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Abstract—This paper explores direct phone-to-phone com-
munication (via WiFi interface) among vehicles to support mo-
bile sensing applications. Direct communication among drivers’
phones is important in improving data collection efficiency and
sharing participatory sensing information in an inexpensive man-
ner. We design a practical and optimized communication mech-
anism for direct phone-to-phone data transfer among drivers’
phones that strategically enables phone-to-phone and/or phone-to-
WiFiAP communications by optimally toggles the phone between
the normal client and the hotspot modes. We take advantage
of the WiFi hotspot functionality on smartphones, and hence
require neither involvement of participants nor changes to existing
wireless infrastructure and protocols. An analytical model is
established to optimize toggling between client and hotspot modes
for optimal system efficiency. We fully implement this system on
off-the-shelf Google Galaxy Nexus and Nexus S phones. Through
a 35-vehicle 2-month deployment study, as well as simulation
experiments using the real-world T-drive 9,211-taxicab dataset, we
show that our solution significantly reduces data transfer delay
time and maintains over 80% efficiency under varying system
parameters. We even achieve 90% for parameter settings of the
latest smartphones.

I. INTRODUCTION

This paper presents a practical mobile phone sensing sys-
tem that utilizes direct phone-to-phone communication be-
tween vehicles to improve performance of mobile participatory
sensing applications. Rather than designing a new protocol to
improve vehicle-to-vehicle and vehicle-to-WiFiAP communi-
cations (e.g., see work on delay/disruption tolerant networks
(DTN) [1]-[4], mobile ad-hoc networks (MANET) [5], [6], and
vehicular networks [7]-[9]), we present an optimized phone-to-
phone communication scheme that uses only those capabilities
exported to the user on today’s smartphones. It strategically
toggles between the normal (client) and hotspot modes on
smartphones as would be needed to collect data from phones
and upload to a remote back-end server. It does so without
needing to root or jailbreak smartphones, which makes the
functionality implementable as a third-party phone application.
Moreover, it requires neither involvement of participants nor
changes to existing wireless infrastructure and protocols.

This work is motivated by the proliferation of sensor-
equipped smartphones in the past few years. According to
the International Data Corporation (IDC) Worldwide Quar-
terly Mobile Phone Tracker, it is estimated that 982 million
smartphones will be shipped worldwide in 2015 [10]. The
rich set of embedded sensors on smartphones makes mobile
phone sensing an useful paradigm to support many applications
that require real-time situation awareness, such as monitoring
traffic congestion and commute delays. Vehicles are becoming

popular as carriers of mobile sensing platforms for many
reasons. First, their natural mobility increases coverage for
many participatory and social sensing applications [11], [12].
Second, our daily commute itself has become a target of
many research efforts, such as those that aim to save fuel
consumption [13], find available parking positions [14], avoid
traffic jams or routes in bad condition [15]-[17], or share
general road-side events [18]. Research communities have
recently investigated incentive mechanisms [19] to attract more
smartphone users into mobile sensing, developed solutions to
preserve participants’ privacy [20], and addressed the sparse
deployment problem [21] when mobile sensing systems do not
have a sufficient number of participants.

Accordingly, we envision a new brand of sensing applica-
tions that use driver’s phones to share mobile sensory data
among vehicles as well as with infrastructure servers. We
assume that users will exploit their cellular data bandwidth to
download results from such servers, such as real-time traffic
speed maps. However, they will typically not want the same
mobile sensing applications to use their cellular communication
for altruistic raw data upload to the server, since unlimited
data plans are no longer prevalent [22], [23]. Instead, the paper
explores a WiFi-based approach for uploading the sensor data
needed for the service.

Wi-Fi based store and forward of sensed real-time data
may result in a large latency [24], which motivates optimizing
data transfer among vehicles as well as between vehicles and
the infrastructure for faster offloading. Current communication
techniques on smartphones that support peer-to-peer sharing,
such as WiFi ad-hoc mode [25] and WiFi Direct [26], have
significant limitations and are not directly usable for mobile
sensing. WiFi ad-hoc is not supported on most popular phones
unless rooted or jailbroken and will probably not be in the near
future due to economic and political issues [27]. WiFi Direct
was not designed with opportunistic networking in mind, but
tries to connect WiFi enabled devices such as printers and
cameras in a secure way and as easily as possible. User
involvement is mandatory for WiFi Direct for security reasons
[28]. Also note that even if WiFi Direct can overcome its
mentioned limitations in the near future, the phones still need
to switch between the WiFi Direct “peer mode” (to connect
directly with other peers also in the peer mode) and the normal
WiFi client mode (to connect to WiFi APs), as a phone in peer
mode is not able to connect to normal WiFi APs to offload data.
Thus our method actually generalizes to cover the WiFi Direct
type of scenarios in the future.

In contrast, we utilize a WiFi hotspot switching approach



that is compatible with existing WiFi APs as the functionalities
needed are supported by the standard Android API and Java
Reflection, which does not require users to root or jailbreak
smartphones. Two phones can establish connections when one
of them is in the hotspot mode and the other in the client
mode, and a phone can offload data to access points when
in the client mode. Initial efforts provided proof-of-concept
prototypes [28]. Two important questions remain unanswered:
first, is automatic phone-to-phone data transfer achievable in a
highly mobile vehicular environment? Second, how to switch
between the hotspot and client modes in an efficient way in
order to minimize the expected wasted time due to phones
being in incompatible modes? Our paper addresses the above
questions, and makes the following contributions.

e To the best of our knowledge, this is the first fully
deployed smartphone-based vehicular mobile sensing sys-
tem in which automatic phone-to-phone communication
is achieved and is compatible with existing wireless
infrastructure. While social sensing regarding traffic and
daily commutes provides the motivating applications, this
paper is strictly about the mobile communication platform
needed to support such applications.

e An analytical model is established to optimize system
parameters in an adaptive fashion to achieve high system
efficiency. We also provide empirical results to support
several important design decisions in our system.

e We evaluate our analytical model and demonstrate the
performance of our system by providing results from
a real 35-participant 2-month deployment using Google
Android phones, as well as simulation experiments using
T-drive 9,211-taxicab dataset [29], [30]. Results show that
our solution significantly reduces data transfer delay time
and maintains above 80% efficiency under varying system
parameters, even achieving 90% for parameter settings of
the latest smartphones.

The remainder of this paper is organized as follows. After
discussing related work in Section II, we give detailed problem
descriptions in Section III. We then present our analytical
model and system designs in Section IV and V. We evaluate
our system and solution in Section VI. And finally Section VII
concludes.

II. RELATED WORK

Prior work on vehicular mobile sensing and communication
generally falls into one of two categories: either using phones
for data collection and uploading (to back-end servers) without
peer-to-peer communication; or using DTN- or MANET- style
vehicle-to-vehicle communication but on dedicated hardware
instead of phones. We are the first to offer a fully deployed sys-
tem that leverages both phone-to-phone and phone-to-AP com-
munications from vehicle-resident smartphones, customized for
the needs of mobile sensing.

Several prior mobile social sensing applications leverage
smartphones placed in vehicles. For example, the Nericell
project [16] presents a system that performs rich sensing
using smart phones that users carry with them in normal
courses, to monitor road and traffic conditions. The GreenGPS
system [13] provides a service that computes fuel-efficient
routes for vehicles between arbitrary end-points, by exploiting
vehicular sensor measurements available through the On Board
Diagnostic (OBD-II) interface of the car and GPS sensors on

smartphones. SignalGuru [15] is a software service that relies
solely on a collection of mobile phones to detect and predict
the traffic signal schedule, producing a Green Light Optimal
Speed Advisory (GLOSA). These systems rely on WiFi access
points, since transmitting data through cellular data networks
is expensive. However, open public WiFi is becoming less
prevalent as more access points are becoming private or secure.
Our paper aims to overcome this drawback by allowing smart
phones to exchange data in an opportunistic way to maximize
upload opportunities.

Our application scenario requires moving wireless nodes
and sometimes information processing in intermittently-
connected networks. MANETs and DTNs are therefore im-
portant overlapping fields of research to our paper. For in-
stance, CafNet [6] in the CarTel project [18] is a delay-
tolerant stack that enables mobile data muling and allows
data to be sent across an intermittently connected network.
The CafNet protocols allow cars to serve as data mules,
delivering data between nodes that are otherwise not connected
to one another. Similarly, the DieselNet testbed [S] consists
of 35 buses, each with a Diesel Brick, which is based on
a HaCom Open Brick computer. MultiNets [31] investigates
the switching between WiFi and cellular modes on phones for
energy and/or throughput considerations. It is, however, not
suitable for our targeted vehicular mobile sensing/networking
scenarios because of limited WiFi accessibility in outdoor
environments and that we do not allow cellular data trans-
mission due to the constant generation of potentially huge
amount of sensory data. Other related work in this field include
[1]-[4]. The main differences of our proposed system over
this work are two-fold. First, most of them use data mules
for data collections, instead, we systematically investigate the
performance of realistic opportunistic networking via direct
phone-to-phone communication, which is now possible with
most popular mobile devices. Second, while they mainly focus
on the optimization of communication stack to take advantage
of short vehicle meeting times, we aim to leverage commonly
open APIs on smartphones and hence restrict ourselves to what
can be done with the available stacks.

Our work is also related to efforts in the vehicle networking
community, called VANET, where the goal is usually to in-
crease road safety and transport efficiency, and provide Internet
access on the move to ensure wireless ubiquitous connectivity.
Research challenges in evolving connected vehicle architec-
ture, such as leveraging street parking to enable vehicular
Internet access [7] and investigating application-driven inter-
and intra-cluster communication in VANETs [8], has been
deeply investigated. However, in mobile participatory sensing,
the vehicle-to-vehicle communication problem targets a dif-
ferent goal: we aim to help participants who rarely approach
wireless access points themselves to deliver their sensory data
to the back-end server more quickly. There appears to be
no straightforward solution in the VANET regime to provide
automatic and efficient vehicle-to-vehicle communication with
smartphones.

Finally, existing communication techniques on smartphones
that support peer-to-peer sharing, such as WiFi ad-hoc [25]
and WiFi Direct [26], have significant limitations and are not
directly usable for social sensing. WiFi Ad-Hoc is still not
supported on most popular phones unless rooted or jailbroken
and will probably not be in the near future [27]. WiFi Direct is
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Fig. 1: System model

not designed with opportunistic networking in mind, but tries
to connect WiFi enabled devices such as printers and cameras
in a secure way and as easily as possible [28]. In addition, once
a phone is set to WiFi ad-hoc or Direct mode to support peer-
to-peer communication, it is no longer able to connect to WiFi
APs and offload data to the back-end servers. Our WiFi hotspot
switching approach overcomes these drawbacks and does not
need to root or jailbreak smartphones [28], however, there
is still a lack of real deployment for performance evaluation
especially in highly mobile environment, which incidentally is
one main contribution of our paper as well.

III. SYSTEM MODEL & PROBLEM DESCRIPTION

Our system is aimed to operate in a vehicular mobile
sensing network where sensory data is generated and collected
from participants’ vehicle-resident smartphones, as illustrated
in Figure 1. WiFi coverage is only sparsely available within
the sensing area. When a car moves into the coverage area of
a WiFi access point, the phone transmits its locally stored data
to the back-end server via WiFi communications. In addition,
we particularly allow phones to communicate with each other
in order to reduce data transfer delays.

While a significant car density may be observed in an
urban area, it may not be appropriate to assume that all or
even a large portion of drivers are running our system on their
phones. Instead, we make the more conservative assumption
that only a small fraction of phones are running our system at
any given time. Hence, it would be unusual for more than two
such phones to be within each other’s communication range
at a time. Therefore, in this work we focus our analysis on
pairwise encounters between phones, as opposed to optimizing
general multi-party communications within phone clusters.
To demonstrate the validity of our assumption, we record
the number of vehicles in all meeting events in the T-drive
dataset containing 9,211 taxicabs. We set the transmission
range to be 30m, according to our own transmission tests
using Google smartphones in vehicles. We find that pairwise
encounters make up about 80% of all meeting occurrences.
Considering that the scale of this dataset is already quite large,
the ratio of pairwise encounters would further increase with
less participants in realistic settings.

In our system, as a phone joins the vehicle network, it
enters the client mode, in which it searches for available
communication opportunities, with either a phone in hotspot
mode or a WiFi AP. Meanwhile, a timer is started to control
how long the phone can stay in client mode searching. When
the timer expires, the phone switches itself to become a
WiFi hotspot. The phone then listens for incoming connection
attempts from other phones that are in client mode. Similarly,
another timer is used to switch the phone back to client mode
upon expiry.

In either client or hotspot mode, whenever the phone sees

a communication opportunity, the timer pauses as the phone
enters transmission mode, and the data exchange starts with the
other party (phone or back-end server via WiFi AP). When the
communication is terminated due to either data transmission
completion or cars moving out of range, the phone goes back
to its previous mode, with the timer resumed.

As two phones approach each other, if they are both in
hotspot (or client) mode, they cannot communicate until one
of them toggles mode. Similarly, when a phone enters an WiFi
AP coverage area, it cannot offload data if it’s in hotspot mode.
Therefore, the time durations phones stay in each mode is
crucial. Under our described model, we are then interested
in solving the System Efficiency Optimization problem, where
System Efficiency is defined to be, of the entire time duration
that phones are within communication range with each other
(or WiFi APs), the proportion of time when data transfer can
actually take place. The problem is challenging because the
information when vehicles meet each other or move into WiFi
coverage area is NOT a priori. In the next section, we establish
an analytical model for the optimal mode-toggling policy and
provide our solution to optimize important system parameters.

IV. ANALYTICAL FORMULATION & SOLUTION

In this section, we present the analytical formulation of
the optimal mode-toggling policy for maximizing the total
expected transmission duration in our targeted vehicular phone-
to-phone networks.
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Fig. 2: Proportion of various meeting interval length from T-drive
dataset.

We learn from preliminary experiments that connection
rarely establishes in highway driving scenarios, regardless of
whether the two cars are moving towards the same or opposite
directions. On the other hand, when two cars meet and move
toward the same direction in an urban or residential area, data
transfer duration typically lasts quite long, which can also
occur, for example, when the two cars close to each other
park in the same parking lot or are caught in a traffic jam.
Therefore, in these cases where the transmission duration is
either extremely short or long, the switching of the phones’
modes does not play a dominating role in system efficiency.
Figure 2 shows the distribution of car meeting interval lengths
within the T-drive dataset. We observe that around 46% of
meeting events last less than 5 seconds, and less than 1% longer
than 1 minute. Thus, more than 50% of car meeting events are
around the middle of the distribution and potentially can benefit
considerably from our system.

| to | Hotspot: r | tol Client: s

Time Frame: f=2tg+r+s
Fig. 3: Hotspot-Client switching cycle

A complete cycle of the hotspot switching procedure is
decomposed in Figure 3. As seen, a phone switches from
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TABLE I: Case analysis for expected transmission times

client to hotspot mode with an overhead of ¢y seconds, stays in
hotspot mode for r seconds, switches back to client mode with
another ¢yp-second overhead, and then stays in client mode for
s seconds, so on and so forth. Phones can retrieve the optimal
mode-switching parameters from a central server.

For simplicity we assume that the hotspot-to-client and
client-to-hotspot switching overheads are the same, confirmed
by our experiments. Given the previous description, the switch-
ing procedure repeats with a period of 2¢g + r + s seconds.
Assuming the vehicle-vehicle and vehicle-AP meeting rates
are 3 and -, respectively (8 + v = 1), we have the following
optimization objective function,

F(B,7) = max(8-Ti+v-Ta),
in which 77 and 75 are the expected phone-to-phone and
phone-to-AP transmission durations, respectively. The opti-
mization is over design parameters r and s. Other parameters
are not design parameters.

Let the base function f(¢) be a periodic function with
period f = 2tg +r + s,

Ty = Bty 1, [M1 — 7],

which can be computed generically as

P /t2(M1 — t*)dtzdh.
Now we compute the actual analytical expression for 77
for the various cases of ¢ and ¢5 value ranges.

() We first consider the case where t1,t5 € [0,%g).
It's easily seen that fi(¢)f2(t) > O for any ¢. Therefore,
E(M1 — t*)I(tlE[O,to))I(tge[O,to)) = 0. Note that the I’s are
just indicator functions, which we omit in writing for the rest
of the derivations.

(IT) Next we consider the case where t; € [0,%p),t2 €
[to,to + 7). Analyzing the physical process, we have t* =
2t0+7’—t2 if and only if tg—tl Z to. Then, if Ml Z t0—|—7" Z t*,
we have

E(M1 — t*) = i/ (Ml — t*)dtgdh
12 t1 Jto

to ptodr
= f2 / / M1 — 2t — 1T+ t2)dt2dt1
t

0, 0<t<to 1o
_ )L to<t<to+r _ 1 _ 1 R U . 5}
f@) = 0, todr<t<2o+r = 30 [(Ml to)*to 3(M1 r)” + 3(Ml to —1)”|.

-1, 2tp+r<t<2to+7r+s

When f(t) = 0, the phone is switching between modes;
f(t) = 1 indicates that the phone is in hotspot mode, and
f(t) = —1 client mode. In our calculation, we assume that
the switching overhead does not dominate either of the actual
mode durations, i.e., r,s > tg.

Upon entering the communication range of each other, the
two vehicles v and vy are at ¢; and ¢ withint their respective
base function f(t) periods, 0 < t1,ty < 2tg+r+s. We describe
the switching patterns of vy and vy as f1(t) = f(¢t + t1) and
fa(t) = f(t +ta2),t € [0,2tg + r + ), respectively. We then
define t* to be the time since meeting that the phones in two
cars establish connection. It follows that,

" =min{t : fi(t)f2(t) <0}

Since two cars can meet at any time, we consider ¢; and
to to be uniformly distributed over [0, 2¢o + 7+ s). We use M
to denote the total time duration in which the two cars v; and
vo are within communication range with each other. It then
follows that the two phones can only establish connection if
My > t*. With these notations, we derive the analytic formula
of the expected transmission time

Alternatively if r < M; < tg + r, to ensure M; > t* =
2to+r—to, we need to > 2tg+r—M;. Now 9 has two possible
lower bounds, t1+tg and 2tg+r—M;. If t1+tg > 2to+r—My,
it can be inferred that t; > to + r — My, then,

1
E(M1 — t*) = f—Q/ ; (M1 — t*)dthtl
1 2

1 rto to+r
= — / (M1 — 2tg — 7 + t2)dtadts
f to+r—Mq Jt1+to

(My — t0)2(My — 1) — %(M1 - r)3].

2
On the other hand if t; + tg < 2tg + r — M, it can be
inferred that ¢, < ty + r — M7, then,

1
E(M1 — t*) = F_/t \ (M1 — t*)dtgdtl
1 L2

1 to+r—M; to+r
= - / / (Ml —2tg — 1T+ t2)dt2dt1
f 2to+r— My

- 2f2 (M —
Adding these two together, we thus have,

tO)Q(tQ +r— Ml).

E(M, —t*) = # |:(M1 — t0)2t() — é(Ml — 7’)3



(a) Hardware components of our prototype system

(c) System running screenshot

Fig. 4: Hardware components, installation, and running screenshot of our prototype system

If to < My < 7, to ensure My > t* = 2ty +1r — to, we
have ty > 2tg +1r — M1 > £ + ¢, then

1
E(M; —t*) = F/t (M1 — t*)dtadty
1Jt2

1 to prto+r
= / / (M1 — 2t — 7 + t2)dtadty
0 2tg+r—My

to 5
= — (M —tg)~“.
: fQ( 1 —to)
We omit derivation details for the rest of the cases and

collect results for all cases in Table I.
Since [0,7 + tp) and [r + to, f) are symmetric, we have

T, = E[Ml—t*]
2rs
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o<y <s+t0) S5(Ts 8 M1) 4+ I(ary > s4t0) fo (7, 8, M1),

where
s+r. o
fi(rys,My) = 72 Wh
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1
—5(]\/[1 — t0)3] .
Note that the conditions in the above equations are not
mutually exclusive, which, however, does not affect the opti-
mization.

For modeling phone-to-AP communication, assume that
there is a WiFi AP always in hotspot mode. A vehicle comes
in range of the AP and stays in range for M> seconds. With
the same notations as above, we have

to —t1, t1 €[0,t0)

, t1 € [to,to + 1)

to+ s+ (2to +r —t1), tle[t0+’r,2to+7’) :
to+ (f —t1), t1 € 2to+ 7, f)

(=]

T

Therefore, the expected connection time to a WiFi AP is,

N Mor M2
Ty = E(Mz—t )=—f +I(M2<t0)2_;

1
a0 55 [M3 — (M2 — t0)?]
1
+I(t0§1blg<f—r)§(M2 —t)?

1
+I(JM—22f—r)ﬁ (Mg —t0)? — (M2 — f +7)?].

Again, the conditions in the above equation is not mutually
exclusive.

Given the values of tg, M7, M>, 8 and -, we can then solve
F(B,v) using off-the-shelf non-linear optimization solvers.
The evaluation of our solution is presented in Section VI.

V. SYSTEM DESIGN

In this section, we give an overview of our vehicular phone-
to-phone communication system, and discuss in detail a few
important design issues.

A. System Overview

Shown in Figure 4(b) is our prototype system as installed in
a vehicle. A close-up shot of the various hardware components
used in our system is shown in Figure 4(a). The Android phone
(Galaxy Nexus [32] or Nexus S [33]) is placed under the
windshield of the vehicle and is connected to the car charger.!
The prototype application running on the phones collects and
shares various driving data, including GPS trajectories, car
engine OBD (onboard diagnostic) readings [34], as well as
motion (accelerometer and gyroscope) data traces. The collect-
ing and sharing of such location, car engine and motion data
exemplifies a participatory sensing app that has a focus on how
people’s driving patterns and habits affect their vehicles’ fuel
consumptions. Our prototype system operates in completely
autonomous manners, needing no human intervention.

The GPS, accelerometer, and gyroscope data traces are
collected from the phone’s corresponding built-in sensors.
The engine OBD data is read using the ELM 327 OBD-to-
bluetooth adapter plugged into the car’s OBD-II port, and then
transmitted to the phone via bluetooth.

All collected sensory data is temporarily stored locally on
the phone in a database. Whenever an available WiFi AP is
detected in range, data is offloaded to the back-end server
and then deleted from the phone’s local storage. When two

IPlease note that in this paper we do not consider phone’s battery consump-
tion as it can be plugged into the car charger during in-vehicle operation.



vehicles are i) within the communication range of each other,
and ii) in compatible modes (i.e., one as a hotspot and the other
client), they exchange data until they move out of each other’s
communication range or complete sharing all their stored data.

B. Design Issues

We next discuss several important issues in our system
design: 1) Adaptive system update; 2) which transport layer
protocol to use; 3) scheduling during data transfer; 4) Multi-
vehicle communication policy; and 5) learning WiFi AP maps.

1) Adaptive System Updates: In our targeted vehicular
scenarios, phones enter and leave communication ranges with
each other or WiFi APs from time to time. Therefore, the
parameters M; and M, are not unknown or fixed, especially
when the system starts running with no available historical
data. We explain here how these parameters are computed and
updated dynamically as the system evolves.

We treat 3, v, M7 and M as random variables. Then the
optimal values of r and s are

(r*,s*) = arg n;zzx Elwl,Mg [E(,B)Tl + E(’Y)TQ} .

Initially the distributions of these parameters are unknown.
We therefore just make an initial guess at this stage. Then as
the system runs, detailed data of the parameters are sent back
and the corresponding empirical distribution are updated. The
parameters My and My represent the time durations of two
cars, or a car and a WiFi AP, being within communication
range of each other, respectively. Thus, they are a function
of car velocity and distance, which is a known constant. The
expectations of 3 and v can be estimated by N./(N. + N,,)
and N, /(N.+ N,,), where N, is the total number of vehicle-
to-vehicle meeting events and N,, vehicle-to-AP. Whenever
a phone-to-phone connection or a phone-to-AP connection is
established, the velocities of the vehicles are transmitted and
eventually will reach the back-end server. As this information
accumulates, the empirical distributions of the parameters is
updated. Consequently, a new (r*,s*) is generated and then
sent back to the vehicles. As data accumulates, by the law
of large number, the empirical distributions converge to the
true distributions of these parameters, therefore, (s*,t*) will
asymptotically lead to optimal system performance.

To disseminate the updated parameters into the network, we
allow phones to receive this information via the cellular data
channel. As the amount of data needed for this is negligible
compared to other mobile sensing data, the whole network is
updated immediately with only a tiny extra cost.

2) Transport Layer Protocol: TCP and UDP have their own
strengths and weaknesses. To decide which one to use, we
conduct a series of experiments to compare their performance
in our system. During each experiment, two vehicles start at
two ends of a long street, and move toward each other at
fixed speeds until they reach the other end of the street. One
phone serves as the hotspot and the other client. The client
continuously sends data packets to the hotspot after connecting
to it upon entering communication range. Packet sequence
numbers are used to simulate sensory data for transmissions.
TCP and UDP communications are measured separately. In
addition, we optimize the TCP real-time responses to improve
system efficiency by turning off the Nagle’s Delay option [35],
which is used to purposefully delay transmission, increasing
bandwidth at the expense of latency. The packet reception ratio

(PRR) under varying car speeds, ranging from 10 to 30 mph,
is recorded. The experiments are repeated on different streets
to minimize the effect of external noise.
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Fig. 5: Empirical results for design decisions.

Results are shown in Figure 5(a), from which we see
that UDP results in significant packet losses, only receiving
about 40% of packets on average under all speeds. We also
measure the PRR in the stationary case when two vehicles
are parked near each other. We find that packet losses rarely
occur, implying that the losses are mainly due to unreliable
wireless links in mobile situations. Also, we measure that the
inter-packet latency is around 1.5 millisecond for UDP and
1.9 millisecond for TCP under all speeds. This result indicates
that the data transfer efficiency of TCP is comparable to UDP
when the Nagle’s Delay option is turned off, and the number of
packets received using UDP is only 51% of the number using
TCP, thus TCP results in a more efficient data transmissions.
Therefore, we chose to use TCP in our system.

3) Scheduling During Data Transfer: Upon establishing
connection between two phones, we can either schedule the
transfers to take place in a serial manner (e.g., A sends to
B, then B sends to A), or have them in parallel, i.e., two
separate threads on each phone, one for sending and the other
receiving, so the OS takes care of the lower-level scheduling.
The former approach achieves controlled scheduling, but it is
difficult to decide an appropriate time slot value, and introduces
switching overhead. For the latter, we need to check whether
transmission performance is affected and fairness provided.
Therefore, we repeat the two-vehicle experiment with the latter
approach. The inter-packet delay times on both sides is shown
in Figure 5(b). We see that the data transfer with two threads
is reasonably fair for both directions—the average inter-packet
latency at the hotspot side is 2.62 ms, only slightly higher
than the 1.96 ms measured at the other side. Considering that
the inter-packet delay is 1.9 millisecond when transferring
in one direction, using two separate threads can improve
the transmission efficiency by 69.5%. Thus we choose this
approach in our system design.

4) Multi-Vehicle Communication Policy: We briefly talk
about the scenario under which multiple vehicles are within
communication range of each other. In our smartphone-based
vehicular sensing system, let’s assume they form a star-
topology network, the hotspot acts as the center and other
clients connect to it. The number of clients is limited by the
capacity of the hotspot (e.g., the maximum number of connec-
tions for iPhone 5 is five, as confirmed by AT&T and Verizon).
The hotspot communicates to its clients simultaneously via
multiple threads, and data from one client flows to others
through the hotspot.
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Fig. 6: Results under varying vehicle-AP/vehicle-vehicle meeting time durations and ratios

One choice in the multi-vehicle scenario is to switch their
roles dynamically for better global communication opportunity.
For instance, a client A connects to a hotspot B, and they start
transmitting data. Then A notices that another three hotspots,
C, D, and E, appear in its wifi list. Hence, the best way for
this local area network is to switch A as a hotspot, and the
other four phones as clients, so as to get everyone involved
in communication. However, this approach suffers from two
main drawbacks. First, it requires an extra switch time for
the client (e.g., A) to notify each hotspot to switch to client
and then switch itself into a hotspot. Second, the mobility
of these vehicles are undeterministic, thus it is hard to judge
whether this switching process is worthy in general. Therefore,
we decide not to support multi-vehicle communication in our
system, as also reasoned about in Section III.

5) WiFi AP Maps: We also recognize that having prior
knowledge about WiFi AP maps could help optimize our
system. Several such maps exist, being managed by the govern-
ment [36] and wireless operators [37]. However, the availability
of these maps is a big challenge since they are typically not
made pubic. What’s more, WiFi APs are generally designed to
cover indoor environments (e.g., Cafe, office, etc) and thus are
not largely accessible in vehicular settings. One possibility is
to let participants’ phones record local WiFi AP information
and share to the central server. The server can then derive
a global map and broadcast it back to all participants. This
approach, however, is problematic as different participants may
have different accesses to different APs. This may lead to
inaccurate estimations. In addition, the highly mobile vehicular
environment can lead to unstable communication patterns
and subsequent conflicting results on the central server. We
thus decide not to assume the availability of WiFi AP map
information in this paper.

VI. EVALUATION

Having presented our analytical model and discussed sys-
tem design details, we, in this section, evaluate the performance
of our automatic phone-to-phone communication scheme for
vehicular networking applications. We report findings from
our campus-wide deployment, and present optimization results
through simulation experiments using a larger-scale real-world
taxicab dataset.

A. Experiment Setup
We conducted a human subject study.? 35 people partici-

pated (university faculty, staff, and students of both genders,
ranging from early 20s into late 40s, from various departments)

2The study was conducted under IRB protocol #10092.

averaging 2 weeks each, and collectively drove for around
4,000 miles. While we expect a mobile sensing application to
run on participants’ own phones, in our study we gave people
phones pre-loaded with our test application. A mixture of both
Galaxy Nexus and Nexus S phones were given to participants
to be installed in their own vehicles. No specific driving routes
were pre-selected; all participants were asked to drive normally
and carry out their daily routines as usual. Comprehensive
logging information was displayed on the phone during the
running of the system, as illustrated in Figure 4(c), to notify the
participants of the status of the system if they were interested.

TCP communication is used with Nagle’s Delay disabled,
as we learn from our prior tests that having this option enabled
has negative impact on communication throughput. The switch-
ing overhead is estimated to be at about 3.5 seconds for Galaxy
Nexus and 6.9 seconds for Nexus S phones. During the data
transfer process, two separate threads are spawn concurrently,
one for sending and the other receiving. Fifty consecutive data
samples are combined into one larger packet before sending in
order to improve throughput.

B. Experiment Results

We estimate the values of ¢y, My, Ms, 8 and ~ from data
collected in our deployment, and investigate the relationship
between optimal parameters and various system coefficients,
under varying average meeting time durations (M7, Ms) and
vehicle-AP to vehicle-vehicle meeting ratios (%).

Figure 6(a) shows how optimal time frame lengths (2ty +
r + s) are affected by meeting times and ratios. We see
that, when the average meeting time is below 40s, meeting
ratios have little effect on optimal time frame lengths. When
the average meeting time increases beyond 40s, the optimal
frame lengths differ considerably as the meeting ratio varies—
the more dominant vehicle-AP meetings are (as opposed to
vehicle-vehicle meetings), the shorter the optimal frame lengths
become. We also notice that as the average meeting time
increases beyond 40s, the growth of the optimal frame length
slows down.

Figure 6(b) illustrates how optimal client mode proportion
(ﬁ) changes with different meeting times and ratios. We
observe that, as the vehicle-vehicle meeting ratio decreases,
the optimal client proportion increases. In particular, when
vehicle-vehicle meetings are about 10 times that of vehicle-AP
ones, the hotspot and client proportions are roughly the same
with each other; On the other hand, the optimal client mode
proportion increases beyond 80% when vehicle-AP meetings
become dominant. These results suggest the following, i) In
a dense vehicular network, in order to achieve the highest
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Fig. 7: Experimental results of system efficiency.

system efficiency, phones should spend approximately the same
amount of time in hotspot and client modes; and ii) In a
sparse vehicular network, phones should stay in client mode
as much as possible in order to maximize the probability of
communicating with WiFi APs. We can also easily see from
the figure that the optimal client mode proportion increases
when the average meeting time lengthens.

Figure 6(c) shows the optimal estimated system efficiency
e (]val’s ) 4 ’yTz (;/I;S ) note that T, and T, are functions
that take the optimal parameters r*, s* as inputs) varies with
meeting times and ratios. We see that the efficiency increases
monotonically with both the average meeting time and vehicle-
AP meeting ratio.It is quite promising that data communication
takes up over 55% of meeting times in almost all cases, and
even reaching above 90% in certain cases (higher vehicle-AP
meeting ratio and long meeting time).

C. Larger-Scale Simulation Results

Our deployment and human subject study help us get
initial ideas of how our proposed system behaves. To analyze
the system performance in a much larger scale, we turn to
simulation experiments using the T-drive real-world taxicab
dataset [29], [30], which contains the GPS trajectories of
10,357 taxicabs during the period of Feb. 2nd through Feb.
8th, 2008 in Beijing. To better represent our mobile sensing
application scenario, we select the central part of city and
filter out the suburb area where vehicles are sparse. Thus
our experiments contain 9,211 taxicabs, covering the central
Beijing area. We focus on evaluating the system efficiency of
our proposed optimization approach in this set of larger-scale
simulation experiments.

We assume that 10% of this area is covered by WiFi APs
to measure the performance of offloading events. This number
is motivated by results from other large cities such as San
Francisco and Seattle [38]. These WiFi APs are spread out
equally in the central part of the area.

The communication range of WiFi APs and taxicabs are
set to 250 and 30 meters, respectively. Both are based on our
actual measurements. We also experiment with the situations
where the taxicabs’ communication range varies from 30m to
50m, 100m, and 200m, in order to investigate the cases where
the next generation phones are more powerful and capable of
achieving larger communication ranges. Other system settings
and parameters, including data generation and offload process,
follow that of our small-scale deployment study.

We carry out the simulation using the T-drive dataset as
follows. For the first 24-hour’s data, we first extract meeting

intervals by recording all vehicle-vehicle and vehicle-AP pairs
that are in communication range at each time point, then
compute the optimal parameters based on the analytical model
discussed in Section IV. Finally we apply these parameters to
the meeting intervals and calculate the overall system efficiency
under three different candidate approaches: Adaptive, Static,
and Baseline. Adaptive updates system parameters every hour
based on historical data and applies them to all vehicles in
the network. Static only uses the data from the first hour to
calculate the optimal parameters, and then remains the same
during the whole process. Baseline considers the baseline case
in which phone-to-phone communication is not enabled.

We first investigate how system efficiency changes as the
switching overhead (ty) varies. Figure 7(a) shows the results
with the mode switching overhead ranging from 1s to 10s,
where phones’ communication range is set to be 30m. We see
that the system efficiency for Adaptive performs slightly better
than that of Static and is over 80% for all cases, specifically,
90% and 90% for Nexus 4 (to = 2.1 seconds), 88% and 86%
for Galaxy Nexus (tg = 3.5 seconds), and 84% and 79% for
Nexus S (o = 6.9 seconds). This indicates that our proposed
solution can achieve high system efficiency using off-the-
shelf smartphones and thus is highly practical. Also, since the
Baseline approach does not allow phone-phone communication
functionality at all, the system efficiency remains at 33%,
which is just the ratio of overall phone-AP to all meeting time.

Figure 7(b) shows the system efficiency under varying
phone communication ranges when the mode switching over-
head is 3.5 and 6.9 seconds, to emulate the use of Galaxy
Nexus (G.N) and Nexus S (N.S) phones. We see that the
efficiency of both Adaptive and Static does not change much
as the transmission range increases. The efficiency of Baseline
decreases as transmission range goes up. We also notice
that, again, the system efficiency for Adaptive performs only
slightly better than Static for both phones. This suggests that
in a relatively dense vehicular network setting, our proposed
solution quickly converges to optimal system parameters and
does not need extensive training phase.

We next study the time-of-day system efficiency in an hour-
by-hour fashion. As Figure 7(c) shows, the system efficiency
measurements for both Adaptive and Static do not change much
throughout the day, implying that both approaches work quite
well consistently. On the other hand, we see that the Baseline
approach leads to large oscillations, mainly due to the shift of
traffic patterns throughout the day, with a higher vehicle-AP
meeting ratio in the evening. Therefore, our proposed approach,
be it Adaptive or Static, delivers a much more stable and
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Fig. 8: Improvement of delay time with phone-to-phone
communication.

Finally, Figure 8 shows the application-level benefit that
direct phone-to-phone communication brings about. We record
the delay time of delivery for data generated in the first
hour by all 9,211 taxicabs, with and without our solution
and under varying transmission ranges. The throughput of
phone-to-phone communication bandwidth is set to 746.5 kbps,
obtained from measurements in our deployment. As we can
see, enabling phone-to-phone communication largely decreases
the delay time of data delivery, by more than 40% and up to
about 50% on average for all communication ranges tested.
More concretely, our solution helps reduce the average delay
time from 5.0 to 2.7 hours, and the median from 1.3 to 0.3
hour. In addition, as the transmission range increases, the
improvement by our solution also increases because it leads
to more occurrences of data transfers among taxicabs. These
results indicate that direct phone-to-phone communication sig-
nificantly improves data collection and sharing in vehicular
networking applications.

VII. CONCLUSIONS

In this paper, we present the design, implementation, and
evaluation of a novel optimized vehicular mobile system that
leverages both phone-to-phone and phone-to-AP communica-
tions from vehicle-resident smartphones. Our proposed so-
lution optimizes vehicle meeting communication efficiency,
does not require any change to existing infrastructure, and
is completely transparent to end users. Results from our 35-
vehicle 2-month campus-wide deployment and a large-scale
real-world dataset simulation demonstrate that our approach
significantly reduces data transfer delay time and maintains
over 80% (90% in certain cases) system efficiency. Given
the popularity of smartphones and importance of vehicular
networks, we believe that this work will motivate further
research on leveraging human encounters in mobile sensing
and networking applications.
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