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ABSTRACT

The monitoring of electrical and water fixtures in the home
is being applied for a variety of “smart home” applications,
such as recognizing activities of daily living (ADLSs) or con-
serving energy or water usage. Fixture monitoring tech-
niques generally fall into two categories: fixture recognition
and fixture disaggregation. However, existing techniques
require users to explicitly identify each individual fixture,
either by placing a sensor on it or by manually creating
training data for it. In this paper, we present a new fizture
discovery system that automatically infers the existence of
electrical and water fixtures in the home. We call the system
FiztureFinder. The basic idea is to use data fusion between
the smart meters and other sensors or infrastructure already
in the home, such as the home security or automation sys-
tem, and to find repeating patterns in the fused data stream.
To evaluate FixtureFinder, we deployed the system into 4
different homes for 7-10 days of data collection. Our results
show that FixtureFinder is able to identify and differentiate
major light and water fixtures in less than 10 days, including
multiple copies of light bulbs and sinks that have identical
power /water profiles.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems
]: Real-time and Embedded Systems
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Fixture Discovery, Smart Homes, Data Fusion, Smart Me-
ters, Disaggregation

1. INTRODUCTION

Over the past several decades, several new technologies
have emerged to monitor the use of electrical and water fix-
tures in the home. This information is being applied for a
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variety of “smart home” applications, such as recognizing ac-
tivities of daily living (ADLs) or conserving energy or water
usage.

Fixture monitoring techniques generally fall into two cat-
egories. The first category includes fixture recognition tech-
niques, that identify when a particular fixture is turned on
or off. For example, the ElectriSense [10] and HydroSense [7]
systems attach a sensor to a wall socket or hose bib to mon-
itor high frequency noise in the voltage and water pressure,
respectively. The user trains the system by manually turning
fixtures on or off so that the system can learn each fixture’s
noise profile. Then, the system automatically recognizes
those fixtures each time they are used in the future. The
second category includes fizture disaggregation techniques,
that identify how much energy or water is used by each
individual fixture. For example, the Viridiscope [17] and
NAWMS [16] systems attach a sensor to each electrical or
water fixture to recognize when they are used, and also use
a smart meter on the electrical or water mains to monitor
aggregate energy/water usage in the entire house. Based
on the assumption that the total energy/water usage of the
home is equal to the sum of energy/water usage of indi-
vidual fixtures, these systems learn the quantity of energy
or water used by the individual fixtures. However, all of
these techniques have one key limitation: they require an
initialization phase where the user must first identify the in-
dividual fixtures, either by manually creating training data
for each fixture, or by placing a sensor on each fixture.

We present a new fizture discovery system that automat-
ically infers the existence of electrical and water fixtures in
the home. Many major appliances are distinctive enough to
be discovered through the smart meter data alone, due to
their periodicity (e.g. refrigerators and space heaters [3]) or
a predictable progression through multiple modes of opera-
tion (e.g. dishwashers and washing machines [22]). However,
small, simple fixtures tend to be much less distinctive and
can easily be buried in the noise of other, simultaneous fix-
tures. Furthermore, power/water meter data alone cannot
distinguish between multiple, identical fixtures in a home
such as 60W light bulbs or bathroom sinks. To address this
problem, we use data fusion between the smart meters and
other sensors or infrastructure already in the home, such
as the home security or home automation system. Then,
we search for repeating patterns in this fused data stream
to uncover the existence of small fixtures, and to differenti-
ate between multiple, identical fixtures. For example, sink
activity may be highly correlated with motion sensor data
from the bathroom and the home water meter data; light



fixture activity in the living room may be correlated with
the home power meter data and light sensor data from the
living room. The basic insight behind our approach is that
every fixture has a distinctive profile in the home, even if
it is not distinctive in the smart meter or ambient sensor
data alone. By fusing multiple data streams, we are able to
uncover multi-modal fizture profiles that are not apparent in
the smart meter or ambient sensor data alone.

In this paper, we present FiztureFinder, a prototype of a
complete fixture discovery system. Our current prototype
focuses on light fixtures, sinks, and toilets. These fixtures
are among the most difficult to discover because of their
non-distinctive power/water profiles, and because numer-
ous copies of each are likely to be found in most homes.
Thus, our demonstration on these fixtures provides a proof-
of-concept for the basic principles presented in this paper.
Our prototype performs data fusion of smart meters with
typical security and home automation sensors, since such
sensors are already deployed in over 32 million homes in
the US [21]. By combining commercial home sensors with
the smart power and water meters that are already widely
deployed by utility companies [1], FixtureFinder can en-
able fixture recognition and disaggregation across millions
of homes, without requiring an initialization phase where a
person manually identifies the individual fixtures.

FixtureFinder uses two aspects of the motion sensors typ-
ically found in home security and automation systems: the
detection of infrared activity and the detection of ambient
light levels (many motion detectors contain sensors in the
visible light spectrum for calibration purposes). Using this
data, FixtureFinder performs four steps to recognize light
and water fixtures: (1) it detects all rising edges and falling
edges in the four data streams: power, water, motion, and
light; (2) it fuses the data streams by identifying pairs of
co-temporal edges in different data streams; (3) it uses clus-
tering algorithms to recognize repeating patterns of multi-
modal pairs, and uses Bayesian matching to select only those
rising/falling edges that have a matching falling/rising edge
with the same multi-modal profile; (4) it clusters all discov-
ered ON-OFF events based on their multi-modal profile to
discover the unique fixtures in a home. Unlike fixture recog-
nition, the goal of fixture discovery is not to recognize every
ON/OFF event but rather to select only those events that
are very likely not to be caused by spurious noise. Once a
set of such events is recognized, it can be used to create a
training set for existing fixture recognition or disaggregation
systems such as ElectriSense and Viridiscope. In this paper,
we show how the principles and algorithms behind Fixture-
Finder can also be applied for fixture recognition and dis-
aggregation. To our knowledge, this is the first system that
can automatically discover the presence of small, simple fix-
tures; that can perform fixture recognition; and that can
disaggregate power and water usage, all in a completely un-
supervised fashion.

To evaluate FixtureFinder, we deployed between 25-40
sensors in 4 different homes for 7-10 days of data collec-
tion. The sensors included a whole-house power meter and
water meter, a motion and light sensor in every room, and
ground-truth sensors on light and water fixtures in the home.
Using this data, we demonstrate that FixtureFinder is able
to discover all water fixtures and 37 out of 41 light fixtures
monitored in less than 10 days, including multiple copies
of light bulbs and sinks that have identical power/water

profiles. The 4 light fixtures that were not detected were
specialized task lighting such as under-cabinet lights that
were not heavily used. FixtureFinder was able to recognize
fixture usage events and disaggregate water and electrical
usage with about 90% accuracy.

2. RELATED WORK

Fixture monitoring generally falls into two categories: fix-
ture recognition and fixture disaggregation. Some existing
systems in these two categories are built upon principles
that could in theory also be used for fixture discovery, but
to date this potential has not been fully explored for any
existing system. Below, we describe examples of both types
of systems, touching on their potential to discover fixtures
where appropriate.

2.1 Fixture Recognition

Fixture recognition systems identify when a particular fix-
ture is turned on or off. Perhaps the most well-known ap-
proach for fixture recognition is non-intrusive appliance load
monitoring (NIALM) [11], which can be used to recognize
the usage of electrical fixtures in the home based on their
power signatures. These signatures can be extracted us-
ing only a single power meter, which is already available in
many homes today [1]. Some appliances have a unique pro-
file of real and reactive power, while other appliances such
as washing machines and dishwashers exhibit characteristic
electrical patterns over time. When a home contains multi-
ple similar appliances, however, NIALM techniques cannot
identify which appliance is being used. Furthermore, due to
low power state transitions from complex appliances such
as the television or the HVAC system, NIALM techniques
are not effective for small fixtures such as electric lights that
exhibit constant, low power values [11]. In theory, NIALM
signatures can be used to automatically discover major ap-
pliances [22]. However, this approach would require a large
database with the electrical signatures of every appliance
ever manufactured. Despite over two decades of discussion,
no such database has been created and, despite some re-
cent home energy data sets [2,18], to our knowledge there
is no current effort to create one. Furthermore, the number
of manufactured appliances is enormous, and comparing a
noisy electrical signal against a large space of electrical sig-
natures is likely to produce spurious detections of appliances
that do not exist. Further investigation into the potential of
this approach is needed.

Approaches similar to NIALM have also been developed
to recognize water fixtures. For example, one system uses
flow signatures, such as flow rate, flow duration and, in the
case of washing machines and dishwashers, patterns of flow
to identify types of fixtures and appliances [20]. Another sys-
tem uses patterns in the presence or absence of flow in both
water pipes and drain pipes [6], as detected by microphones
installed in the basement. These systems achieve high ac-
curacy in recognizing high consumption appliances, but low
accuracy in differentiating between different instances of the
same fixture category such as different instances of identical
sinks, toilets, or showers in the same home.

Recently, new solutions have been developed to recognize
fixtures based on noise profiles in the power or water lines.
For example, two systems use an easy-to-install, plug-in sen-
sor that leverages unique high frequency EMI(Electromagnetic
Interference) signals on the power line to recognize electri-



cal fixtures. The first system called Flick-of-a-switch [24] can
recognize mechanically switched appliances while the second
system called ElectriSense [10] can detect fixtures that use
switched-mode power supplies (SMPS) such as low-voltage
electronics or CFL bulbs. Similarly, HydroSense [8] sam-
ples a water pressure sensor at 500Hz from anywhere in the
piping system, such as a hose bib outside the home. The
system recognizes water fixtures based on the “water ham-
mer” signature caused when a fixture is turned on or off.
These three approaches can differentiate between multiple,
identical fixtures such as light bulbs, sinks, and toilets. How-
ever, they all require users to manually train the system by
labeling ON and OFF events for every single fixture. If fix-
tures are added or moved throughout the house, training
must be performed again. The ElectriSense signatures may
be persistent across houses, and the authors suggest that
a large database of such signatures would be sufficient for
fixture discovery. However, this assertion must still be fully
explored, and is subject to many of the same challenges as
the NIALM approach discussed above.

2.2 Fixture Disaggregation

Fixture disaggregation systems identify how much energy
or water is used by each individual fixture. The simplest
approach to measure power and water usage at individual
fixtures is to place a sensor on each one [13]. This approach
is sometimes called direct sensing, and requires sensors that
can directly be integrated into pipes or electrical wiring,
which can be expensive to install in terms of both hard-
ware and installation time. Alternatively, indirect sensing
approaches fuse data from smart meters with sensors placed
on or near each appliance. For example, Viridiscope [17]
uses one specialized sensor node per appliance to measure
light, acoustic, and/or magnetic field changes, and tries to
correlate the intensity of the indirect measurement with the
amount of power used by the appliance. This is performed
through a global calibration process based on the assump-
tion that all fixtures are instrumented, and that the whole
house power demand is equal to the sum of the individual
fixtures. Viridiscope makes a firm assumption that each fix-
ture being monitored is paired with a different sensor: if any
sensor’s magnetic field, acoustic, or light values are strongly
influenced by more than one fixture, the system would treat
them as a single fixture and would produce an incorrect cal-
ibration function. FixtureFinder provides the mathematical
machinery (in the form of Bayesian clustering and matching
algorithms) to help Viridiscope dissociate two or more fix-
tures detected by the same sensor, and to combine a single
fixture that is being detected by multiple sensors.

The principles underlying Viridiscope have also been demon-

strated for water systems, where accelerometers were used
on the pipes to measure vibration and a centralized water
meter was used on the water mains [16]. Several other, sim-
ilar techniques have been proposed for power or water dis-
aggregation [9,14,26]. However, these techniques all require
a single sensor per fixture, and sometimes even additional
sensors internal to the power and water infrastructure. The
goal of FixtureFinder is to automatically discover fixtures
based on sensors and infrastructure that is already present
in the home, such as security systems or home automation
sensors, that were not deployed with the explicit purpose of
fixture disaggregation.

FixtureFinder builds on earlier results in water disaggre-

gation by the authors, that were published at a workshop [27].
This paper focuses on the fixture discovery aspects of that
work, and generalizes the solution to include both electrical
and water fixtures.

In theory, fixture recognition and fixture disaggregation
techniques could be used in combination. For example, the
user could install an ElectriSense sensor to measure noise
on the electrical lines. After a manual training process, the
ElectriSense system could recognize when each appliance is
used, and the Viridiscope system could use that information
to disaggregate their individual energy usage levels. Fixture-
Finder is also expected to work in cooperation with systems
like these, in order to avoid the need to explicitly add sensors
or manually create training data for each fixture.

3. APPROACH OVERVIEW

The goal of the FixtureFinder algorithm is to combine
smart meters with in-home sensors to form a fused data
stream, and to discover frequently repeating patterns within
that stream. For example, it will detect when a 5 liter/minute
water flow repeatedly co-occurs with activity in a particular
motion sensor. We call these patterns multi-modal fixture
profiles, because they represent the signature of a fixture’s
usage as viewed by multiple sensor types simultaneously.
FixtureFinder’s mathematical machinery is based on two
underlying insights: 1) the usage of a fixture often has a
repeating signature in multiple different sensor streams si-
multaneously, and 2) the ON and OFF events of a fixture
come in pairs. Additional states other than ON and OFF
could be incorporated into Step I1I without loss of generality,
but FixtureFinder does not yet address multi-state fixtures.
The FixtureFinder algorithm has four Steps. In Step I, it
uses edge detection to compute a sequence of timestamped
rising and falling edges in each data stream. In Step II, data
streams are fused by finding events in multiple streams that
frequently co-occur in time, and combining them to creating
edge pairs. This fusion step eliminates spurious edges that
exist in only one stream, but are not observed in the other
data streams as expected. In Step III, the edge pairs are
matched in rising/falling sequences called usage events, and
all edge pairs that do not successfully match are discarded.
This matching process eliminates additional spurious edges
that do not correspond to a fixture ON or OFF event. In
Step IV, the usage events are clustered into groups that have
similar multi-modal profiles. These clusters represent the
fixtures that have been discovered.

Algorithm 1 shows the mathematical formalism behind
the four main steps of the FixtureFinder algorithm. The
variables shown in bold indicate the output of each step. The
final output of Step IV is thus the Fixture Set. The inputs
to the algorithm are two sensor streams S°, S from sources
i and j respectively; however, Steps II, III, and IV could
be extended in the future to handle more than two sensor
streams. We expand on algorithm 1 below and explain the
intuition behind each step in detail.

Step I: Event Detection: For every sensor ¢ in the
system that produces a time series S* = s%, 5, s%, ..., s, the
first step performed by FixtureFinder is to apply an edge de-
tection algorithm on S* to produce a set of Edges E*. Lines
1:2 in algorithm 1 show Step I. Each edge e’ = (mi, ti) €E’
is an ordered pair, where m® is the magnitude of the edge
and t' is the timestamp of the edge. If m® > 0 then e’ is



Algorithm 1 Steps in the FixtureFinder algorithm

Inputs: Sensor streams S¢, S7

FEvent Detection:

1: Edges E' = [M" T"] + EdgeDetect(S")
2: Edges E? = [M’ T?] < EdgeDetect(S”)
Data Fusion:
3: Edge Pairs P*/ = {}
4: for all edge pairs (e, e’), where (¢! = (m',t) € EY) A (¢ = (m?,+/) € E?) do
5. if (t' — /| < T A (m* *m?) > 0) then
6: Add (e, ¢e) to P
7:  end if
8: end for
Matching:

9: Edge Cluster C* + Cluster(M*)
10: Edge Cluster €7 < Cluster(M7)
11: for all edge pairs p = (e, €’ P do

12:  Edge pair probability P(p) = >, Y, P(e'|c¢") = P(e’|’) x P(c'|¢) x P()

cteCt cieCi
13: end for

14: for all (ps,py), where (ps = (ek,el) € P"7) A (py = (e}, ¢)) € P*) do
15:  Pair match probability P(ps,py) = ( 32 Ples|c’) x P(—eylc’)) * ( 30 P(ehle’) x P(—€j|c’))

cteCt

cleCy

16:  Pair match weight W (pz,py) = —log(P(pz) * P(py) * P(pz, py))

17: end for

18: Usage Events F*/ = [E}, Ef)ff El, ngf} < Min Cost Bipartite Matching(WW)

Fizxture Discovery: ‘ _
19: Fixture set « Cluster([M;,, MZ,])
20: return Fixture Set

a rising edge, otherwise it is a falling edge. Every type of
sensor will produce a stream with a different structure, and
will therefore require a different type of edge detection al-
gorithm with parameters set appropriately by the user. In
sections 3.1 and 3.2, we discuss the particular edge detection
approaches used for each sensor type.

Step II: Data Fusion: FixtureFinder creates a set of
Edge Pairs P*’ by combining every pair of edges that are
generated by the two sensor modalities, that are both rising
or falling edges, and that co-occur in time. Lines 3:8 in
algorithm 1 show Step II of the FixtureFinder algorithm.
More specifically, for every pair of edges ¢’ = (m',t') and
e/ = (m?7) from the two streams S® and S? respectively,
FixtureFinder creates a new edge pair p = (ei, ej) if m* and
m? have the same sign (i.e. both rising or both falling) and
\ti — tj| < T, where T is a time windowing parameter that
defines how close a pair of edges must be. Any edge that does
not co-occur with an edge from another data stream is not
used to create an edge pair, and is therefore not considered
further.

The value of T' depends on the sampling rate of the sen-
sors, and possibly on any time synchronization errors be-
tween the sensors. Due to a noisy data stream SY or simul-
taneous human activity in the home, we frequently pair a
single edge e’ from one stream S* to multiple noisy edges e’
from S’ that occur within time window T'; in Step III, we
eliminate noisy edge pairs by only retaining frequently oc-

curring edge pairs that can be successfully matched to edge
pairs of the opposite polarity.

Step III: Matching: Once all edge pairs are created,
FixtureFinder matches rising edge pairs p, with falling edge
pairs py in order to create multi-modal fixture Usage Events
F%J. Lines 9:18 in algorithm 1 show Step III of the Fixture-
Finder algorithm. First (in lines 9:17), we compute a weight
function W (ps,py) between any two edge pairs p, and py
from set P%J; the weight function is designed to be very
low if the two edge pairs are highly likely to be from a sin-
gle fixture’s ON-OFF event. A min-cost, bipartite matching
algorithm [19] is then used to match edge pairs based on
W, and each edge pair can only be matched once; any un-
matched edge pairs are thus eliminated as noise.

We compute the weight function W (ps,p,) (line 16) for
the matching algorithm based on two probability functions:
(i) the probabilities P(p,) and P(p,) that the individual
edge pairs p, and py are created as a result of frequent fixture
usage and not as a result of noise, and (ii) the probability
P(ps,py) that both edge pairs are from the same fixture’s
ON-OFF event. To compute the edge pair probabilities (i)
and (i), we first cluster the edges E’ from each sensor 4
based only on their magnitudes M* to a set of clusters C?,
as seen in lines 9:10. We use a soft clustering algorithm
to obtain the probabilities P(e’|c’) that any edge e € E°
belongs to any cluster ¢! € C*. The intuition is that each
fixture generates a unique edge cluster combination (c?,¢’)
in two data streams.



Figure 1: Bayesian network used to compute P(efe?)
for edges ¢’ and ¢’ from sensors ¢ and j respectively.

Probability (i) is then computed using the equation in line
13, which follows from our simple Bayesian network formu-
lation shown in figure 1. Observed edges e’ and e’ are de-
pendent on hidden clusters ¢* and ¢’ respectively; clusters ¢
and ¢/ co-occur whenever the underlying fixture generating
these two clusters of events is triggered. In line 13, P(cj) is
the fraction of events in cluster ¢’ relative to other clusters,
and P(c'|¢?) is the fraction of events in ¢/ that are paired
with events in ¢’. In line 15, we compute probability (ii) as
the probability that both edge pairs are from the same edge
cluster creating the rising edge pair.

Before the matching algorithm is executed in line 18, cer-
tain matches are eliminated by setting their weight to zero,
including

e any match where the rising edge occurs after the falling
edge.

e any match where, before the falling edge occurs, the
total power or water usage drops below the magnitude
of the rising edge.

This last condition is designed to avoid matches where, for
example, it appears that a sink is turned on and off 2 minutes
apart, but during that interval, the total water flow actually
dropped to zero. After the matching process is complete,
any unmatched edge pair is not included in a usage event
and is therefore no longer considered. The set of matched
fixture usage events F*J thus consists oof multi-modal rising
(E,,E3,) and falling edges (Eéff7 Ef)ff) from both sensor
streams S° and S7.

Step IV: Fixture Discovery: Once all usage events
F% are created, FixtureFinder clusters them based on the
multi-modal profile, i.e. the magnitudes of rising edge values
from the two fused data streams ([M, MZ,]). Step 19 shows
the fixture discovery step; every cluster produced represents
a discovered fixture, and the usage events associated with
that cluster represent instances when that fixture was used.
It is important to note that the fixtures discovered in Step
IV represent only those fixtures with a multi-modal profile
in sensor streams S® and S7, such as the whole house power
meter and the light sensor in the living room; to discover
fixtures in other rooms such as the kitchen, we run the fix-
ture finder algorithm on other pairs of sensor streams, such
as the whole house power meter and a light sensor from the
kitchen.

3.1 Case Study: Light Fixture Discovery

In the first case study, FixtureFinder combines the whole-
house smart power meter with ambient light sensors to dis-
cover light fixtures, infer their nominal wattage values and

usage times. We considered other sensor pairings such as the
smart power meter and ambient motion sensors, but found
that the false positive rate in this pairing was too high to ac-
curately identify light fixture events; in the future, we plan
to include more than two sensor streams including motion
and other sensors to improve accuracy.

We assume that each room or area in the home has one
light sensor. When we observe light edges in multiple light
sensors simultaneously with the same polarity, we only re-
tain the light edge with maximum intensity, since that edge
is most likely from the sensor in the same room as the light
fixture. Finally, we independently apply the FixtureFinder
algorithm 1 on each light sensor paired with the whole-house
power meter to discover the individual light fixtures in each
room.

Figure 2 shows an example of this process using real data
traces from a whole house power meter and a bedroom light
sensor, on typical day from 6AM to 4PM. The top box shows
the two true light fixture ON-OFF events observed during
the time period shown. The power meter data (right side)
and bedroom light sensor data (left side) are both used to
generate edges. On the left side, we show the light edges
created by a simple window-based edge detection algorithm
and also the effect of applying additional filters (explained
in detail below) to eliminate spurious edges caused due to
human movement or natural light changes. In both the light
sensor and power meter data, a large number of spurious
edges are difficult to differentiate from the true fixture usage
events shown on top. By fusing the two data streams and
looking for matched ON/OFF events, two true light usage
events are discovered (top).

To perform Step I, we choose edge detection algorithms
based on the characteristics of the power and light data.
Certain major appliances such as HVAC are very salient in
the power trace (right side of figure), but small fixtures such
as light bulbs are buried in the noise. Furthermore, many
low power noisy events occur within 2-3 seconds of each
other while a few light fixtures take more than a second
for a full edge transition. These two cases can be difficult
to differentiate due to the 1Hz sampling frequency of the
TED power meter. For this reason, we must use a very
aggressive edge detection algorithm that finds all edges be-
sides very low intensity edges (noise), or edges that rise too
slowly (most likely because they are aggregates of smaller
edges). Specifically, we apply a custom sliding window tech-
nique that detects all power edges with at least a minimum
intensity dP and a maximum time window bound mazwin P
set to 5 seconds.

We use the same sliding window technique to find edges in
the ambient light data. Most changes due to natural light-
ing result in gradual changes, and are eliminated using our
window-based edge detection algorithm which only looks for
high intensity edges within a short time window. As seen
on the left side of the figure, the window-based edge detec-
tion still produces a very large amount of false edges due to
shadows and partial cloudiness. We use two key insights to
differentiate artificial lighting from the noise natural light-
ing:

e Lights are not turned on and off very quickly.
e Lights are not turned on and off repeatedly for long
periods of time.

Thus, any highly frequent or very rapid or very gradual edges
are filtered.
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Figure 2: These data traces are from a bedroom light sensor and whole house power meter from 6AM to
4PM in House 2. FixtureFinder eliminates false positive light and power edges by performing data fusion

and matching.

In Step II, we chose a parameter value T' = 12seconds for
the data fusion to account for time synchronization errors
and delays in observing the power edges in the off-the-shelf
power meter (caused due to transmission delays on the noisy
power line infrastructure).

In Step III we chose Quality Threshold Clustering [12] as
our clustering algorithm to generate the edge clusters from
each sensor stream. The advantage of Quality threshold
clustering is that it allows us to control the mazimum dif-
ference between any two edges in a given edge cluster; this
allows us to use prior knowledge about the typical error dis-
tribution of light fixture edges in a home. Based on empir-
ical experiments, instead of using a fixed maximum differ-
ence, we modified the quality threshold algorithm to use a
maximum relative difference (difference between two edges
as a proportion of the smaller of the two edges); we used
a maximum relative difference of 0.25 in our deployments.
Because Quality Threshold clustering is a hard clustering
approach, we estimate cluster membership probabilities of
edges p(e’|c’) by fitting a normal distribution to each edge
cluster as an approximation. In Step IV, we again use the
Quality Threshold Clustering algorithm with a maximum
relative difference of 0.25 to generate our final set of fixtures
from the multi-modal fixture usage events.

3.2 Case Study: Water Fixture Discovery

In the second case study, FixtureFinder combines the smart
water meter with motion sensors to discover water fixtures,
and to infer their water flow and usage times. We did not
consider other pairings such as the water meter with the
light sensor, since in some homes, light fixtures may only
be used a small fraction of the time that water fixtures are
used; in the future, we plan to include these additional sen-
sor streams to improve accuracy.

Figure 3(a) shows two examples of simultaneous flush events

in different bathrooms of house 1 and 2, respectively, plotted
together with the motion sensor data from the both bath-
rooms and the kitchen in each home. House 1 has two identi-
cal toilets, but FixtureFinder is able to use the motion sensor

signatures to differentiate the two flow events as originating
from different bathrooms. House 2 has different models of
toilet, each with different flow rates of approximately 0.3
kl/hour and 0.6kl/hour. Thus, even when they occur at es-
sentially the same time, as shown in the figure, it can also
differentiate them based on the difference in their flow rates.
Notice that FixtureFinder must still use the motion sensor
signatures to differentiate these flow events from, for exam-
ple, a dishwasher fill cycle. This is particularly true because
the flow rates change when the events co-occur, due to lim-
ited water flow. In the case of simultaneous flush events in
House 1 where the flow rates are identical, FixtureFinder
would not necessarily be able to associate the events with
the correct fixture.

We assume a single motion sensor in each room containing
a water fixture. Our off-the-shelf X10 motion sensors repre-
sent a challenge since the sensors already filter and aggregate
the passive infrared data and send binary event messages
whenever motion is detected. In contrast to light fixture
discovery, we consider all the ambient motion sensors as a
single multi-dimensional sensor stream to be paired with the
water meter data stream using the FixtureFinder algorithm
1; the reason is that water fixture events may generate mo-
tion signatures spanning multiple binary motion sensors.

In Step I, for the water meter, we use the Canny edge de-
tection algorithm [4]. To perform Step I on the motion sen-
sor stream, we simply generate a multi-dimensional distance
vector D corresponding to each water edge, that contains
temporal distances between each water edge and the closest
binary motion event from each motion sensor considered.
In Steps IIT and IV we use the Quality Threshold Cluster-
ing [12] algorithm with a maximum relative difference of 0.25
to generate edge clusters from the water flow data. For the
motion sensor data, we simply define a fixed set of clusters
R corresponding the rooms in which the motion sensors are
deployed. Given a room r € R with a motion sensor, and a
water edge cluster ¢, we can evaluate the Bayesian network
shown in Figure 1 after we compute P(D|r) and P(r|c); we
do not discuss these probability computations here due to
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Figure 3: These data traces show aggregate water flow and motion sensor data for two simultaneous flush
events, in different homes. FixtureFinder can use both the motion sensor data and the flow rates to distinguish
between two otherwise similar fixtures, even when they are used simultaneously.

space constraints, but more details on this Bayesian net-
work evaluation can be found in our earlier work [27]. Thus,
each fixture computed in Step IV represent a fixture with a
unique water flow signature and a unique room assignment;
given that the various fixtures in a single room typically have
unique water flow signatures, our FixtureFinder approach is
likely to find the set of all water fixtures in the home.

Additionally, we use simple heuristics to label low flow
matched events (less than 0.3 kl/hour) as sinks and higher
flow matched events as toilet flushes. As we increase the
number of types of fixtures, more sophisticated classification
schemes for fixture type will be necessary, and we expect to
leverage established work in this area [22].

4. EXPERIMENTAL SETUP

To evaluate the FixtureFinder system, we deploy sensors
in four multi-resident homes for 10 days each. All four homes
had multiple residents, multiple bathrooms, and a wide ar-
ray of light and water fixtures. Details of the deployments
are summarized in Table 1. In contrast to many existing
fixture studies that use bench top testing or controlled test-
ing in homes, we performed our evaluation in-situ: the data
traces were collected over the course of multiple days while
people lived normal lives in the home. Naturally, other fix-
tures and appliances aside from those being measured were
also used during the experiment period. This in-situ evalua-
tion setup ensures that FixtureFinder is able to operate even
in the presence of real-world noise and signals commonly
present in households. For example, the homes operated
complex appliances such as dishwashers and washing ma-
chines, as well as central HVAC, space heaters, microwaves,
and in some cases plasma televisions. Plasma televisions
present a particularly challenging noise problem because,
unlike LCD screens, the power usage of a plasma televi-
sion changes with the brightness of the scene, creating high-
magnitude and rapidly-changing noise patterns on the elec-
trical lines. Most of the rooms in the homes had windows,
which introduced a light variability in the light readings that
typically far exceeded any changes in light value caused by
artificial lights. This reveals one major difference with the
Viridiscope system, which intentionally put the light sensors
very close to the light and used a simple threshold value to

detect whether the lights were turned on or off. In contrast,
FixtureFinder is opportunistically using light sensors that
were deployed to detect ambient light levels, which includes
natural lighting and can include multiple light fixtures. Our
in-situ study also captured the natural simultaneous usage
of water fixtures, one artifact of which is a change in flow
rate: when the toilet is flushed and the sink is turned on, the
aggregate water flow is typically lower than the sum of the
two fixtures individually. This effect is often more extreme
in homes with older piping infrastructure that has limited
water flow, and is commonly known to cause burning hot
showers whenever a toilet is flushed. Finally, our in-situ de-
ployments also encountered a diverse range of light fixtures
including incandescent bulbs, CFLs, and halogen lights, and
both dimmable and non-dimmable switches with different
light intensities and wattages, as seen in figure 6. Due to all
of these complex and natural sources of noise, variety, and
interference, in-situ testing is an important part of our em-
pirical validation. To our knowledge, this is the first study
to perform in-situ evaluation of a fixture monitoring system
across a range of multiple, diverse homes. This testing was
enabled by the specific sensing and ground truth system that
we developed, as described below, which can be considered
one of the contributions of this paper.

Sensors: To execute FixtureFinder in these homes, we
deployed a single water flow sensor on the water mains and
a single power meter on the power mains. To measure ag-
gregate water flow, we used the Shenitech Ultrasonic water
flow meter that clamps on to the outside of the water mains
pipe. It uses the Doppler effect to measure the velocity and
resulting flow of water through the pipeline. The flow meter
reports instantaneous water flow (in cubic meters per hour)
at a frequency of 2Hz using the home’s Wi-Fi connection
to transmit data. We expect that utility water flow meters
being deployed in a large scale in homes will have a similar
setup. To measure aggregate power usage, we used the The
Energy Detective (TED) 5000 power meter, which uses a
clamp-on ammeter that measures total current drawn by the
home appliances. The power meter reports instantaneous
power (both real and reactive) at a rate of approximately
1Hz. Figure 4.a shows the installation of the smart power



Home# Type #Residents | #Rooms | #Lights | #Sinks | #Toilets
1 3 Story house 8 12 - -
2 3 Bedroom student housing 6 6 - -
3 1 Bedroom condo 8 9 3 2
4 2 Story house 9 14 3 2

Table 1: Our deployments involved four homes with multiple residents, and a variety of lights and water
fixtures. Due to cost limitations, smart water meters were only installed in two of the four homes.

(c) Ground Truth Sensors

(b) In-home Sensors

Figure 4: Our deployments included 25-40 sensors per home, including (a) a smart power and water meter
(b) a motion and light sensor in every room. For experimental ground truth, we also deployed (c) Z-wave
light switches, Z-wave plug load meters, and Z-wave contact switches on the water fixtures.

and water meter in one of our home deployments. Because
the Shenitech water meters are much more expensive than
the TED power meters ($2000 vs. $200 each), we deployed a
water meter in only two of the homes, and water meter data
was collected for only 7 days in each home. An example of
a home deployment is illustrated in Figure 5.

In addition to the smart meters, FixtureFinder requires
data from other sensors or infrastructure in the home, such
as a security or home automation system. Off-the-shelf mo-
tion sensors for security and automation typically measure
both motion and light. Since our test homes did not have a
pre-existing home automation system, we deployed one mo-
tion sensor and light sensor per room to emulate a typical
home automation system. Although one sensor per room
may be redundant for some home security systems, we be-
lieve that smart homes of the future will contain at least one
occupancy sensor per room to support diverse applications
such as medical activity monitoring or home energy.

In our deployments, we used off the shelf X10 motion
sensors inside rooms to detect occupancy, as shown in Fig-
ure 4.a. These sensors are inexpensive ($5 each) and can be
installed with double-sided tape. The X10 motion sensors
send a binary ON message whenever motion is seen with
a minimal damping interval of 7 seconds between ON mes-
sages. In general, we installed one motion sensor per room
in a prominent location with good visibility over the entire
room, if possible. In Home 2, one of the motion sensors in a
bathroom malfunctioned during our week long deployment,
so we used a motion sensor in an adjacent bedroom with

a partial view of the bathroom in our analysis. Because of
the challenges of accessing ambient light sensors in exist-
ing motion sensors, we instead used the cheap Hamamatsu
photo diode connected to a telosb mote [25], as shown in Fig-
ure 4.a, sampling at approximately 2Hz; in the future, we
expect more open, commercial sensors that allow users to
access the raw light sensor data similar to our deployments.
Our light sensors were installed near the locations where a
motion sensor would be installed. Across our four homes,
we used one sensor per room in all but 3 rooms, where two
sensors were required to achieve coverage of the user’s living
space.

Ground Truth: To measure ground truth, we instru-
mented all of the light and water fixtures in each house.
To instrument the light switches, we replaced all existing
switches in each home with wireless ZWave smart switches,
that transmit a wireless message whenever the light switch
is turned on or off. For plug-in lamps, we installed a wireless
ZWave smart plug load meter that measures the power con-
sumption of the appliance plugged into it. We assume that
any non-zero power consumption indicates that the lamp
is switched on. For sinks and toilets, we installed Z-Wave
door/window sensors (i.e. magnetic reed switches) on the
faucet and flush handles. Figure 4.c shows examples of
each of the 4 different types of Z-Wave installations used
for ground truth. Due to cost and deployment constraints,
the ground truth sensors were not installed on all fixtures
and appliances that were used during our in-situ study; in
particular, showers, and faucets connected to dishwashers
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Figure 5: This diagram illustrates one home, includ-
ing the locations of the meters, sensors, and fixtures.
Many of the light fixtures are not used during the
deployment period, and are not considered for our
analysis of FixtureFinder.

and washing machines, were not instrumented. Our evalu-
ation on water fixtures is thus limited to sinks and toilets.
In total, we observed 41 light fixtures being used across the
4 homes over 10 days. We obtained a total of 775 ON-OFF
pairs from all the light fixtures; the number of usage events
attributed to each light fixture is shown in figure 6. We ob-
served 10 water fixtures across 2 of our test homes over the 7
day deployment period. The 10 water fixtures were used for
a total of 424 times; the distribution of usage events across
the 10 fixtures is shown in figure 11.

S. RESULTS

For each house, we executed the FixtureFinder system on
the data traces from the power meter, water meter, motion
sensors and light sensors. The current version of Fixture-
Finder extracts correlations between the power meter and
the light sensors, and between the water meter and the mo-
tion sensors. We plan to extend the system to also extract
light-water and motion-power correlations, which is only ex-
pected to improve performance. The main result of this sys-
tem is generated by Step IV in the FixtureFinder system,
which produces a list of clusters, each with a multi-modal fix-
ture profile. FixtureFinder discovered the top 90% of energy
consuming light fixtures in each home, reporting the nominal
wattage of each light fixture within £5W. The multi-modal
profile of each fixture is shown in Figure 6, and includes the
nominal wattage as measured by the power meter, the light-
ing intensity as measured by the light sensors, the name of
the light sensor that detected it (typically, a room name),
and the number of usage events (ON-OFF pairs) originating
from each fixture. FixtureFinder also discovered the sinks
and toilets in each house. The multi-modal profile of the wa-
ter fixtures were generally the same for all sinks and toilets,
and are not shown due to lack of space. We observed sev-
eral anecdotal instances of water fixtures such as the shower
or the sprinkler system being discovered by FixtureFinder,
but we currently limit our evaluation to only those fixtures
monitored by our ground truth sensors. In the future, we
intend to expand our evaluation to a larger set of fixtures
and appliances.

From the the number of ON-OFF event pairs for each light
fixture shown in Figure 6, we observe that the FixtureFinder
system is able to discover light fixtures with a wide range of
usage counts, ranging from as few as 5-10 events to as high as
50-100 events; this variability in usage counts suggests that
FixtureFinder takes very few usage events to stabilize and
identify individual fixtures, and stability is not significantly
affected as more usage events occur over time. Of the 41
light fixtures that we instrumented, FixtureFinder was not
able to discover 4 light fixtures that consumed very little
energy, either because they were rarely used or because they
had a very low wattage, e.g. LED bulbs. These fixtures
include two in House #1 and three in House #4. All four of
the undiscovered lights were task lighting fixtures, including
under-cabinet lighting, coffee-bar lighting, and exit/entrance
door lighting; all four fixtures were located in the kitchen,
where task lighting is most common in homes. The fixtures
were rarely used (1-3 times), had very low wattage, and were
not easily detected by ambient light sensors because of their
task-oriented nature.

5.1 Bootstrapping a Training Set

In addition to discovering the fixtures, FixtureFinder si-
multaneously produces a set of usage events that it asso-
ciates with each fixture, where each event includes ON/OFF
times and power or water flow measurements. These events
can be used as an automatically created training set for su-
pervised learning systems such as ElectriSense or HydroSense.
For example, if FixtureFinder provides 100 usage events that
are associated with the bathroom sink, HydroSense can use
the ON/OFF times associated with those usage events to
learn features of the pressure waves caused by that sink,
so that it can recognize it again in the future. Thus, Fix-
tureFinder can serve to bootstrap a training set, effectively
converting HydroSense from a supervised learning system
into an unsupervised system.

Usage events are associated with each fixture during Step
IV of the FixtureFinder algorithm, when they are clustered
together based on their multi-modal profile to initially pro-
vide support for a fixture’s existence. However, not all of
these usage events are necessarily caused by the same fix-
ture; some may have been caused by other fixtures or spuri-
ous noise, and accidentally had the same multi-modal pro-
file. The degree to which these clusters correctly separate
usage events from different fixtures dictates the degree to
which FixtureFinder will be useful as an unsupervised boot-
strapping technique. We measure this clustering accuracy
in terms of two metrics:

Precision: the number of events correctly associated with
a fixture, divided by the total number of events associated
with that fixture.

Recall is the number of events correctly associated with a
fixture, divided by the total number of events generated by
that fixture.

For the purposes of bootstrapping a training set, we care
more about precision: we do not want spurious events in-
correctly associated with a fixture, because they will cause
errors in the training set. Recall is not as important: we
don’t need all usage events of a fixture, only enough to have
a sufficiently large training set.

We analyze the trade off between precision and recall by



House 1 House 2 House 3 House 4
#of . #of . #of . #of .
ID times Room Power | Light ID times Room Power Light ID times Room Power | Light ID times Room Power | Light
used (W) value used (W) value used (W) value used (W) value
1 10 MasterBed 135 23 1 13 Livingroom 185 366 1 9 Livingroom 95 155 1 11 Frontroom 55 311
2 4 Livingroom 35 193 2 20 Bedroom1 90 55 2 29 Livingroom 115 59 2 10 Basement 325 353
3 13 Livingroom 40 29 3 15 Kitchen 120 71 3 71 Bathroom1 220 1187 3 4 Kitchen 250 60
4 9 Kitchen 90 20 4 25 Bedroom2 35 50 4 91 Bedroom 95 70 4 53 Bathroom 395 1028
5 13 MasterBath 20 36 5 4 Bedroom3 50 414 5 53 Kitchen 110 181 5 12 Kitchen 280 125
6 6 MidBathroom 10 62 6 123 Bathroom 50 260 6 30 Officeroom 90 55 6 12 Livingroom 80 50
7 8 BottomBath 40 41 7 29 Bathroom2 305 1157 7 10 Dining Room| 200 110
8 7 MasterBath 42 0 8 6 Diningroom 200 182 8 32 Bedroom 95 69
9 2 BottomBath 40 27 9 12 Livingroom 55 239 9 4 Bathroom1 95 649
10 2 Kitchen 5 10 Diningroom 100 19 10 6 Nursery 55 129
11 3 TopRoom 80 923 11 6 Bedroom 60 32
12 1 Kitchen 95 12 2 Kitchen 70
13 3 Kitchen 30
14 2 Kitchen 110

Figure 6: FixtureFinder discovered 37 of the 41 light fixtures that we instrumented, and produces a multi-
model profile for each (wattage + light intensity). Four low-power, infrequently used, and specialized task
lighting fixtures (shown in gray) in the kitchen were not discovered. There was one false alarm fixture, namely
fixture #10 in House 3 (shown in black). The light fixture numbers here match the light fixture numbers in

figure 10.
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Figure 7: FixtureFinder is able to achieve 98% preci-
sion, with recall values of 55%, in order to bootstrap
training data sets. Variants of the system illustrate
the limited value of edge detection, matching, or fu-
sion alone.

varying the threshold used for edge detection in the Step I
of the algorithm: higher thresholds result in fewer event de-
tections (and thus higher precision), while lower thresholds
result in more event detections (and thus higher recall). For
the sake of brevity, we only present the results for light fix-
ture discovery here, but water fixture discovery presents a
similar underlying trade off. The dark, black line in Figure 7
corresponding to FixtureFinder shows the recall/precision
that is achieved when varying the edge detection thresholds.
In this figure, we show the recall/precision over all light fix-
tures in the four homes considered. This figure shows that
precision at or near 98% can be achieved, for recall values
close to 55%. Thus, we conclude that FixtureFinder can pro-
duce training data sets with few if any errors. Recall levels
of 55% merely indicate that the system will take longer to
produce that training set.

5.2 Analysis

In this section, we explore each of the components of the
FixtureFinder algorithm in order to explain the degree to
which they contribute to its overall performance. Specifi-
cally, we examine (i) edge detection, (ii) matching, and (iii)
fusion by creating five variants of FixtureFinder that infer
the existence of individual light fixture events based on the
following criteria:

e SE — Sensor Edge Only: distinct changes in sensor
readings only, using our edge detection algorithms

e ME — Meter Edge Only: distinct changes in smart me-
ter readings only, using our edge detection algorithms

e SM - Sensor Matching: distinct changes in sensor
readings that have corresponding ON/OFF matches,
using our edge detection and matching algorithms

e MM — Meter Matching: distinct changes in power me-
ter readings that have corresponding ON/OFF matches,
using our edge detection and matching algorithms

e SMF — Sensor/Meter Fusion: changes in sensor/meter
readings that occur co-temporally, by applying Steps
I and II of the FixtureFinder algorithm

Figure 7 shows the recall/precision across four homes that
is achieved by each of these algorithms when varying the
edge detection thresholds; we show the results only for light
fixtures for the sake of brevity. The results show that smart
meter data alone (ME) are not sufficient to identify fixtures
with anything greater than 25% precision. This is consistent
with previous studies of power meter data [11], due to the
power of light fixtures being small compared to noise from
other, simultaneous fixtures. Similarly, sensor data alone
(SE) is not sufficient because, e.g. artificial lights have low
light output compared to natural variations in sunlight and
the effects of person movement and other shadows.

When ON/OFF matching is used, many spurious edges
are eliminated which allows higher precision for a given re-
call value. Because of the very large number of edges in
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Figure 8: FixtureFinder achieves consistently higher precision than variants of the system in all 4 houses.
Each house shows variability in the performance of the variant schemes depending on the particular electrical

and ambient light noise present in that house.

smart meter data, matching produces little benefit (MM).
Matching improves the discovery precision using sensor data
(SM) to be above 99%, but only up to recall values of less
than 28%. Fusion of the sensor and smart meter data fur-
ther eliminates edges in either data stream that do not have
a co-occurring event in the other data stream (SMF), but
because of the very large number of edges in the smart meter
data stream, this approach does not perform as well as Fix-
tureFinder. When we combine the fusion, matching, and
Bayesian clustering algorithms that eliminate all but fre-
quently occurring sensor /meter pairs, we create the Fixture-
Finder algorithm that is able maintain precision at 98% for
recall values up to 55%.

Figure 8 shows a snapshot of the recall and precision of
the five component schemes and FixtureFinder in our four
test homes; the snapshot is shown at the same parameter
settings used to achieve greater than 80% recall and preci-
sion for FixtureFinder in Figure 7. We observe from Figure
8 that the FixtureFinder approach trades off a small reduc-
tion in recall for a significant increase in precision. In all four
homes, by applying data fusion, matching, and Bayesian
clustering, FixtureFinder achieves a precision ranging from
80-90% with only a negligible reduction recall. We observe
in general that there is variability in the precision achieved
by the 5 component schemes implemented. House 1 had the
most noisy light environment due to wall-sized windows on
most floors; thus, we observe the worst performance among
all four homes from schemes SE and SM that use the light
sensor data. Interestingly, House 2, which had the least elec-
trical noise, achieves close to 80% precision only through
data fusion with ambient light sensor data (SMF). Houses 3
and 4 had significant noise from both light sensors and the
power meter, and thus require the aggressive FixtureFinder
algorithm to remove false positive fixture events.

In general, we observed no difference in light intensity
changes, power meter changes, water flow changes, light-
power correlation, and motion-water correlations between
day and night. For other pairings, such as light-water, we
might expect significant differences in correlation between
day and night, as some bathroom or kitchen lights may be

used only at night; thus, in the future, time of day may need
to be incorporated into the multi-modal sensor clusters that
we produce, to improve accuracy. Also, we observed that
15.8% of the light fixture events occur within 10 seconds of
each other, and 32.3% of all light fixture events occur within
20 seconds of each other. These co-occurrences make the
data fusion and matching steps more challenging, by intro-
ducing numerous candidate choices for fusion and matching
(in addition to noisy edges inherent in the system); in spite
of these co-occurrences, FixtureFinder is able to accurately
identify individual fixture events in the home with high accu-
racy, by combining the matching, data fusion, and Bayesian
clustering steps.

6. RECOGNITION AND DISAGGREGATION

In this section, we demonstrate that FixtureFinder can
also be used to perform fixture recognition and disaggrega-
tion, allowing smart power and water meter data to be used
to infer activities and/or disaggregated energy usage merely
by piggybacking on other sensors and infrastructure already
in the home.

To perform fixture discovery, FixtureFinder must be con-
figured to achieve high precision, possibly sacrificing recall
(98% and 55% respectively, according to our results in Sec-
tion 5). To perform fixture recognition, it must be config-
ured to achieve more balanced precision and recall values.
Figure 7 shows that the system can also achieve an operat-
ing point with about 86% precision and 81% recall. In other
words, about 14% of the usage events associated with a fix-
ture are actually caused by another fixture, while 19% of
the events actually caused by the fixture are not associated
with it.

To perform fixture disaggregation, FixtureFinder lever-
ages the multi-modal profile of each fixture event that was
created during fixture recognition, which includes the power
or water consumption levels of that event. FixtureFinder es-
timates the total power/water usage for each event by sum-
ming the usage levels of all events assigned to each fixture.
Figures 9 and 10 illustrate both the actual and the estimated
energy /water usage for each of the water and light fixtures in
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Figure 9: The water consumption estimated by FixtureFinder for each water fixture in the two homes with
water meters closely matches the ground truth values for the most high flow fixtures, generally achieving
85-90% accuracy (B stands for bathroom, K for kitchen, S for sink, and F for flush).

the four test homes. Results show that FixtureFinder com-
putes the water usage with 80-90% average accuracy across
all water fixtures, and the energy usage with 91% average
accuracy for the light fixtures consuming 90% of the home’s
lighting energy.

FixtureFinder’s disaggregation results are surprisingly high
given its recognition accuracy. The reason is that fixture
recognition is most likely to make assignment errors on events
with low power/water usage, and is most likely to assign the
event to another fixture with similar average power/water
usage. The errors often cancel out and do not significantly
affect the overall energy /water estimates. For example, Fig-
ure 11 shows the confusion matrices for water fixture classifi-
cation in the two homes that contained a smart water meter
(element [z,y] in the confusion matrix indicates the number
of times an event from fixture & was associated with fixture
y). Most misclassifications that did occur were due to si-
multaneous occupancy in multiple rooms from fixtures with
similar flow signatures, such as high confusion between sink
usage in the kitchen and bathroom2 in Home 3. In Home 4,
there is about 7% confusion between the two flush fixtures.
These misclassifications cause limited degradation in water
consumption accuracy because they are infrequent, typically
between fixtures with similar flow rates, and are roughly
symmetric across the diagonal. Therefore, the recognition
errors often cancel each other out in the disaggregation re-
sults.

7. LIMITATIONS

This paper presents a proof-of-concept of the Fixture-
Finder principles: that fixtures can be discovered and dif-
ferentiated based on multi-modal profiles, even if a home
contains multiple identical fixtures, and even if the fixtures
are too simple and basic to be discovered based on smart
power or water meter data alone. The results presented
in this paper are not intended to represent a complete ex-
ploration of this concept, and the current version only ex-
plores a small subset of sensors and fixtures. In future work,
we plan to study a more complete set of fixtures, including
both major appliances and smaller appliances. We expect

to use NIALM-like approaches to discover major appliance,
but that FixtureFinder will be needed to narrow the set of
appliance candidates and perhaps by identifying the number
of appliances in the home. We expect that ElectriSense-like
approaches can be used to discover very small, low-power
and battery powered devices, such as cell phone chargers,
electric toothbrushes, and music players. The current re-
sults do not yet demonstrate how this approach will scale to
large numbers of low-power and battery powered devices.

The results presented in this paper indicate that Fixture-
Finder was unable to detect 4 of the 41 light fixtures due
to their task-specific lighting capabilities that were not de-
tected by ambient light sensors. Also, we require at least
one sensor per room in our current deployments and eval-
uation. In future work, we expect to address this problem
by exploring the use of a broader range of sensors and data
streams. Previous work has shown the feasibility and use-
fulness of harvesting information from home infrastructure
such as the home router, air pressure, and gas lines [5,15,23],
and we will build on that work to also perform fixture discov-
ery. As the variety of home sensors and automation devices
proliferate, and as devices in the home increasingly become
wireless and connected, the number of devices that must
be automatically discovered will continue to grow, and the
amount of information available to discover them will also
grow.

The current implementation of FixtureFinder is limited to
simple fixtures with ON/OFF events, but Step III could be
extended to appliances with a wider variety of states without
loss of generality. In the future, we expect FixtureFinder to
leverage established work in this area to address a broader
range of fixtures [9]. Also, due to sensor sampling rate lim-
itations, if a set of light fixtures is switched on and off si-
multaneously (within 1 second of each other) within a single
room in a consistent manner, the system will treat them as
a single fixture; the use of additional data sources from the
home may allow FixtureFinder to disambiguate these multi-
fixture scenarios. Finally, in the current FixtureFinder im-
plementation, we use fixed time thresholds for data fusion
under the assumption that fixture usage simultaneously af-
fects different sensor streams; an interesting direction for
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Figure 10: FixtureFinder accurately reports the energy usage of the top energy-consuming light fixtures in
each home (as measured in dollars), achieving 90% accuracy for the 90% of appliances consuming the most
energy. Importantly, the ordering of the light fixtures based on estimated energy usage is correct. This is a

promising next step for FixtureFinder.

# of
Fixtures | usage | KS | B1S | B1F | B2S | B2F
events
KS 17
B1S 22 1
B1F 50 0
B2S 22 3
B2 F 15 0

(a) Home 3

# of
Fixtures | usage KS | B1S | B1F | B2S | B2F
events
KS 94
B1S 90 7
B1F 91 1
B2S 7 0
B2 F 16 0

(b) Home 4

Figure 11: FixtureFinder accurately classifies water flow events for most of the monitored water fixtures
across the two homes as seen in the fixture level confusion matrices (B stands for bathroom, K for kitchen, S
for sink, and F for flush). Confusion between fixtures of the same type occurs due to simultaneous occupancy
of different rooms, but has limited effect on water flow estimates. Confusion between fixtures of different
types of fixtures is less common because the flow rates are distinctive.

future work is to automatically learn these temporal corre-
lations between sensor streams over different time-scales.

8. CONCLUSIONS

In this paper, we present the FixtureFinder system that
automatically infers the existence of electrical and water fix-
tures in the home. It uses data fusion between the smart me-
ters and other sensors or infrastructure already in the home,
such as the home security system, and searches for repeating
patterns in the fused data stream. Unlike fixture recogni-
tion systems, Fixture Find does not try to recognize every
ON/OFF event. Instead, it tries to select only those events
that are very likely not to be caused by spurious noise. Once
a set of such events is recognized, it can be used to create
a training set for existing fixture recognition or disaggrega-
tion systems such as ElectriSense and Viridiscope. To our
knowledge, this is the first system that can automatically
discover the presence of small, simple fixtures.

We evaluated FixtureFinder by deploying between 25-40
sensors into 4 different homes for 7-10 days of data collection.
Our results indicate that FixtureFinder is able to identify
and differentiate major light and water fixtures in less than
10 days, including multiple copies of light bulbs and sinks
that have identical power/water profiles. It can also produce
clean training data sets to be used by other algorithms that
require supervised training. In effect, FixtureFinder can be
used to bootstrap other fixture recognition and disaggrega-
tion techniques at low cost by piggybacking on data from
other sensors and infrastructure, such as home security or
automation systems. In the future, the techniques described
in this paper can be made more general and more effective
by combining with other sensors and infrastructure, such as
cell phones, home routers, gas meters, and the millions of
home automation devices being sold today.
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