4(d) shows the energy consumed per data packet. As
predicted by Equation 2, when the data fidelity is 100%,
the energy consumed per data packet is constant. This result
validates our analysis of the network lifetime. This figure also
indicates the advantage of rate control: DCQS-RC avoids the
decrease in energy efficiency in overload conditions.

B. Multiple Queries

This set of experiments is designed to compare the per-
formance of DCQS to that of the baselines under different
workloads. The workload is generated by running four queries
with different rates. The ratio of the rates of the four queries
Q1 : Q2 : Q3 : Q4 is 8:4:2:1. We refer toQ1’s as the base-
rate. We vary the workload by changing the base rate. The start
time of the queries is spread evenly in an interval of81.6ms.
The topology setup is identical to the previous experiment.
Each data point is the average of five runs. We also plot the
90% confidence interval for each point.

Fig. 5(a) shows the query completion rate when the total
query rate is varied. A common trend may be observed: the
protocols match the increase in the total query rate up to
their respective maximum capacity and then their performance
plummets. The lowest throughput is obtained by 802.11 pro-
tocol. The reason for this outcome is that the capacity of
802.11 is exceeded in all tested settings. This is because
contention based protocols perform poorly under heavy work-
loads. DRAND outperforms 802.11. It achieves a maximum
query completion rate of 3.11Hz when the total query rate is
3.19Hz. DCQS and DCQS-RC clearly outperform DRAND,
DCQS-RC achieving maximum query rate of 4.7Hz which is
about 47% higher than DRAND. This result is attributed to the
fact that DRAND assigns slots to nodes fairly. Fair allocation
is unsuitable for queries in WSNs because different nodes may
have different communication load. For example, a node with
more children need to receive more messages per each query
instance. As in the previous experiment, DCQS-RC maintains
its good performance even under overload conditions. This
shows that our rate control policy works not only in the single-
query case, but also in the multi-query case.

Fig. 5(b) shows the query fidelity of the protocols. As
expected, 802.11 has poor query fidelity, whereas the TDMA
protocols perform much better. DRAND maintains its high
query fidelity up to its maximum query completion rate of
3.11Hz after which it plummets. The reason for this is that
the transmission queues fill-up and packets are dropped. In
contrast, DCQS-RC maintains 100% fidelity for all tested
query rates.

Fig. 5(c) shows the query latency of the presented protocols.
Even when the query rate is low, DCQS has significantly better
query latency than DRAND. For example, when the query rate
is 2.39Hz, DRAND has a query latency of 1.31s. In contrast,
DCQS has a latency of 0.38s which is 70% lower than that of
DRAND. DRAND has a long query latency because at each
hop a node may need to wait for the duration of an entire frame
before it may transmit its packet to the parent. In contrast,
DCQS accounts for the precedence constraints introduced by
data aggregation when constructing the transmission plans.
This results in a significant reduction in the query latency.

Fig. 5(d) presents the energy consumed per data report. We
observe an improvement in the energy consumed by DRAND
with the query rate up to3.19Hz. The performance drastically
degrades after this point due to packet loses. Even under
light loads, DCQS performs better than DRAND in terms of
energy. The reason is that DRAND must remain awake when
a child is scheduled to transmit even if the child node has
no packets to transmit. In contrast, DCQS takes advantage
of temporal properties of the workload to wake-up nodes
only when necessary. As observed in the previous set of
experiments, the energy consumption per packet of DCQS is
constant.

This set of experiments indicates that DCQS significantly
outperforms both 802.11 and DRAND in all the considered
metrics. Two factors contribute DCQS’s high performance.
First, the planner constructs transmission plans based on a
heuristic that accounts for the precedence constraints intro-
duced by data aggregation. This is highly effective in reducing
message latency. Second, the scheduler overlaps the execution
of multiple query instances to increase the query completion
rate.

C. Scalability

The last set of experiments is designed to evaluate the scal-
ability of DCQS and DRAND. To this end we constructed five
topologies with an increasing number of nodes by increasing
the deployment area and keeping the node density constant. All
topologies are squares with edges of size 675m, 750m, 825m,
and 900m. Each area is divided into grids of size 75m×75m.
In each grid, a node is placed at random. Each data point is
the average of five runs and plot the 90% confidence intervals.

Fig. 6(a) shows the maximum completion rate that may
be achieved by DCQS and DRAND for each topology. The
maximum query completion rate of DCQS was computed
theoretically and then verified experimentally. To determine
the maximum query completion of DRAND we increased, the
query rate until the query fidelity dropped below 90%. This is

 0

 1

 2

 3

 4

 5

 6

 80 90 100 110 120 130 140 150 160 170

M
ax

im
um

 q
ue

ry
 c

om
pl

et
io

n
ra

te
 (

H
z)

Number of nodes

DCQS-RC
DRAND

(a) Query completion rate

 0

 0.5

 1

 1.5

 2

 80 90 100 110 120 130 140 150 160 170

Q
ue

ry
 la

te
nc

y
(s

)

Number of nodes

DCQS-RC
DRAND

(b) Query latency

Fig. 6. Maximum query completion rates and query latency obtained when the number of nodes is increased but the density is kept constant.

reasonable since the DRAND drops packets only if the queue
of a node fills up. When the topology has 81 nodes, DCQS
outperforms DRAND by 54%. When the topology contains
169 nodes, the performance gap between the two protocols
increases, DCQS outperforming DRAND by 74%.

Fig. 6(b) shows the query latency at the maximum query
rate supported by each protocol. The query latency of DRAND
increases with the number of nodes. In contrast, the query
latency of DCQS increases only slightly. The key to under-
standing this result is that the one-hop delay of DRAND is
significantly larger than that of DCQS. The one-hop delay
corresponds to the slope of the shown curves. When using
DRAND, a node often needs to wait for the entire length
of a frame before it may transmit its packet. In contrast,
DCQS has low one-hop delays. Two factors contribute to
this. First, DCQS organizes its transmissions to account for
the precedence constraints introduced by data aggregation.
Second, DCQS executes multiple query instances concurrently.
As such, the time until the query instance starts being executed
is reduced.

VII. C ONCLUSIONS

This paper presents DCQS, a novel query scheduling proto-
col specifically designed for query services in wireless sensor
networks. DCQS features a planner and a scheduler. The
planner reduces query latency by constructing transmission
plans based on the precedence constraints for in-network ag-
gregation. The scheduler improves throughput by overlapping
the transmissions of multiple query instances concurrently
while enforcing a conflict-free schedule. Our simulation results
show that DCQS achieves query completion rates at least 47%
higher than DRAND, and query latencies at least 70% lower
than DRAND. Furthermore, DCQS is designed to handle
dynamic changes in workloads and network topologies effi-
ciently. Finally, DCQS provides an analytical network capacity
bound that enables it to prevent network overhead through rate
control. In the future we plan to integrate DCQS with a query
service to support high data rate applications in wireless sensor
networks.

VIII. A CKNOWLEDGEMENT

This work is funded in part by NSF under ITR grants CCR-
0325529 and CCR-0325197.

REFERENCES

[1] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” inSenSys, 2005.

[2] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” inWSNA, 2002.

[3] K. Chintalapudi, J. Paek, O. Gnawali, T. Fu, K. Dantu, J. Caffrey,
R. Govindan, and E. Johnson, “Structural damage detection and local-
ization using netshm,” inIPSN, 2006.

[4] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
N. Kushalnagar, L. Nachman, and M. Yarvis, “Design and deployment
of industrial sensor networks: experiences from a semiconductor plant
and the north sea,” inSenSys, 2005.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
tiny aggregation service for ad-hoc sensor networks,” inOSDI, 2002.

[6] I. Cidon and M. Sidi, “Distributed assignment algorithms for multihop
packet radio networks,”IEEE Trans. Comput., vol. 38, no. 10, 1989.

[7] A. Ephremides and T. Truong, “Scheduling broadcasts in multihop radio
networks,”IEEE Transactions on Communications, vol. 38, no. 4, 1990.

[8] R. Ramaswami and K. K. Parhi, “Distributed scheduling of broadcasts
in a radio network,” inINFOCOM, 1989.

[9] E. Arikan, “Some complexity results about packet radio networks,”
NASA STI/Recon Technical Report N, vol. 83, Mar. 1983.

[10] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient collision-free medium access control for wireless sensor net-
works,” in SenSys, 2003.

[11] L. Bao and J. J. Garcia-Luna-Aceves, “A new approach to channel access
scheduling for ad hoc networks,” inMobiCom ’01, 2001.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,”ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[13] G. Zhou, T. He, J. A. Stankovic, and T. F. Abdelzaher, “RID: radio
interference detection in wireless sensor networks,” inINFOCOM, 2005.

[14] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” inSenSys, 2003.

[15] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol,” inSenSys, 2004.

[16] I. Chlamtac and A. Farago, “Making transmission schedules immune
to topology changes in multi-hop packet radio networks,”IEEE/ACM
Trans. Netw., vol. 2, no. 1, 1994.

[17] J.-H. Ju and V. O. K. Li, “An optimal topology-transparent scheduling
method in multihop packet radio networks,”IEEE/ACM Trans. Netw.,
vol. 6, no. 3, 1998.

[18] “Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications,”IEEE Standard 802.11.

[19] I. Rhee, A. Warrior, J. Min, and L. Xu, “DRAND: Distributed random-
ized TDMA scheduling for wireless ad hoc networks,” inMobiHoc,
2006.

