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ABSTRACT
Neural Machine Translation (NMT ), a neural network based ap-
proach for language translation, has been shown to be more e�ec-
tive than traditional approaches like statistical machine translation.
Inspired by NMT , we propose ’Neural Sensor Translation (NST )’,
a process of translating data sequences from one or a set of sensors
to another using neural networks. NST is a data-driven approach
for creating virtual sensors that have useful applications in sen-
sor networks and internet of things. In this paper, we present a
Bidirectional Long Short-Term Memory (BiLSTM) based neural
network for sensor translation, and demonstrate the potential of
the approach using sensor data from a home.
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1 INTRODUCTION
Neural Machine Translation (NMT ) is a neural network based ap-
proach for translating a language to another by a computer. NMT
has shown to be signi�cantly more e�ective than traditional ap-
proaches like statistical machine translation. Inspired by NMT , we
present ’Neural Sensor Translation (NST )’, a process of translating
data sequences from one or a set of sensors to another using neural
networks. Like NMT , NST is a data-driven approach, but they are
di�erent in many other aspects including data type, data generation,
performance metrics, and applications.

NST is our proposed new approach for creating virtual sensors
that have many useful applications. �ey can be used to replace
failed or malfunctioning sensors, to provide �ne-grained sensing
from sparsely deployed sensors, and to save energy of ba�ery pow-
ered devices. One major problem of internet of things is the burden
of maintenance, particularly in the long-run. �e burden can be
a�enuated or delayed using more robust and durable equipment,
but that increases cost for development and installation. Still, fail-
ure or malfunction of the equipment are inevitable. NST can be
used to create a virtual sensor that emulates a failed or malfunc-
tioning sensor as a measure to avoid repairing or replacing the
device, or as a temporary solution to allow delayed maintenance.
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Figure 1: Architecture of the Bidirectional Long Sort-Term
Memory (BiLSTM) method

Sensor translation can also be used for more localized sensing in
a cost-e�ective way. For many smart systems like smart homes,
buildings and cities, larger number of spatially distributed sensors
enable more localized sensing that provides be�er utility and usu-
ally improves performance of the underlying algorithms. However,
increased number of sensors result in signi�cant cost for installa-
tion and maintenance. For example, few environment monitoring
stations are available in many cities, and they can not provide very
local information. We can use a mobile station to collect data of
a location over a certain duration and create a virtual sensor for
that location. �e mobile station can be re-used for many locations.
Sensor translation can also be used to save energy, particularly for
ba�ery powered devices where sensing requires signi�cant energy.

In this paper, we present a Bidirectional Long Short-Term Mem-
ory (BiLSTM) based neural network for implementing sensor trans-
lation. We evaluated it using sensor data from a home. Results from
this preliminary study demonstrate the potential of NST .

2 METHOD
Data from multiple sensors are o�en correlated, and the correlation
is exploited to emulate a sensor. �e correlation is be�er captured
over sequences than by individual values. A Recurrent Neural Net-
work (RNN) is e�ective in capturing pa�erns in sequences, and it
is used widely for sequence-to-sequence modeling, particularly in
natural language processing. We use a BiLSTM network for sensor
translation, as shown in Figure 1. At each step, the outputs from
the forward and the backward LSTM networks are concatenated
and connected to a single node dense layer that predicts the corre-
sponding value of the target sensor. We have used 16 nodes in each
of the LSTM cells and the ReLU (Recti�er Linear Unit) activation
function at the outputs.

3 EXPERIMENTS
We use data from temperature and relative humidity sensors de-
ployed at a home [1]. �ere are two �oors in the home, and temper-
ature and humidity sensors are available on both of the �oors. Here
we use only the sensors from the �rst �oor (Figure 2) where 4 nodes,
each containing a temperature (T) and a relative humidity (RH)
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Figure 2: Temperature (T) and Relative Humidity (RH) sen-
sors in the �rst �oor of the home. �is �gure is from [1].

.

Figure 3: MAEs for emulating a temperature sensor from
other temperature sensors.

sensor, are deployed at di�erent places. Data have been collected
for 137 days with 10-minute intervals. More details about the data
are available in [1]. We use the �rst 80% data (about 110 days) for
training and the remaining 20% (about 27 days) for testing. �e
data are segmented into sequences of length 24 that are used as
input to the BiLSTM network.

�e mean absolute errors (MAE) for emulating a sensor from
the same type of other sensors (e.g., T1 from T2, T3, and T4) are
shown in Figure 3 and Figure 4 for the temperature and the relative
humidity sensors, respectively. Results for Linear, Lasso, Ridge, and
Random Forest regression techniques are also shown. �e errors of
BiLSTM are very small compared to the other methods. �e results
demonstrate the e�ectiveness of NST in capturing the relationship
between sensors.

�e errors of BiLSTM for emulating a sensor from a single other
sensor are listed in Table 1 and Table 2 for the temperature and
the relative humidity sensors, respectively. We do not show the
errors from the other methods due to space limitation, but they are
signi�cantly higher than BiLSTM as before. �e errors from Figure 3
and Figure 4 for BiLSTM are also listed for comparison. We see that
the error of translating one sensor to another is not signi�cantly
di�erent than using three sensors. �e result is context speci�c,
and the error di�erence might be signi�cant in other contexts.

Sensors can also be translated from one type to another. �e
last columns of Table 1 and Table 2 list the errors for translating a

Figure 4: MAEs for emulating a relative humidity sensor
from other relative humidity sensors.

Sensor T1 T2 T3 T4 All Ts Self RH
T1 0 0.09 0.09 0.1 0.07 0.18
T2 0.1 0 0.17 0.09 0.11 0.22
T3 0.05 0.14 0 0.1 0.05 0.20
T4 0.14 0.14 0.12 0 0.1 0.22

Table 1: MAEs for translating into a temperature sensor by
the BiLSTM method.

Sensor RH1 RH2 RH3 RH4 All RHs Self T
RH11 0 0.05 0.05 0.04 0.05 0.09
RH2 0.07 0 0.08 0.08 0.07 0.12
RH3 0.04 0.04 0 0.02 0.04 0.06
Rh4 0.03 0.06 0.03 0 0.03 0.12

Table 2: MAEs for translating into a relative humidity sensor
sensor by the BiLSTM method.

temperature sensor to a humidity sensor and a humidity sensor to
a temperature sensor located in the same device. �ough the errors
are relatively higher than translating from similar sensors located
in other nodes, they are not signi�cantly high.

4 DISCUSSION
NST is a data-driven approach, and so translation error is context
speci�c. Here, we presented results for temperature and humidity
sensors in a home se�ing. �e error rate might be signi�cantly
di�erent for similar sensor translations in other se�ings like an
industrial complex or an open area. �e acceptable or usable error
for sensor translation is not de�ned, rather they are application
speci�c. NST does not require de�ning the relationship between
the sensors explicitly, and so it can be used in many applications
where the relationship is not well de�ned. However, NST would
not work where the correlation between the sensors is not su�cient
enough to achieve acceptable accuracy. �ough we present results
for relatively correlated sensors in a home se�ing, the results are
encouraging, and show the potential of NST .
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