
Achieving Repeatability of Asynchronous Events in
Wireless Sensor Networks with EnviroLog

Liqian Luo†, Tian He‡, Gang Zhou, Lin Gu, Tarek F. Abdelzaher†, John A. Stankovic
Computer Science Department, University of Virginia, Charlottesville, Virginia 22904

{ll4p, tianhe, gz5d, lg6e, zaher, stankovic}@cs.virginia.edu

Abstract— Sensing events from dynamic environments are
normally asynchronous and non-repeatable. This lack of repeata-
bility makes it particularly difficult to statistically evaluate the
performance of sensor network applications. Hence, it is essential
to have the capability to capture and replay sensing events,
providing a basis not only for system evaluation, but also for
realistic protocol comparison and parameter tuning. To achieve
that, we design and implement EnviroLog, a distributed service
that improves repeatability of experimental testing of sensor
networks via asynchronous event recording and replay. To use
EnviroLog, an application programmer needs only to specify two
types of simple annotations to the source code. Automatically,
the preprocessor embeds EnviroLog into any desired level of an
event-driven architecture. It records all events generated by lower
layers and can replay them later to upper layers on demand.
We validate the accuracy and performance of recording and
replay through a set of microbenchmarks, using the latest XSM
platforms. We further demonstrate the strength of EnviroLog in
system tuning and performance evaluation for sensor network
applications in an outdoor environment with 37 XSMs.

I. INTRODUCTION

With the increase in maturity of sensor networks research
and with recent solutions to several practical systems and de-
ployment problems, sensor network applications are entering
the real world. Representative experiences of such evolution
are documented in recent literature such as military surveil-
lance [7] [19], habitat monitoring [13] [12], and environmental
monitoring [23] [2], just to name a few. Quite different from
controlled lab settings, physical environments introduce a high
degree of uncertainty that makes it hard to conduct repro-
ducible experiments. Consequently it is hard for researchers
to obtain statistically consistent empirical results. With the
growing number of applications developed and deployed, there
is an increasing need for tools and services to assist with
system evaluation and debugging, as well as with performance
tuning of applications in outdoor environments.

To address this issue, we propose EnviroLog, a tool to im-
prove repeatability of experimental testing of distributed event-
driven sensor network applications. Unlike time-driven appli-
cations, such as periodic sampling of environmental condi-
tions, the state of event-driven systems can change depending
on the particular sequence of events received and their timing.

The work reported in this paper was supported in part by the National
Science Foundation grants EHS-0208769, CSR-0509233, and NETS-0435060,
and by MURI grant N00014-01-1-0576.

†Liqian Luo and Tarek F. Abdelzaher are now with University of Illinois
at Urbana-Champaign.

‡Tian He is now with University of Minnesota.

Matters such as tuning protocol parameters for particular event
scenarios or comparing performance of different protocols typ-
ically require the same distributed event traces to be replayed
(e.g., to ensure a common basis for comparison). To address
this requirement, we provide an event recording and replay
service that can capture and reproduce distributed events on
demand. The service provides the abstraction of a completely
repeatable environment as observed by the sensory subsystem
for the sake of experimental testing. Communication properties
remain stochastic. Hence, a separation is achieved between the
effects of communication non-determinism and the effects of
environmental non-repeatability in the study of sensor network
protocols. The service is especially valuable in the study of
rare, unsafe, or hard-to-reproduce events such as the motion
of tracked animals through a sensor field.

Our service is geared for the final stages of testing, typically
performed in-field, where the effects of environmental realities
can be studied. Early testing can use simulators that may be
good for initial debugging since they allow fully controlled and
repeatable experiments to be conducted. However, simulators
are notoriously inaccurate when it comes to sensor network
applications, since: (i) certain practical issues (e.g., the dis-
tribution of radio irregularity) are not adequately captured
in most available simulators, resulting in large discrepancies
between simulation results and empirical measurements, and
(ii) simulators do not faithfully mimic environmental event
signatures which affects the performance of sensor network
applications. The problem is especially severe in event-driven
architectures, where application behavior is more sensitive to
the sequence, timing, and parameters of events received.

In addition to improving the repeatability of field testing,
our service significantly reduces experimentation cost. In the
absence of a recording and replay service, the investigators
would have to either physically reproduce or passively wait
for environmental events of interest, which entails additional
costs. For example, the authors of [7] have developed a
surveillance system that tracks persons and vehicles in the
field. The need for walking or driving through the field
hundreds of times while tuning an array of protocol parameters
has proved to be a major practical impediment imposing a
significant limitation on the rate at which experiments could
be conducted in practice. EnviroLog, the asynchronous event
recording and replay service described in this paper, provides
a comprehensive solution to this problem.

Most sensor platforms employ flash memory for persistent



storage. For example, Mica, Mica2, Mica2Dot [15] and XSM
[17] hardware platforms incorporate 128 KB internal flash
for code storage and 512 KB external flash for other usage.
EnviroLog logs environmental events into such persistent
storage devices. Later on, in replay mode, EnviroLog replaces
environmental inputs with retrieved logs and re-issues the
logged events in their original time sequence as asynchronous
inputs. In addition to environmental events, EnviroLog can
also log system runtime status for future analysis by recording
selected variable values at runtime as specified by the program-
mer using simple annotations.

EnviroLog has two unique features. First, EnviroLog can
operate at any layer of an application. In other words, events
recorded and replayed by EnviroLog are not limited to direct
reflection of environmental events such as raw sensory read-
ings. They can be any system-level events. This characteristic
of EnviroLog enables the debugging or tuning of any specific
layer using controlled and repeatable inputs from lower layers
in an event-driven system. Second, EnviroLog provided a
very friendly user interface. Users only need to add simple
annotations before events or variables to be logged. Applica-
tions with EnviroLog annotations can be compiled either into
production code that ignores all EnviroLog annotations or into
development code that allows on-demand recording and replay.

The potential uses of EnviroLog include (i) in-field de-
bugging and performance tuning of specific parameters of
an application, (ii) collecting statistical results from a large
number of repeated experiments, and (iii) generating traces
for mixed simulation environments that accept experimental
measurements as inputs.

The remainder of the paper is organized as follows. Section
II reviews related work. Section III describes the design goals
and system architecture for EnviroLog. Section IV describes
the implementation details. Section V evaluates EnviroLog,
using XSM platforms, through a series of in-field experiments
based on several sample applications provided by TinyOS [8]
and a surveillance system [7] built upon TinyOS. Section VI
concludes the paper.

II. RELATED WORK

In recent years, sensor network researchers have proposed
several tools and middleware that aid the debugging and
evaluation of sensor network applications. Generally, they
can be divided into four categories: simulators, emulators,
test-beds and services. The section compares EnviroLog with
related work in each of these categories.

Simulators are popular tools in debugging and evaluation of
sensor network applications since they don’t usually require
the deployment of sensor hardware. NS-2 [16], GloMoSim
[24] and TOSSIM [11] are good examples. NS-2 is a discrete
event simulator supporting various networking protocols over
wired and wireless networks. GloMoSim focuses more on
mobile, wireless networks. It allows comparison of multiple
protocols at a given layer. TOSSIM is a simulator especially
designed for TinyOS applications, which provides scalable
simulations of sensor network software. Current simulators,

however, do not adequately capture the real behavior of sensor
networks. This is due to the difficulty in modeling practical
imperfections such as radio irregularity as well as due to the
lack of good models of environmental inputs. The ability of
EnviroLog to record environmental events can presumably be
utilized to improve these tools by importing recorded event
data to simulate environmental inputs.

Another category of debugging and performance evaluation
tools in sensor networks is emulators that mimic sensor devices
either in software or hardware. AVR JTAG ICE [1], a real
time in-circuit emulator, is a good representative of hardware
emulators. It uses the JTAG interface to enable a user to do
real-time emulation of the microcontroller of sensor devices.
A drawback of such in-circuit emulators is that they have to
be physically connected to emulated devices, which causes
logistical difficulties in conducting experiments especially for
large-scale applications covering a wide field. Atemu [18] is
a software emulator for AVR-processor-based systems that
emulates AVR processors as well as other peripheral devices
on the MICA2 platform. Like TOSSIM, Atemu also sim-
ulates wireless communication. Such software emulators do
not introduce the logistical difficulties exhibited in hardware
emulators, but they are usually less realistic in reproducing
network behavior.

The final stages of debugging and performance tuning
typically use actual testbeds to evaluate sensor network appli-
cations. For example, Motelab [22] is a public testbed using
MICA2 platforms, which allows users to upload executables
and receive execution results via the Internet. Kansei [20]
is another testbed. It employs XSM, MICA2, and Stargate
platforms. EmStar [5] is a combination of emulators and
testbeds for Linux-based sensor network applications, which
runs applications using either a modeled radio channel or the
channel of real nodes. EmTOS [6] extends EmStar to run
TinyOS applications by compiling them into EmStar binaries.
These testbeds ease the development and evaluation a lot
without requiring full-scale deployment. However, they do not
focus on repeatability of environmental inputs like EnviroLog
does.

We categorize all other software facilitating field tests of
sensor network applications as services. EnviroLog belongs to
this category. Monitoring tools such as Message Center [21]
aid field tests by capturing messages in the air, filtering and
displaying them to users. Closest to EnviroLog is TOSHILT
[10], a middleware for hardware-in-the-loop testing. TOSHILT
defines emulated stimuli to replace the real environmental
events, so that applications can be evaluated repeatedly before
the final deployment. Since TOSHILT uses synthetic and
parametric event profiles, the detail of accuracy is less than
what can be captured by EnviroLog. In addition, TOSHILT
doesn’t provide abstractions similar to EnviroLog annotations
to ease the integration of the middleware into user applications.
All these difference make EnviroLog unique. In the following,
EnviroLog is described in more detail.



������

��	
�

��
�


������

�	�
���


������

�	�
���


������

�������

��


��	��
�����

������ ����	�

��	
�

��
�


������

�	�
���


������

�	�
���


������

��	��
�����

������

�������

��


Fig. 1. Main idea of EnviroLog

III. DESIGN

The major goal of EnviroLog is to enable experimental
repeatability by recording and replaying environmental in-
puts. From a program’s view, such inputs are essentially
data streams that are transformed by each module of the
program until they reach the modules at the topmost layer
and become outputs. If we log the data stream generated by a
module during the occurrence of an environmental event, and
regenerate the same data stream later, from the perspective of
the modules that consume the data, the environmental event
is repeating itself.

EnviroLog makes the assumption that data is transferred
from one module to another module only through function
calls and their parameters. This assumption conforms to the
event-driven sensor acquisition convention of TinyOS, where
sensory data is usually obtained through asynchronous events
(defined as a type of function calls in TinyOS) with parameters
containing the data. Based on this assumption, the desired data
stream generated by a module can be recorded by logging all
its issued function calls and their parameters. That founds the
main idea that EnviroLog is built upon.

Users of EnviroLog, through user interfaces, designate the
modules that provide the data stream. These modules are
called log modules. The modules that directly or indirectly
consume the logged data stream are called target modules. As
depicted in Figure 1, during the record stage, EnviroLog logs
all function calls issued by the log modules into persistent
storage devices such as a flash. During the replay stage, log
modules are disabled. Instead, EnviroLog issues the previously
recorded function calls at the right time and in the right
sequence as recorded. Based on this main idea, the following
subsections discuss the design of EnviroLog in more detail.

A. Design Goals
The design goals of EnviroLog are:
• Effectiveness: Effectiveness of EnviroLog is measured

by its ability to perform: (i) accurate event record and
event replay, and (ii) reliable runtime status record and
retrieve.

• Efficiency: In sensor platforms, resource constraints (on
both CPU and memory) are significant which makes it
critical to use resources efficiently. EnviroLog is designed

���������	
������


���	����
�����

�����	

����������

������	���	

������

����	
��������������

��������

��

�����������
	����	���������	����������

�����������
	����	���������	
������	������������

Fig. 2. System architecture of EnviroLog

with efficiency in mind so that it can be applied to
complex applications that consume a significant fraction
of available resources.

• Simplicity: As a tool aimed to simplify the life of
sensor network programmers, EnviroLog must be easy
to use. In other words, simple user interfaces should
be provided. Experiences tell us that simple tools tend
to gain more popularity and persist longer while more
complex tools sometimes run into usability barriers and
become deserted.

• Flexibility: There are always tradeoffs between perfor-
mance and overhead. Since EnviroLog cannot achieve
optimal performance and minimum overhead at the same
time, it should allow users to flexibly select their specific
performance requirements (e.g., high logging throughput)
at the expense of incurring a corresponding overhead.
EnviroLog should also be flexible enough to allow users
to record and replay any application behavior not limited
to direct inputs of environmental events.

The above design goals provide guidelines throughout the
design and implementation of EnviroLog.

B. System Architecture
Figure 2 illustrates the architecture of EnviroLog. Users

indicate the set of events and variables to be recorded by
inserting special annotations, called EnviroLog annotations,
into applications. EnviroLog annotations are essentially the
user interface of EnviroLog. Annotated applications are then
processed by a preprocessor that translates EnviroLog annota-
tions into real code, and, based on the annotations, integrates
only the necessary modules from a code repository into
the applications. The preprocessor and the code repository
constitute EnviroLog services. As a result of the processing,
application code is given the ability to record and replay
specified events and to record and retrieve specified variable
values that represent runtime status.

C. User Interface
Our design goal of simplicity calls for an easy user interface

through which users are able to express the desired function-
ality of EnviroLog in a simple and intuitive manner.

The user specifies two main issues: asynchronous environ-
mental event record and replay, and runtime status record



and retrieve. The user interface design for the latter is easier
since runtime status can be interpreted as values of variables
at runtime. Such variables are simply annotated for logging.
The former one is more complicated. As stated in the be-
ginning of this section, EnviroLog supports environmental
event record and replay by logging and regenerating data
streams originating from environmental events. Since these
data streams are transferred between modules through function
calls and their parameters in most embedded systems such as
TinyOS, we can log the behavior of a module by recording all
issued function calls. Therefore, the only action an EnviroLog
user is required to take is to specify a set of data-providing
modules whose output data streams (issued function calls)
are to be logged. The preprocessor takes the responsibility
of enumerating function calls within the annotated modules
and using APIs to log and replay each of them. To be more
flexible, instead of specifying entire modules, advanced users
are allowed to specify the exact function calls to be logged
within a module.

Different from most services that usually provide function
call APIs, EnviroLog provides EnviroLog annotations as the
user interface. Table I lists the basic set of EnviroLog anno-
tations.

The special characteristics of this user interface are:
1) EnviroLog annotations are simple to use. Users only need

to insert annotations before function calls without worrying
about details such as how these function calls are recorded,
what data structures are used, and how and when to re-execute
them when replaying. The preprocessor takes the responsibility
to automatically generate code and integrate modules from the
code depository to handle these details.

2) EnviroLog annotations take the form of comments that
are ignored by the regular language compiler. This allows
users to freely switch between original applications without
EnviroLog integrated and EnviroLog-augmented applications.
Annotated applications, when directly compiled, generate exe-
cutables that do not include EnviroLog support. Alternatively,
if they are processed by the EnviroLog preprocessor before
compiling, the resulting executables are able to record and
replay/retrieve the specified set of function calls and variable
values based on user annotations.

To log environmental events, one option is to log the inputs
of sensor drivers. However, users may focus on the evaluation
and tuning of a specific layer higher than the layer of sensor
drivers, thus requiring repeatable inputs to this layer. To fulfill
such requirements, EnviroLog allows users to use EnviroLog
annotations at any layer to enable repeatable input to that
specific layer without interference from lower layers.

Though EnviroLog is geared for recording and replaying
events of interest, it is also possible to choose whether to
record the radio channel conditions using the user interface.
If function calls to send messages or to cause the sending of
messages are logged, the channel conditions are not captured
and might be different between record and replay, depending
mostly on the environment. Alternatively, if the programmers
choose to log function calls that handle the reception of mes-

sages, the delivery of messages and their sequence should be
the same between record and replay, no matter how the radio
conditions change in reality. However, repeating the channel
conditions is not always desired since in most experimental
scenarios it is valuable to investigate how variances in channel
conditions affect system behavior given the same sensory
inputs.

D. Preprocessor
The simple user interface is supported by the preprocessor,

which takes applications with EnviroLog annotations as input
and outputs applications with EnviroLog code incorporated.
The functionality of the preprocessor includes:

• Enumerating function calls and variables to be logged
and assigning unique IDs, called log IDs, to them;

• Translating EnviroLog annotations into code that per-
forms three functions. It defines the data structures for
function parameters. It uses APIs provided by the record
and replay module to record log IDs together with func-
tion parameters or variable values at the record stage.
Finally, it re-executes at the replay stage the function calls
upon the reception of logs from the record and replay
module;

• Selecting necessary modules from the code repository and
integrating them into applications.

To enhance robustness, logged data must be consistent with
the current application during replay. Replaying data to the
wrong application is not meaningful. A simple approach to
ensure consistency is to use an ID, called the application fam-
ily ID (or application ID for short) to denote the application
tuned or the class of applications compared. The ID is logged
as metadata at the record stage and is verified before replay.
This ID is either specified by the application programmer
who has the knowledge of which applications belong in the
same family, or, if not specified, automatically created by the
preprocessor by hashing the set of logged function calls into an
application ID. The former solution allows for more flexibility
while leaving the responsibility of ensuring consistency to
the programmer. In the latter case, the same ID is generated
as long as users don’t change the set of function calls to
be logged. This approach ensures consistency between logs
and applications, making application IDs transparent to users
since they are automatically handled by the preprocessor. Note
that, both solutions enable repeatable environmental input to
different application versions. Both the log modules and the
target modules can be different between record and replay
stage as long as data interfaces (in other words, the set of
logged function calls) between them are the same.

Another challenge is to ensure complete and consistent
replay, which means that:

• System outputs should be exactly the same during the
record stage and replay stage, as long as target modules
are not changed.

• Changes to target modules for purposes such as perfor-
mance tuning should not affect data streams output by log



TABLE I
ENVIROLOG ANNOTATION LIST

Purpose Annotation Usage Functionality
For event record and
replay

/*LOG MODULE*/ Insert the annotation in the beginning of
the implementation of a module

To record all function calls issued in the
module for future replay

/*LOG FUNCTION*/ Insert the annotation before a clause that
makes a function call

To record the function call for future
replay

For system status
record and retrieve

/*LOG VARIABLE: vari-
able name*/

Insert the annotation with specified vari-
able name at a position within scope of
the variable

To record current value of the variable
for future retrieve

modules. If the target modules can affect the behavior of
log modules, EnviroLog design may be unrealizable. For
example, if power management services can dynamically
select a subset of nodes and turn them off, a situation can
arise where a node is turned off during the record stage
but turned on during the replay. It is obviously impossible
to decide on the correct value to be replayed since none
was recorded. Another example is when a different (e.g.,
faster) sensor sampling rate is set by target modules
during replay. Since data was recorded at a different
rate, the information to be replayed is not available in
the log. Both of the aforementioned cases are hard to
accommodate, and are therefore not allowed.

With the prior guarantee that the two special cases above
don’t exist in a given application, the preprocessor can provide
some consistency checks. To enable these checks, in addition
to the set of log modules (L), users are required to specify the
set of modules (I) that directly interact with the environment
(e.g., senor drivers) and the set of modules (O) that provide
system outputs (e.g., modules reporting final decisions to base
stations). If one module u issues one or more function calls to
another module v, we denote this relationship as u → v. To
formalize the initial check procedure, we further define that i

represents system inputs, o represents system outputs and M

represents the set of all application modules. Based on user
inputs (L, I , O) and definitions (i, o, M ), the preprocessor
abstracts the application into a directed graph G = (V, E),
where:

V = {u | u ∈ M} ∪ {i} ∪ {o}
E = {(u, v) | (u, v ∈ M ∧ u → v) ∨ (u = i ∧ v ∈ I)

∨(u ∈ O ∧ v = o)}

Given the set of log modules (L) specified by the user and
the calling graph G, the consistency check is done first by
removing all edges that originate from vertices representing
these log modules from the graph, which forms a new graph
G′ = (V ′, E′), where:

V ′ = V

E′ = E − {(u, v) | u ∈ L}

If G′ doesn’t contain a directed path from i to o, the log
module set is guaranteed to provide complete and consistent
replay; otherwise, it may not be true.

Figure 3 gives an example to show more concretely the
consistency check algorithm. Assume the application contains
four modules, M1 through M4. Module M1 directly consumes

�����������	


��
	�
��

��	�
��

��

����

��

��
	�
��

��	�
��

��

����

��

��
	�
��

��	�
��

��

����

��

��
	�
��

��	�
��

��

����

��

	��� ����

Fig. 3. Examples of consistency checks

environmental inputs and issues function calls to M2 and
M3. Both M2 and M3 further issue function calls to M4.
Finally, M4 produces system outputs. The preprocessor builds
the calling graph between application modules, adds output o

and input i as virtual modules, connects input i to modules
that directly consume environmental inputs (M1), and connects
modules producing system outputs (M4) to output o. The result
is the directed graph shown on the left rectangle of Figure
3. According to the algorithm, for each logged module, we
then remove its outgoing edges from the graph. If the resulted
graph doesn’t contain any directed path from input i to output
o, complete and consistent replay is guaranteed. As shown in
the middle rectangle, logging of M1 or logging of M2 and M3

ensures complete and consistent replay since no path exists
from input i to output o. However, if only M2 is logged, as
shown in the right rectangle, a directed path traversing M1, M3

and M4 exists between input i and output o, which fails in the
consistency check and warns against a potentially incomplete
or inconsistent replay.

Note that passing the initial checks is a sufficient, but
not necessary condition for a complete and consistent replay
guarantee, since not all function calls are issued due to
environmental events. Thus, a directed path from i to o does
not necessarily indicate that system outputs will indeed be
affected by environmental inputs.

E. Stage Controller
EnviroLog needs runtime facilities to control (during execu-

tion) when to record environmental events or system status and
when to replay events as well as to retrieve recorded system
status. For this purpose, we provide the stage controller to
interact with users during runtime, employing a client/server



architecture. The server node, connected to a PC, receives
commands from users through a command-line interface or
GUI and disseminates them to client nodes. Upon the reception
of commands, client nodes execute corresponding code for
commands immediately or at a requested future time.

Each command must include a command name and a
stage name. Command names include start, stop, pause and
continue. Stage names can be record, replay or retrieve. The
time period between the start of a stage and the stop of that
stage is called a run. Other optional parameters in a command
include a replay speed for the replay stage to request that
logged events be replayed n times faster or slower than their
original rate. For a retrieve stage, variable names and/or node
IDs can be specified to denote the name of a variable whose
recorded values and timestamps in the specified node are to
be retrieved. Any stage can also specify a run ID to select the
logs for the particular run the command will operate on.

To provide accurate replay for applications involving mul-
tiple nodes, one critical factor is that they have to be syn-
chronized. In other words, these nodes have to execute the
same command at the same time. If the same command
is always delivered to all nodes at the same time, we can
simply program nodes to execute the command right after its
reception without worrying about synchronization. However,
the assumption doesn’t hold for multi-hop applications or
single-hop applications with lossy links. We solve the problem
by proposing two-phase command execution, which makes
use of time synchronization and system-wide broadcast. When
issuing commands, users are required to provide a future time
as a command parameter, which specifies when the command
is to be executed. Then, in the first phase, the command and
synchronization beacons originated from the server node are
propagated across the entire network to synchronize clocks
of client nodes as well as to broadcast the command. When
the specified future time comes, client nodes enter the second
phase simultaneously to execute the command. Two-phase
command execution is costly because of its time synchro-
nization service and repeated system-wide broadcast. To be
flexible, advanced users are allowed to configure the stage
controller into its lightweight single-hop version as well as a
version with two-phase command execution support.

Researchers on time synchronization [14] for current hard-
ware platforms have observed a significant variance in clock
frequency due to the instability of the used crystals. Although
mechanisms like linear regression are able to compensate
for clock drifts in the short term (e.g., within 30 seconds),
periodic re-synchronization through messages is inevitable for
long-term experiments to keep the error to the microsecond
range. As a result, long experiments tend to introduce more
inaccuracy if using two-phase command execution. In such a
case, an alternative solution would be to keep the time syn-
chronization service on throughout the two phases assuming
that re-synchronization messages do not alter the behavior of
the applications.

F. Record and Replay
The record and replay service is the core component of

EnviroLog. It responds to stage control commands to switch
between different stages, logs data into flash during recording,
reads from flash the logged function calls to re-issue them in
their original time sequence during replay, and reads from flash
the logged variable values during status retrieving. Besides
maintaining logs of function calls and variable values, it
also maintains metadata such as application ID, run ID, and
run length during recording, which are to be verified when
replaying. The service also supports the replay of events at
a speed different from recorded one, which can be used to
emulate extremely fast or slow targets that are hard to generate
physically.

1) Queue-based File System: If metadata and logs of one
run are viewed as one file, we can easily design the service
based on existing file systems such as Matchbox [4] and ELF
[3]. To be comprehensive, these file systems usually support
various file operations such as open, close, read, write, and
append, consuming a lot of code as well as data memory.
Our design goal of efficiency calls for a simpler solution.
Hence, we propose a queue-based file system, where files are
organized into one queue. At any point in time, only the file
at the tail of the queue is writable and new data is always
appended to this file. Only the file at the head of the queue
can be deleted. It differs from typical file systems in that (i)
each file occupies a continuous storage space, and (ii) the gap
between two successive files is always smaller than one page.
The queue-based file system brings about several benefits:

• It realizes the special characteristics of the logging be-
havior in EnviroLog: logs are sequentially written into
flash, and oldest logs are usually most undesired.

• It exhibits low resource consumption. This file system
only supports a minimum set of operations (file creation,
sequential write, sequential read, file deletion) that is
necessary in EnviroLog. The queue-based design elimi-
nates the need for complicated storage space management
such as free page maintenance and flash defragmentation.
Hence, it consumes minimum code and data memory.

• It prolongs lifetime of flash memory by balancing writes
to different pages. Each flash page has a write limit of
about 10,000 times. In the queue-based file system, the
sequential write access to flash pages ensures that the
number of writes to different pages differs at most by 1.

2) Distribution of Data Structures: Although the ultimate
storage space for logs is flash, during runtime, multiple mem-
ory levels are employed to improve efficiency and reliability.
Figure 4 depicts the distribution of data structures in RAM,
internal EEPROM and external flash.

Because flash access is relatively slow (e.g., for flash
AT45DB041B used in MICA motes, erasing a page takes up to
8ms and writing a page takes up to 14ms), the service employs
a buffer in RAM, called log buffer, to temporarily store logs
before committing them into flash. Log items constructed for
function calls or variable values to be recorded are queued in



�

��������	
	�	��

�

��������	
	�	��

��	�
����	
	�	

�	����

���

�	���


�

�	����

�

�	����

������

��������

������	��

�������������
��

�����������������

��	�
�������
�	
�


��	�
��������	����

�����������������

�	����

���

	�����	�������

������

�������	����	����

�������
��	����

�������������������

�������� ��� �������� ���


�	
 �	��

��������	
	�	 ��������

����������

�


�	


�	��

��������	
��
��������������

���

Fig. 4. Data distribution in different memory levels

this log buffer. Each log item consists of a log ID, a log type
(event or status), a timestamp, log content (parameters of
function calls or values of variables) and content length. We
note that buffering can not only increase throughput of flash
access, but also accommodate temporary data bursts typical
in event detection or tracking applications. Another benefit of
buffering is to support potential data compression. Many log
items can be compressed before being written into flash to
conserve space, including those containing the same content
but different timestamps and those containing timestamps with
fixed differences.

All log items of a run constitute a file, which is usually
stored in flash. Access to a file is usually sequential, either
reading from the beginning to the end or writing from the
beginning to the end. Besides files, the metadata of files (file
metadata for short) and the metadata of the queue (flash
metadata for short) also require permanent storage. Different
from access to files, access to metadata is much more frequent,
that is why we store such data into the internal EEPROM
of MICA motes which is smaller (4KB) but with a longer
endurance (100,000 write/erase cycles) compared with the
flash memory (512KB, 10,000 write/erase cycles). For other
sensor devices without EEPROM, EnviroLog can be adapted
to reserve several pages in flash for metadata storage. These
pages are expected to be worn out earlier than other pages,
which makes the usable flash size smaller.

3) Workflow of Different Stages: This section explains the
execution flow of the record and replay service during different

stages in more detail.
At the beginning of a record stage, upon the reception

of a start record command, the service reacts by: (i)
remembering the current time as the reference time, (ii)
loading flash metadata into RAM, and (iii) constructing the
metadata of a new file. During the record stage, whenever
the application requests to record a function or a variable
value, the service constructs a corresponding log item and
enqueues it into the log buffer. The log item contains a relative
timestamp, which is calculated by subtracting the reference
time from the current time. If more than half of the buffer is
filled up, all log items in the buffer are transferred into flash,
which empties the buffer completely. An alternative choice
would be to write everything in the buffer into flash whenever
a new log item arrives. We decide on the former option,
since higher throughput is observed for bigger block sizes in
flash access (experiments on LogData component provided by
TinyOS show that flash write speed is 12.99KB/s for a block
size of 16B and 42.37KB/s for a block size of 128B). Finally,
upon the reception of a stop record command, the service
updates flash metadata and file metadata and commits them
into EEPROM.

At the beginning of a replay stage, when a start replay
command is received, the service takes several initial steps:
(i) it loads into RAM the metadata of the corresponding file,
whose run ID matches the one indicated in the command;
(ii) to ensure data consistency, before replaying, it further
verifies the application ID contained in file metadata against
the one indicated by the user or produced by the preprocessor;
(iii) it loads log items from flash to fill up the log buffer.
After initialization, the service marks the current time as the
reference time and starts to replay logged events. During
replay, the service automatically loads data from flash to fill
up the buffer whenever the buffer is half-empty. The service
discards all status log items and replays event log items
one by one. It dequeues the first event log item from the
buffer, sets a timer based on the timestamp contained in
the item, and upon the expiration of the timer, issues the
corresponding function call. Then it proceeds with the next log
item. The expiration time Texpiration is calculated as follows:

Texpiration =
Treference + Ttimestamp − Tcurrent

Sreplay

where Treference, Ttimestamp, and Tcurrent represent the
reference time, the timestamp, and the current time respec-
tively, and Sreplay represents replay speed. As discussed
before, Sreplay is one of the parameters of start replay
commands to speed up or slow down replay. Another way
to calculate the expiration time is to take the difference
between the timestamps of two successive events and divide
it by Sreplay . It is deserted because it makes time accuracy
of the latter event always depend on the former one, and
consequently accumulates errors over time. The replay stage
ends when the entire file is processed or a stop replay
command is received.

During the retrieve stage, the service simply discards all



event log items. For status log items, it extracts the
variable values and sends them to the stage controller, which
then displays the data for end users.

IV. IMPLEMENTATION

In this section, we describe an implementation of Envi-
roLog, which has been fully tested on Mica2 and XSM hard-
ware platforms. This implementation is expected to work on
Mica and Mica2Dot as well. The common features of hardware
platforms that this version of EnviroLog operates on are (i)
4KB EEPROM inside the micro-controller and (ii) 512KB
external data flash. EnviroLog is implemented on TinyOS 1.x,
a popular operating system for the aforementioned hardware
platforms. Table II lists the implementation characteristics of
different components in EnviroLog.

A. Preprocessor Implementation
The preprocessor is essentially a translator that takes a

TinyOS application annotated with EnviroLog annotations as
input and outputs its corresponding version with the EnviroLog
service integrated. Figure 5 depicts the main steps of this
translation:

• Step 1: For modules annotated by /*LOG MODULE*/,
the preprocessor enumerates all function calls is-
sued by these modules and annotates them by
/*LOG FUNCTION*/.

• Step 2: The preprocessor scans the entire application
to search for all function calls that are annotated by
/*LOG FUNCTION*/. A unique log ID is assigned to
address each of them. The clause that issues an annotated
function call is replaced by a segment of code that (i)
issues the function call only when the application is not
at the replay or retrieve stage, and (ii) records the call’s
log ID and parameters during the record stage using APIs
of the record and replay service.

• Step 3: The preprocessor also creates event handlers to
handle replay requests from the record and replay service.
For each replay request, it generates code to extract
parameters and execute the corresponding function call.

• Step 4: after scanning the entire application, the pre-
processor enumerates EnviroLog annotations in the form
of /*LOG VARIABLE: variable name*/. The pre-
processor assigns unique log IDs to them, and translates
each of them into a segment of code that records the
variable value and its log ID using APIs of the record
and replay service.

The preprocessor then automatically wires necessary com-
ponents (e.g., the record and replay service) into the resulting
application to complete the integration of EnviroLog.

B. Stage Controller Implementation
Figure 6 depicts the field deployment of a system to use

the stage controller. End users type-in stage control commands
through the PC. The server node, which is connected to the PC
through a serial cable, forwards the commands to the field. The
client nodes in the field propagate the commands throughout

����������	�
����	��

����
�
�����
	�	�
��

����������	�
����	��
����
�
������������	����	��

�����������
��

���������� !�����
�����"#��	�
���$

������%�&!�'�
(��
�����������	���

���	���)�	���*�+
��������
�,��(
���������"#��	�
���$�-���.$
����������
��(
���������"#��	�
���$
�������
����
�!����������,�	����
"��$�-���.$
����"�#�	(�-���.$
/

����	����#�	�	�
&��
�����&����01�����0)#��	23�	��
�!�4�
�������
�	��	4�#��	5�	�����	�*�+
�����	���)�
�!�*�+
����������
�!��
"��(
�����������"#��	�
���$�-���.$
����111
��/
/

���	���)�	���*�+
����������
��(
�������
����
�!���������#��
"�
����������	�$
����-���.$
����"�#�	(�-���.$
/

2

6

7

8

Fig. 5. Translation steps of the preprocessor

�����������

�������	�


���
�����	�

��

Fig. 6. A field deployment to use the stage controller

the field, and execute them immediately or in a two-phase
manner.

We implement a simple Java tool on the PC to interact with
end users. This tool has several functionalities such as: (i)
encoding stage control commands into messages, (ii) injecting
the messages into the server node through the serial port, (iii)
receiving messages from the serial port, and (iv) displaying
retrieved variable values to end users during the receive
stage. The server node, running the TOSBase application
provided by TinyOS, forwards messages between the PC and
client nodes. The client nodes run the system with EnviroLog
integrated, which includes a stage controller component.

The implementation of the single-hop version of the stage
controller is simple. Commands are immediately executed
upon reception and execution results, if any, are sent back
to the server node through one-hop unicast. The multi-hop
version that supports two-phase command execution needs
more functionality. First, it contains a time synchronization
service modified from multi-hop FTSP [14]. Multi-hop FTSP
utilizes periodic flooding of synchronization beacons to per-
form continuous re-synchronization. We modify it to stop the
periodic beacons at the end of the first phase; otherwise, these
beacons may interfere with the system and change its behavior.
Second, to conserve energy, commands are piggybacked onto
periodic synchronization beacons. Client nodes remember the
command when they receive the first synchronization beacon.
The periodic nature of synchronization beacons also makes the
dissemination of commands robust to sporadic message losses.



TABLE II
IMPLEMENTATION CHARACTERISTICS OF ENVIROLOG COMPONENTS

Component Language Code length (lines) Data memory (bytes)
Preprocessor Perl 873
Stage controller nesC 604 single-hop:46, multi-hop:137
Record and replay nesC 758 54+buffer size

�

�

������	
����

���������	���

��

��	��������������

�������������
��������������
�������
 	�!�

�������������������� "#

���$�����������������	������������
�����
 	�!�

�������������������� "#

���$�������������������$������������
�����
 	�!�

�������������������� "#

��

��	�������������%�
���&
��	������������	��������������	����
 	�!��	�	������"#

'

(

)

Fig. 7. Interface of the record and replay component

Third, the service incorporates a simple routing algorithm to
collect execution results from client nodes. The routing service
we implement is similar to directed diffusion [9]. Although the
primary purpose of synchronization beacons is to synchronize
clocks of client nodes, they also serve as interest beacons
for client nodes to set up reverse paths to the server node.
Later on, execution results can be sent back to the PC along
those paths. Note that, the modified Multi-hop FTSP and the
simple routing service become parts of the EnviroLog service
only if users configure the stage controller as a multi-hop one
before the application gets processed by the preprocessor. They
are only invoked during the two-phase command execution
and, therefore, are independent of any time synchronization
or routing service used by user applications.

C. Record and Replay Implementation
The record and replay service provides a set of APIs

to interact with application components and other Envi-
roLog components. It is implemented in one big com-
ponent named RecordAndReplayC. Figure 7 illus-
trates the RecordAndReplay interface provided by the
RecordAndReplayC component and Figure 8 depicts the
interactions between this component and other components
in the system. Application components (already processed by
the preprocessor) call the command record to log function
calls as well as variable values. During the replay stage, the
record and replay component signals the event replay to
request application components to execute the corresponding
function calls. Another event retrieve is signaled to trans-
fer retrieved variable values to the stage controller component,
which then communicates the data back to the server node and,
finally, to the PC. The stage controller component interacts
with the record and replay component by issuing the command
executeCommand to execute stage control commands from
end users.

The record and replay component relies on several TinyOS
modules: clock, timer, EEPROM access, and flash
access. The clock component is used for the purpose of
timestamp calculation. The timer component is utilized during
replay to issue logged function calls in their original time
sequence. Flash access and EEPROM access components are

���������	
��	
�

��

�������������

�������
���
�����

�	�� �	���

�� � �

��������

��� ���� ��

���

Fig. 8. Interactions between the record and replay component and other
components

employed to read/write logged data and metadata.

V. PERFORMANCE EVALUATION

To evaluate the effectiveness and efficiency of the recording
and replay service provided by EnviroLog, we integrate Envi-
roLog into several sample applications delivered with TinyOS,
download them onto XSM motes, and carry out a set of
empirical experiments. The XSM platform is an extended ver-
sion of MICA2 motes, featuring improved peripheral circuitry,
improved antenna and new types of sensors. The purpose
of these microbenchmarks is to characterize the performance
of EnviroLog by illustrating its maximum recording period,
throughput, overhead, and replay accuracy.

Based on a complex surveillance system called Vigilnet [7]
running on TinyOS and XSM platforms, we show the various
functionalities of EnviroLog by using the recording and replay
service to tune and evaluate performance of Vigilnet, to collect
its runtime status and to replay targets with virtually increased
or decreased velocities.

A. Microbenchmarks
In this section, we pick several sample applications provided

by TinyOS and run a series of microbenchmarks to show how
EnviroLog performs in terms of maximum recording period,
throughput, overhead, and replay accuracy. These results,
collected from simple applications, provide insights into the
relevant basic aspects of EnviroLog’s expected performance.
Larger, more realistic applications are investigated later, high-
lighting higher-level performance aspects.

1) Maximum Recording Period: Due to limited storage
space, EnviroLog cannot continuously record an infinite num-
ber of events. The term maximum recording period describes
how long EnviroLog is able to continuously record. Maxi-
mum recording period RPmax depends on three factors: flash
size Sflash, expected event interval E{eventInterval} and
expected log item length E{logItemLength}. The expected
event interval indicates the average length of the time intervals
between successive events. The expected log item length



0


10000


20000


30000


40000


50000


60000


70000


10
 100
 1000

Expected event interval (ms)


M
ax

im
um

 re
co

rd
in

g 
pe

rio
d 

(s
)
 Expected log item length-8B


Expected log item length-16B

Expected log item length-24B

Expected log item length-32B


 


Fig. 9. Maximum recording period for different expected event interval and
log item length

indicates the expected flash space a recorded event occupies.
The maximum recording period is calculated as follows:

RPmax =
SflashE{eventInterval}

E{logItemLength}

Setting the flash size to be 512KB, Figure 9 depicts the max-
imum recording period for different expected event intervals
and log item lengths. Typical raw sensing data, if generated
at 10Hz, can be recorded for about 90 minutes, which is
usually long enough for purposes of debugging or tuning
sensor drivers.

2) Throughput: The throughput of EnviroLog (i.e., how
fast EnviroLog is able to record) is evaluated based on the
Blink application. Blink sets a periodic timer and toggles
the red led when the timer fires. EnviroLog is used to record
the toggling of the red led. The log item length equals the
length of the log item header (7 bytes) since the toggling event
contains no parameters. To make the scenario more realistic,
the occurrences of toggling events are modeled as a Poisson
process by making the time intervals between successive
events exponentially distributed with the density function

f (x) = λe−λx

where λ is the expected event interval.
To increase throughput, EnviroLog buffers events in mem-

ory before committing them to flash. We repeatedly change
the expected event interval and buffer size, compile and
download changed Blink onto a XSM mote and measure the
success ratio of recording operations. Figure 10 illustrates the
experimental results. Each point in this figure is the average of
at least 10 runs to achieve a high confidence level. As shown
in Figure 10, a higher success ratio is observed for lower event
rates and bigger buffers. For events at 10Hz, a 128-byte buffer
is enough to ensure a 100% success ratio.

3) Overhead: EnviroLog introduces a certain overhead,
which may affect the runtime behavior of the original appli-
cation. It must be verified that EnviroLog does not change
the behavior of the original application dramatically during
recording; otherwise, the replay of recorded behavior (which
is dramatically different from the original behavior) becomes
meaningless.

0.85


0.9


0.95


1


10
 20
 40
 80
 160
 320

E(Event Interval) (ms)


Su
cc

es
s 

Ra
tio


 buffer-16B

buffer-32B

buffer-64B

buffer-128B

buffer-256B


buffer-512B

buffer-1024B


 


Fig. 10. Success ratio of recording operations for different expected event
rate and buffer size

We try to quantify the overhead and its effect through an
example application CntToLedsAndRfm. The application
maintains a counter on a 4Hz timer and sends out the value of
the counter by broadcast on each increment. The execution
of the command that outputs the value of the counter by
messages is recorded and replayed by EnviroLog. We change
the message format to contain the send time of the current
message and the sendDone time of the previous message in
addition to the value of the counter, so that the time period
to send a complete message, defined as sending delay, can
be calculated by overhearing these messages. The modified
CntToLedsAndRfm application is run on one XSM mote.
Another XSM mote works as the server node of the stage
controller to control the stage as well as overhear messages.

This experiment compares the sending delay during a nor-
mal stage with the one during a record stage to quantify
the overhead of recording operations. Figure 11 depicts the
cumulative distribution function of sending delay for 1000
messages during the normal stage and 1000 messages during
the record stage. A longer sending delay is observed during the
record stage compared with the normal stage, which indicates
the overhead of recording operations. However, the effect of
the overhead is trivial and acceptable. It is observed that
the 95% confidence interval of the sending delay during the
recording stage drifts only 0.4ms from the one during the
normal stage.

4) Replay Accuracy: In this experiment, we use the same
modified version of CntToLedsAndRfm as in the previous
experiment. We first log about 100 commands by EnviroLog
and overhear the messages to remember their send time. The
remembered send time is actually the time when each logged
command is executed. Then, we replay those commands 20
times. We calculate the difference between the average send
time during the replay stage and the original send time during
the record stage and depict its cumulative distribution in Figure
12. The results reflect how accurate the replay service is. As
Figure 12 shows, the average error is less than 1ms.



0


0.2


0.4


0.6


0.8


1


10
 20
 30
 40

Sending Delay (ms)


Pe
rc

en
ta

ge



normal stage

record stage


 


Fig. 11. Comparison of sending delay between normal stage and record
stage

0


0.2


0.4


0.6


0.8


1


-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
 0
 0.1
0.2
 0.3
 0.4

Difference of Event Arrival Time (ms)


Pe
rc

en
ta

ge



 


Fig. 12. Difference of send time between record stage and replay stage

B. Macrobenchmarks
Based on a surveillance system called Vigilnet [7], this sec-

tion evaluates the effectiveness of EnviroLog in practice and
showcases the variety of functionalities it provides. We first
introduce the experimental methodology, including hardware,
software and deployment scenarios. Then, we show the ef-
fectiveness of EnviroLog by recording and replaying different
types of targets. Finally, we show how EnviroLog aids in-field
tests of Vigilnet in various ways, including performance tuning
and evaluation, runtime status collection and virtual velocity
simulation.

1) Methodology: Vigilnet, implemented in TinyOS for
XSM platforms, is targeted to detect, classify and track various
events of interest in real-time through in-network processing. It
takes environmental targets as inputs, applies multiple levels of
processing before outputting results to end users. The lowest
layer is sensor drivers which sample raw data from sensors
and, if any target of interest is detected, signal detection results
to higher layers. The layer above sensor drivers is a set of
group management protocols that dynamically organize nodes
in the vicinity of targets into local groups, collect detection
results from individual nodes, elect leaders to aggregate these
results and send aggregate data to nodes connected to base
stations (base nodes). Target positions, as part of the aggregate
data, are calculated by averaging locations of detection nodes.
The highest layer is located in base nodes, where aggregate
reports from leaders are further processed to extract properties
such as target velocities. The highest layer outputs target types
(vehicles or persons), trajectories and velocities to a GUI

0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70


X (meter)


Y 
(m

et
er

)


 


Fig. 13. System deployment

which displays results to end users.
An obvious use of EnviroLog in this system would be

to debug sensor drivers, to tune their sensor data processing
parameters (e.g., various filters), or to compare their different
versions by recording and replaying raw sensing data on
individual nodes. However, what is more interesting is to
see how EnviroLog aids the in-field tests of higher layers
that involve coordination among multiple nodes in a multi-
hop wireless network. Towards that end, we insert EnviroLog
between the sensor driver layer and the group management
layer, record outputs of sensor drivers rather than raw sensing
data, and focus on the behavior of layers higher than the sensor
drivers.

Vigilnet employs three types of sensors: magnetic, acoustic
and motion sensors. Their drivers interact with higher layers
by signaling instances of the following event:

event result t detected(TargetConfidence
confidences);

where TargetConfidence is an array of integers, each
representing the possibility of a certain target type.

To integrate EnviroLog into the system, we simply insert
/*LOG FUNCTION*/ before each clause that signals the
event, and process the code using the preprocessor before com-
piling the system. To collect empirical data, we download the
system onto 37 XSMs. We deploy the XSMs approximately 5
meters apart on both sides of a driveway, as shown in Figure
13. The triangle marks the position of the base node connected
to a laptop.

2) Effectiveness: To evaluate the effectiveness of recording
and replay, we first set the system to be at record stage, and
physically generate targets by jogging or driving through the
driveway. The trajectories and calculated velocities for the
jogging person and the vehicle are shown separately in Figure
14(a) and 14(d). Later on, we switch the system to its replay
stage to virtually replay the jogging person and the vehicle.
Figure 14(b) and 14(c) shows two different replays of the
person, while Figure 14(e) and 14(f) shows two replays of



person (velocity-4.80mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


replayed person (velocity-4.80mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


replayed person (velocity-4.70mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


vehicle (velocity-4.98mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


replayed vehicle (velocity-4.67mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


replayed vehicle (velocity-4.54mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 


Fig. 14. Trajectories and calculated velocities for physical and replayed targets

the vehicle.
As is seen for both the person and the vehicle, the tra-

jectories of real targets and replayed ones are very close,
and the differences of their calculated velocities are below
0.5 mph. This observation verifies the effectiveness of En-
viroLog. However, outputs are not exactly the same, which
is expected considering the variability in layers above sensor
drivers. For example, communication delays may change due
to randomness in the MAC layer especially when multiple
neighboring nodes request to send simultaneously. This also
explains why replay of the person is more accurate than
that of the vehicle. A person is usually detected by only
one node while vehicles can be detected by multiple nodes
simultaneously, which causes those nodes to send detection
reports to leaders simultaneously. The possibility that these
detection reports are always received by the leader in the same
order during different runs is very low, which leads to the
minor differences among observed target trajectories.

3) Potential Uses - Performance Tuning and Evaluation: A
big portion of wireless sensor network applications are outdoor
applications that detect targets or monitor environments. It is
difficult to evaluate such applications by simulators, which
either can’t simulate environmental inputs or can’t realistically
simulate them. The environments are much more complex
than what simulators can model. Even the modeling of the
magnetic field near a vehicle is extremely challenging due
to the uneven and unknown distribution of metals inside
the vehicle. The lack of realistic sensing models makes in-
field testing a necessary step before the real deployment of

most applications involving target detection or environmental
monitoring. EnviroLog makes in-field tuning and evaluation
much easier as shown by the following experiments.

In Vigilnet, the group management layer used to group
nodes that detect the same target has a tunable parameter
called DOA (degree of aggregation). It is used to eliminate
sporadic false positives in target detection. Group leaders do
not report the detection of a target to the base station until the
number of nearby nodes that detect the target reaches DOA.
Higher DOA filters out more false positives, thus reducing
the number of reports from leaders. However, too high DOA
results in false negatives. To find out the proper DOA, we have
to drive the vehicle or walk through the field multiple times
while tuning this parameter. EnviroLog provides an alternative
way to tune DOA with less overhead. We drive a vehicle or
walk once to record the environmental inputs, then replay
them multiple times with different DOA values. Figure 15
shows target trajectories for different DOA settings. As is seen,
a higher DOA results in fewer trajectory points, thus more
inaccurate calculated velocities. When DOA reaches 4, the
calculated velocity (10.96 mph) is far away from the ground
truth (5±1 mph).

We also use EnviroLog to log and retrieve the number
of aggregate reports during runtime. Figure 16 depicts the
cumulative distribution of the number of aggregate reports for
different DOA values. As expected, a higher DOA leads to
fewer aggregate reports. These results suggest that DOA values
of 1, 2 and 3 are acceptable settings, though a higher value
that leads to less communication overhead is more preferred.



replayed vehicle (velocity-5.37mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 

(a) DOA = 2

replayed vehicle (velocity-5.37mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 

(b) DOA = 3

replayed vehicle (velocity:10.96mph)


0


10


20


30


40


50


60


70


0
 10
 20
 30
 40
 50
 60
 70

X (meter)


Y 
(m

et
er

)


 

(c) DOA = 4

Fig. 15. Trajectories and calculated velocities for different DOA

0


10


20


30


40


0.8
 0.85
 0.9
 0.95
 1

Cumulative fraction of nodes


Nu
m

be
r o

f a
gg

r. 
re

po
rts




DOA-1

DOA-2

DOA-3

DOA-4


 


Fig. 16. Cumulative distribution of number of aggregate reports for different
DOA

4) Potential Uses - Runtime Status Collection: During
development and testing, batteries are often depleted due to
frequent experiments. One drawback of XSM motes is that
batteries can not be measured or replaced without opening the
package by unscrewing 4 screws. Vigilnet usually operates
at the scale of hundreds of XSMs, which makes it extremely
painful to check whether each node has a high enough voltage.
Runtime status recording and retrieve supported by EnviroLog
provides a simple solution for this problem. Voltage values
of nodes can be logged and retrieved after each in-field test
to find out those with low voltage, whose batteries then can
be replaced before next test. Figure 17 shows the cumulative
distribution of voltage values before and after the whole set
of macrobenchmarks, which are collected through EnviroLog.

5) Potential Uses - Virtual Velocity Simulation: EnviroLog
allows users to speed up or slow down the replay of events
by setting a replay speed greater or less than 1. Note that
changing replay speed is not always meaningful. For example,
if sensor drivers pull data at a fixed rate and raw sensing data is
logged, replaying at a different speed actually violates the logic
of sensor drivers. In Vigilnet, EnviroLog records and replays
the outputs of sensor drivers, which are detection events
signaled by sensor drivers to higher layers. Replaying them
at a higher speed can virtually simulate environmental targets
with higher velocities. This experiment replays recorded events
using different replay speeds to validate the effectiveness of
virtual velocity simulation. Figure 18 depicts the calculated

0


0.2


0.4


0.6


0.8


1


2300
 2500
 2700
 2900

Voltage(mV)


Cu
m

ul
at

ive
 fr

ac
tio

n 
of

 n
od

es



Before

After


 


Fig. 17. Cumulative distribution of voltage values before and after experi-
ments

0


20


40


60


80


100


1×
 2×
 4×
 8×
 16×

Replay speed


Ca
cu

la
te

d 
ta

rg
et

 v
el

oc
ity

 

(m

ph
)


replayed vehicle

replayed person


ground truth


 


Fig. 18. Calculated velocities for different replay speed

velocities for different replay speeds and targets. When the
replay speed doesn’t exceed 4×, calculated velocities for both
the person and the vehicle are close to the ground truth. Higher
replay speeds lead to intolerable errors in velocity calculation.

C. Concluding Remarks
Results from the series of microbenchmarks and mac-

robenchmarks above validate the effectiveness of EnviroLog
for both simple and complex applications. EnviroLog is able
to record and replay high frequency events if assigned a big
enough buffer (e.g., recording 10Hz events with a 128-byte
buffer in the Blink application). Its recording operations
bring little overhead (e.g., adding only 0.4ms delay in the
CntToLedsAndRfm application). It also replays events ac-



curately (e.g., the average difference between timestamps of
recorded events and replayed events is less than 1ms). Envi-
roLog has various potential uses for in-field tests of large-scale
systems, including performance tuning and evaluation, and
runtime status collection. EnviroLog can replay events at dif-
ferent replay speed, which can be used to virtually simulate tar-
gets moving at different velocities. EnviroLog is available for
download at http://www.cs.uiuc.edu/homes/lluo2/EnviroLog/.

VI. CONCLUSION

With the increasing popularity of wireless sensor networks,
an increasing number of realistic applications employing large
systems of sensor devices emerge. Although the initial de-
velopment and debugging of these applications can be aided
by simulators, in-field tests still have to be conducted at a
later stage due to typical discrepancies between simulation
results and empirical measurements. In this paper, we present
the design, implementation and evaluations of EnviroLog, an
asynchronous event record and replay service that improves
repeatability of environmental events for in-field testing of
distributed event-driven applications. The friendly user inter-
face of EnviroLog allows users to integrate and utilize the
service merely by inserting annotations into their applications
and learning a few operation commands. Based on several
sample applications of TinyOS and a complicated surveillance
system, we validate the effectiveness of event recording and
replay. We demonstrate the usefulness of EnviroLog in various
aspects of in-field tests such as performance tuning without
physically generating events, runtime status collection without
extra hardware, and virtual velocity simulation. However, the
potential uses of such service are not limited to what we have
discussed in this paper. EnviroLog can be further extended
to perform remote replay (recording events in environment
A while replaying them remotely in environment B), and off-
site replay (recording events on sensor devices while replaying
them in simulators), which are on our agenda for future work
on EnviroLog.

REFERENCES

[1] Atmel Corporation. Mature AVR JTAG ICE. http://www.atmel.com/dyn/
products/tools-card.asp?tool-id=2737.

[2] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme,
W. J. Kaiser, M. Hansen, G. J. Pottie, M. Srivastava, and D. Estrin.
Call and response: experiments in sampling the environment. In SenSys
’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 25–38, New York, NY, USA, 2004.
ACM Press.

[3] H. Dai, M. Neufeld, and R. Han. Elf: an efficient log-structured flash
file system for micro sensor nodes. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems,
pages 176–187, New York, NY, USA, 2004. ACM Press.

[4] D. Gay. Matchbox: A simple filing system for motes.
http://www.tinyos.net/ tinyos-1.x/doc/matchbox.pdf.

[5] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. Emstar: a software environment for developing and deploying
wireless sensor networks. In Proceedings of the 2004 USENIX Technical
Conference, June 2004.

[6] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-
terweil, and T. Schoellhammer. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In Proceedings of
the Second ACM Conference on Embedded Networked Sensor Systems
(SenSys’04), November 2004.

[7] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. An energy-efficient
surveillance system for sensor networks. In International Conference
on Mobile Systems, Applications, and Services (MobiSys), June 2004.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. In ASPLOS-
IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 93–
104, New York, NY, USA, 2000. ACM Press.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Trans.
Netw., 11(1):2–16, 2003.

[10] D. Jia, B. H. Krogh, and C. Wong. TOSHILT: Middleware
for Hardware-in-the-loop Testing of Wireless Sensor Networks.
http://www.ece.cmu.edu/ w̃ebk/sensor-networks/toshilt/toshilt.html.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable
simulation of entire tinyos applications. In First International Confer-
ence on Embedded Networked Sensor Systems (SenSys’03), November
2003.

[12] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing soft-
ware on resource-constrained mobile sensors: experiences with impala
and zebranet. In MobiSYS ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and services, pages 256–
269, New York, NY, USA, 2004. ACM Press.

[13] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 88–97, New York, NY, USA, 2002.
ACM Press.

[14] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
39–49, New York, NY, USA, 2004. ACM Press.

[15] MICA motes. http://www.tinyos.net/scoop/special/hardware/.
[16] ns-2. The Network Simulator. http://www.isi.edu/nsnam/ns/.
[17] Ohio State University. XSM. http://www.cast.cse.ohio-state.edu/exscal/

index.php?page=main.
[18] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras. Atemu: A

fine-grained sensor network simulator. In First International Conference
on Sensor and Ad Hoc Communications and Networks, October 2004.

[19] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas,
G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper
system. In SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 1–12, New York, NY,
USA, 2004. ACM Press.

[20] O. S. University. Kansei: Sensor Testbed for At-Scale Experiments, Feb
2005.

[21] Vanderbilt University. Message Center. http://www.isis.vanderbilt.edu/
projects/nest/msgctr.html.

[22] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wireless
sensor network testbed. In Proceedings of the Fourth International
Conference on Information Processing in Sensor Networks (IPSN’05),
Special Track on Platform Tools and Design Methods for Network
Embedded Sensors (SPOTS), April 2005.

[23] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for structural
monitoring. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 13–24, New
York, NY, USA, 2004. ACM Press.

[24] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for theparallel
simulation of large-scale wireless networks. In Proceedings of the
12th Workshop on Parallel and Distributed Simulation (PADS’98), page
154C161, May 1998.


