
Kintense: A Robust, Accurate, Real-Time and
Evolving System for Detecting Aggressive Actions

from Streaming 3D Skeleton Data

Shahriar Nirjon, Chris Greenwood, Carlos Torres,
Stefanie Zhou, and John A. Stankovic

University of Virginia
{smn8z,cmg7t,ct5ab,xz5xm,jas9f}@virginia.edu

Hee Jung Yoon, Ho-Kyeong Ra, Can Basaran,
Taejoon Park, and Sang H. Son

Daegu Gyeongbuk Institute of Science and Technology
{heejung8, hk, cbasaran, tjpark, son}@dgist.ac.kr

Abstract—Kintense is a robust, accurate, real-time, and evolv-

ing system for detecting aggressive actions such as hitting,

kicking, pushing, and throwing from streaming 3D skeleton

joint coordinates obtained from Kinect sensors. Kintense uses a

combination of: (1) an array of supervised learners to recognize

a predefined set of aggressive actions, (2) an unsupervised learner

to discover new aggressive actions or refine existing actions,

and (3) human feedback to reduce false alarms and to label

potential aggressive actions. This paper describes the design

and implementation of Kintense and provides empirical evidence

that the system is 11% − 16% more accurate and 10% − 54%
more robust to changes in distance, body orientation, speed, and

person when compared to standard techniques such as dynamic

time warping (DTW) and posture based gesture recognizers. We

deploy Kintense in two multi-person households and demonstrate

how it evolves to discover and learn unseen actions, achieves up

to 90% accuracy, runs in real-time, and reduces false alarms with

up to 13 times fewer user interactions than a typical system.

I. INTRODUCTION

Studies show that 30%−50% of the patients with cognitive
disorders suffer from various forms of agitation [9], [22]. Three
major factors [22] are used to describe agitation among the
demented elderly: verbal aggression, physical aggression, and
antisocial behavior. Of these, physical aggression is of our
interest as statistics indicate that 11% of the hospitalizations
in persons with cognitive disorders are due to physical ag-
gression [31]. While most assisted living facilities rely upon
caregivers to monitor their patients, the job of a caregiver can
be psychologically demanding, which may result in psychiatric
symptoms of caregiver burnout [25]. Hence, an automated
system that is capable of continuously monitoring agitation
is gaining popularity.

State-of-the-art agitation monitoring systems use two kinds
of sensing techniques in general: invasive [26], [15], [6] and
non-invasive [1], [12], [21]. Invasive techniques use physiolog-
ical parameters such as EEG waveforms, skin temperature, skin
conductance, pupil diameter, respiration rate, and accelerome-
ter readings from wearable sensors to detect agitation. These
systems require special devices to be worn at all times and
are not convenient for a long term monitoring. Non-invasive
techniques, on the other hand, mostly use movement sensors
such as a bed exit sensor, door reed switches, and surveillance
cameras. While these may be practical for long-term monitor-
ing, they do not provide information at the skeleton level which

could be analyzed to detect aggressive moves by the patient.
Kinect [2] sensors are an exception which provide skeleton
joint level information using a non-invasive infrared camera.
Being inspired by its potential, in this paper, we address the
problem of detecting and discovering aggressive actions using
Kinect.

Kinect has successfully been used in solving problems such
as gesture recognition [17], [19], [5], [24], [33], [27], fall
detection [28], and gait analysis [13], [29]. To the best of our
knowledge, we are the first to detect and discover multiple
aggressive actions in real-time and in a real-world setup.
Detecting aggressive behaviors with Kinect is challenging for
several practical reasons. First, different people have different
ways of expressing the same aggressive action. Training a
system that works for everyone is difficult because of the
variety in pose, velocity of movement, and body structure.
Second, there are issues in a real-world setup, such as the
distance and orientation of human body with respect to the
Kinect, which need to be taken care of – as the device is meant
to be used for playing video games where the player always
faces the camera and stands at a recommended distance. Third,
the system should have a way of detecting potential aggressive
actions that are not in its current library of aggressive actions
and add them into the library for taking them into account in
future. Fourth, false alarms are very common in any safety
system. Handling false alarms properly so that the system
reduces them over time is important.

In this paper, we present Kintense which is a real-time,
accurate, robust, and evolving system for detecting aggressive
actions in a home environment using 3D skeleton data from
Kinect. Kintense uses a combination of supervised and unsu-
pervised machine learning techniques to recognize aggressive
actions such as hitting, kicking, pushing, and throwing that
are in its current library of aggressive actions, and to identify
potential aggressive actions which a human user may label and
add to the library for future detections. Unlike other existing
Kinect-based gesture recognition systems, Kintense is robust
to changes in relative distance between the body and the
sensor, skeleton orientation, and speed of an action. Kintense
is an evolving system which takes user feedback to learn new
actions and new examples of an existing action, and to reduce
false alarms to improve its accuracy.

We evaluate Kintense with both controlled and uncontrolled

experiments. To evaluate the action recognition algorithm, we
perform a series of experiments using our empirical dataset,
where we compare the accuracy, classification delay, and
robustness of Kintense with a dynamic time warping (DTW)
based gesture matching algorithm and a posture template
based gesture recognizer. To show that Kintense works in
a real-world setup, we perform uncontrolled experiments in
two multi-person households and demonstrate how Kintense
detects the actions of interest – accurately and in real-time, as
well as how it discovers new actions and evolves itself to learn
and recognize them.

The contributions of this paper are the following:

• A gesture dataset [4] recorded with Kinect that consists of
time-stamped skeleton data from 19 people, which includes
10 actions, about 13, 000 instances, and 7.4 hours of data.
To the best of our knowledge, this is the largest publicly
available dataset that contains so many variations in user
locations and body-orientations.

• An array of supervised classifiers, each of which recognizes
a specific aggressive action by computing: distance, body-
orientation, person, and time invariant skeletal features
from streaming 3D skeleton data. These classifiers are
empirically shown to be 11% − 16% more accurate and
10% − 54% more robust when compared to two standard
techniques.

• A semi-supervised classifier that discovers unseen and po-
tentially aggressive actions, and uses hierarchical clustering
to get them labeled by a human operator with less user
interactions.

• Kintense, a complete system that discovers and recognizes
aggressive actions using a combination of supervised and
semi-supervised classifiers. Two deployments of Kintense
in two multi-person households demonstrate how the sys-
tem evolves to discover and learn unseen actions, achieves
up to 90% accuracy, runs in real-time, and reduces false
alarms with up to 13 times fewer user interactions than a
typical system.

II. CHALLENGES AND DESIGN GOALS

Fundamentally, detecting aggressive actions from a se-
quence of stick figures should be no different than detecting
regular actions. However, practical issues involving the human
subjects being monitored, sensing in a real-world environment,
and some requirements specific to the problem domain –
altogether make it challenging.

A. Diversity in People and Actions

There is diversity in people and the way they exhibit an
aggressive action. People vary in height, body structure, and
pace. The speed of an action also varies from one instance
to another, even if it is performed by the same individual.
Furthermore, there is heterogeneity in styles and poses of an
action. It is highly likely that, when an automated monitoring
system is deployed, new ways of performing an aggressive
action will be exhibited by the person under monitoring.
Hence, an automated detector should be capable of absorbing
these diversities in people as well as the diversities in their
actions.

B. Sensing in a Real-World Environment

Sensing in a real-world environment brings new challenges
in addition to the core action recognition problem. In a real-
world scenario, the person being monitored is not always
facing the camera as he is in a game playing scenario; rather
he is engaged in his daily activities and sometimes roaming
around the room. Therefore, care must be taken to handle
the relative distance and body orientation between the person
and the Kinect. Occlusion of body joints is another common
phenomenon. Sensor readings obtained from Kinect in such
cases are extremely noisy and properly compensating for noise
is mandatory for an accurate classification of actions.

TABLE I. ASSESSMENT SCALES AND AGGRESSIVE ACTIONS.

Scale Physically Aggressive Actions

CMAI [9] bite, grab, hit, kick, push, scratch, throw, wander.
RAGE [22] bite, hit, kick, pinch, push, scratch, shove, throw.
BARS [11] grab, hit, pace, push, restlessness.

C. Extensibility

Historically there have been several scales for assessing
cognitive disorders [9], [22], [11]. Each of these scales de-
scribes a different set of actions as physically aggressive one as
shown in Table I. While some actions such as hitting, kicking,
and pushing are common in them, many are not, and there are
at least a dozen such scales used by the practitioners [14]. We
find it infeasible to train a system for every possible aggressive
action. Instead, we create an array of expert classifiers which
are trained for recognizing a predefined set of actions, and
set extensibility as one of our design goals which allows
the system to grow over time by automatically discovering
potential aggressive actions and learning them to recognize
their future occurrences.

D. False Alarms

False alarms are common in any safety system. However,
an advanced system should be able to reduce the amount of
false alarms over time. To facilitate this, we employ the notion
of people in the loop. We believe that an automated system,
especially which relates to human safety, should not be left
totally on the judgment of the machine, while at the same
time it should not bug the human operator at every single
occurrence. A balance between the two is to be made so that
the system learns and reduces false alarms over time, while
lessening the burden on the operator of correcting the system
as much as possible.

III. OVERVIEW OF KINTENSE

Kintense is composed of three major architectural compo-
nents: sensing, classification, and action discovery and refine-
ment via user feedback. This section briefly describes these
components in order to provide a high-level overview of the
system. The algorithmic details of Kintense are described in
the next two sections.

Expert Classifiers

Movement Detector

Update H K P T

Unsupervised
Action Detector

Labeled Clusters

C1 C2 CN Update

Confidence
Analyzer

Skeleton Frames

Display Unlabeled
Clusters

Config

Fig. 1. The system architecture of Kintense comprising of expert classifiers,
cluster-based classifiers, and user feedback.

A. Sensing and Movement Detection

Kintense uses the streaming skeleton data from the Kinect
to detect and classify actions. Kinect recognizes up to 6 users
within its field of view, and by default, selects the first two
users to track 20 joints on each of their skeletons. Skeleton
frames are generated at the rate of 30 frames per second,
and each frame consists of the 3D coordinates of 20 body
joints along with their tracking states (tracked, inferred, or not
tracked). The 3D coordinates are with respect to a frame of
reference centered at Kinect.

Kintense accumulates a window of w frames and analyzes
it to detect skeletal movements. The movement detector is
a simple threshold-based classifier which acts as an admission
controller for the classification phase. It computes the variances
of joint coordinates, compares them against a set of predefined
and configurable thresholds, and if any of the values are above
some threshold, the window is passed on to the classifiers.

B. Action Classification

Kintense employs an array of binary classifiers, each of
which recognizes a specific aggressive action. The classifiers
are of two types: expert classifiers and labeled cluster-based
classifier. Both of these are similar in the sense that they
classify a window of frames and provide a confidence value of
that window’s likelihood of belonging to a specific action class.
However, their differences are: the expert classifiers are offline-
trained, aggressively tested, highly tuned to recognize specific
actions, fixed in number, and provide better classification
results in general. The labeled clusters, on the other hand,
are obtained by unsupervised learning and are labeled by a
human operator. These clusters are used to represent different
actions and are used by a Bayesian classifier to recognize them.
As the system runs and discovers more action instances, new
clusters are added, old ones are updated, and the accuracy of
the cluster-based classifier is improved.

The rationale behind having two types of classifiers is
to achieve a high recognition accuracy for actions that are

common in most agitation scales as well as to be able to
learn actions that are new or vaguely defined. There is no
fixed list of aggressive actions with precise definitions that we
can follow to design expert classifiers for all actions. On the
other hand, evolving a classifier as done in the labeled cluster-
based method requires comparatively longer time to attain an
acceptable recognition accuracy.

C. Action Discovery and Refinement

An action that is classified poorly by both types of clas-
sifiers corresponds to either a new action that was never seen
before or a different way of performing an existing action. In
both cases, frames containing such actions are handed over
to the action detector module. At this stage, at first, a
snapshot of the event, consisting of time-stamped skeleton
frames and a small thumbnail sized image, is created. Then
an extended feature vector comprising of a sequence of poses
are computed and stored in a database along with the snapshot.
When the number of such examples grows beyond a certain
amount, they are clustered, ranked, and presented before a
human operator for tagging with appropriate labels.

The rationale behind choosing this approach of clustering
potential actions is to lessen the burden on human operator
in tagging actions. Clustering helps reduce the amount of
supervision needed from the operator and snapshots provide
visual assistance in tagging an action with ease. Ranking of
clusters provides a way of filtering out unnecessary tagging
operations. For example, in our experience, the more frequent
clusters often represent common actions in daily activities
which constitutes most of the false alarms.

IV. EXPERT CLASSIFIERS

Kintense has four supervised classifiers for recognizing
four common aggressive actions: hitting, kicking, pushing, and
throwing. Each of these are binary classifiers recognizing an
action from a window of skeleton frames (or stick figures)
obtained from Kinect. Frames from Kinect are first converted
into feature vectors which are invariant to relative position
and orientation of the body, and speed of an action. The
feature vectors are used to train support vector machine (SVM)
classifiers. This section describes how the feature vectors are
computed and the classifiers are created.

u
v2

2

3 4

v

w

v1

v3 v4

1

x

y

z

n2 n1 e

Fig. 2. An illustration of body relative features that are used in Kintense.

A. Body Relative Coordinates

The design of feature vectors in Kintense is inspired by our
natural way of describing an action. Actions are best described

by the relative movements of our body parts with respect the
torso. Hence, at first, we establish a body relative frame of
reference and use it to redefine the 3D coordinates of all 20
skeleton joints that we get from Kinect. The new frame of
reference is described by the origin e and three basis vectors
{u, v, w}, which are shown in Figure 2. The origin e is
located at the spine joint, u points toward the direction from
the right shoulder to the left, v points upward along the spinal
cord, and w is normal to both u and v and points forward. The
transformation of coordinates of a point in Kinect’s coordinate
system pxyz to the body relative coordinate system puvw is
computed by the following formula:

puvw =

�
xuvw yuvw zuvw ouvw

0 0 0 1

�
pxyz (1)

where xuvw, yuvw, zuvw, and ouvw are the (u, v, w)
coordinates of Kinect’s x, y, and z axis and origin o.

B. Pose Modeling

An action is a sequence of poses over time. Hence, prior
to modeling an action, we model the poses in terms of relative
positions and orientations of body parts. The four actions that
we consider require modeling only the arms and the legs, each
of which have two large bones that are modeled as follows.

1) Modeling Upper Arm and Thigh: These bones are at-
tached to the torso at the ball-and-socket joints and move freely
in 3D. These four bones are modeled as four 3D unit vectors
v1, v2, v3, and v4 as shown in Figure 2, and are computed from
the coordinates of the endpoints.

2) Modeling Lower Arm and Leg: These bones only bend
0◦−180◦ at the elbow and knee joints. We model their relative
positions with respect to the upper bones using four angles
α1,α2,α3, and α4 as show in Figure 2. Besides these angles,
we also keep track of the planes containing the upper and lower
arms which are represented by the unit normals n1 and n2 to
the planes. We keep normals for left and right arms only, as
our arms are more flexible and exert more complex motions
which our legs cannot.

We represent vectors and normals with three angle cosines,
and elbow and knee angles are also stores as cosine angles.
Thus all features are in the same range of [−1, 1], saving
us the computation time of feature scaling. The four vectors
{vi}, four angles {αi}, and two normals {ni} constitute a
22-element feature vector.

C. Smoothing Features

Due to real-world issues, such as the presence of obstacles,
occlusion of body joints, and bad lighting conditions, skeleton
data obtained from Kinect is often too noisy. Although Kinect
already applies a filter to smooth raw skeleton data, after
computing feature vectors from the skeleton frames, we see
abrupt changes in feature values. In order to remove noise,
we apply a 3rd order median filter [23], individually on each
feature, to simultaneously remove noise and preserve edges
on the curve. Figure 3 explains the process with an illustrative
example.

−1

0

1

Time

Elbow (Angle Cosine)

−1

0

1

Time

Knee (Angle Cosine)

(a) Before Smoothing.

−1

0

1

Time

Elbow (Angle Cosine)

−1

0

1

Time

Knee (Angle Cosine)

(b) After Smoothing.

Fig. 3. Variations in angles at right elbow and knee during a ‘hitting’ action:
(a) Elbow angles are noisy at the beginning and the end, and there is a spike
in knee angles even though the person uses only his arm. (b) Filtering has
made the data smoother and removed the spike.

D. Dynamic Time Warping

The similarity between two feature vector sequences is
computed using the dynamic time warping (DTW) algorithm,
which is a well-known technique for computing the optimal
alignment between two time-dependent sequences. DTW al-
lows us to match an action with its faster or slower instances,
and thus making our action recognizer invariant to the speed
of an action.

Given two sequences of feature vectors P :=
(p1, p2, . . . , pN) and Q := (q1, q2, . . . , qM), where each
of the pi’s and qj’s is a 22-element feature vector, the DTW
distance is computed by the following recurrence relation:

D(n,m) =






n�
k=1

c(pk, q1), for n ∈ [1, N],m = 1

m�
k=1

c(p1, qk), for m ∈ [1,M], n = 1

min{D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)}
+ c(xn, ym), for 1 ≤ n ≤ N, 1 ≤ m ≤ M

where c(xi, yj) = �xi − yj� is Euclidean norm, and the
DTW distance is D(N,M).

E. Creating Classifiers

Although we could build a classifier that recognizes an
unknown action by comparing its DTW distances from all
labeled examples, such a recognizer would be extremely slow
to be useful in practice. Instead, we use DTW as the kernel
of a support vector machine (SVM). By default, an SVM uses
a linear kernel (dot product of two vectors), however, it is
not uncommon to see other types of non-linear kernels in use,
including the DTW. Using DTW as a kernel allows us to have
time-invariance as well as a fast and accurate classification at
the cost of an increased training time. However, owing to the
fact that the expert classifiers are not likely to be trained quite
often, such a cost should be acceptable.

V. LEARNING VIA USER FEEDBACK

In this section, first, we describe how labeled clusters are
used to encode and classify an action, and then we describe

how the clusters are obtained and the user’s role in it.

A. Fixed-length Encoding of Skeleton Frames

The N -length sequence of skeleton frames s =
(s1, s2, . . . , sN), where N is the window-size, is encoded to
a K-length sequence ζ = (ζ1, ζ2, . . . , ζK), before it is sent
to a classifier. Let us assume that, we have a predefined set
of vectors C = {µj}, 1 ≤ j ≤ T , where each vector has the
same dimensions as of a skeleton frame. The elements of C
are stick figures and the set as a whole serves as the code book
for expressing the skeleton sequence using those stick figures.
To obtain ζ from s, we do the following:

Step 1: Using the coordinate transformation matrix in
Section IV-A, we obtain the sequence b = (b1, b2, . . . , bN)
from sequence s.

Step 2: �N
K � consecutive frames in b are element-wise

averaged to obtain a = (a1, a2, . . . , aK).

Step 3: Compute ζi = argmin
µj∈C

�ai − µj�, for 1 ≤ i ≤ K.

B. Bayesian Classification

Once we have the encoded sequence ζ, we determine its
most likely class ANB among all target classes {Ai} using a
Naive Bayes classifier:

ANB = argmax
Ai

p(Ai|ζ1, ζ2, . . . , ζK) (2)

= argmax
Ai

K�

k=1

p(ζk|Ai)p(Ai) (3)

To evaluate the above equation, we assume a uniform
prior, and use pre-computed p(ζk|Ai), 1 ≤ k ≤ K, which
are obtained by estimating the distribution of each ζk for
each action, i.e., the fraction of times ζk assumes each of
the T values of C for action Ai. Note that, the success of
the classifier depends on the estimate of p(ζk|Ai). The more
examples that are used to estimate this, the better is the
classifier’s accuracy. This is why this classifier needs more
time than the expert classifier to evolve into one that has an
acceptable recognition accuracy.

C. Cluster Creation and Update

When actions are classified poorly, i.e. p(ANB |ζ) is low,
it indicates that the current codebook is not expressive enough
to represent those actions properly. To handle this, we need
to update the set of clusters, C. Let us assume, there are T
clusters and each of which is represented by a tuple, (µi,σi)
where µi is the cluster-centroid and σi is the mean point-to-
centroid distance.

Recall that, all poorly classified examples are snapshotted
and stored in a collection of size M (Section III). Each
element in this collection {ai} is denoted by the K-length
representation, ai = (ai1, a

i
2, . . . , a

i
K) which is obtained by

applying step 1 and 2 of the encoding algorithm described
earlier. Let {aij}, 1 ≤ i ≤ M, 1 ≤ j ≤ K, be the collection
of all stick figures appearing in {ai}. The following algorithm
describes the cluster creation and update mechanism:

Step 1: Elements in {aij} are clustered using k-means
algorithm with k = T + 1, producing T + 1 new clusters
having their centroids at {µ�

1, µ
�
2, . . . , µ

�
T+1}. For each new

cluster with center µ�
i, we repeat step 2.

Step 2: (a) If �µ�
i − µj� ≤ 3σj , we merge the ith new

cluster with jth old cluster by updating µj to the weighted
mean of µ�

i and µj , and recomputing σj , (b) otherwise, we
add µ�

i to C and increment T .

Note that, creation and update of clusters neither changes
the encoding length K nor the representation ζ of previous
actions. However, the distribution, p(ζ|Ai) changes as there
are more examples now and ζk has zero or more new values
to consider depending on the number of added clusters.

D. User Feedback

To compute p(ζ|Ai), we first need to know what classes
the new examples belong to. A naive approach is to let the
user label each of the M unknown examples, which is not
feasible for large M . For this, we create a tree-structured
hierarchical clustering of M examples using agglomerative
single-link clustering [16]. Then starting from the highest level,
i.e. from the last link to the first, we ask the user if the two
subgroups connected by the link are similar or not. If user says
they are similar, we merge them and prompt the user to give
it a name; otherwise, we recurse on each of its child links.
Figure 4 illustrates this with a simplified case with M = 7
and K = 2.

0 5 10
0

5

10

A
B
C

D
E

F G

(a) Examples in feature space.
B C A D E F G

0

0.5

1 Q1
Q2

Q4
Q3

Q5

(b) Dendrogram (cluster hierarchy)

Fig. 4. A simplified example in a 2D-feature space showing how users are
prompted to label clusters in a top-down manner.

Figure 4(a) shows the examples in their feature space, and
Figure 4(b) shows the hierarchy (dendrogram). The highest
level of the hierarchy divides the examples into two clusters,
{A,B,C,D,E} and {F,G}. The user is shown snapshots
from each of them and is asked if they are similar. If he
answers ‘yes’, we merge the clusters and give it a user given
name. On the other hand, a ‘no’ means the clusters are
different, and we need to recurse on each of the sets. The
order of questioning is shown with Qi in the figure. We limit
the recursion when a certain depth is reached (shown in dots).
Examples below that depth (e.g. {B,C}) are too close and are
assumed to be in the same cluster.

VI. EMPIRICAL EVALUATION OF EXPERT CLASSIFIERS

This section describes a set of controlled experiments
where we evaluate the accuracy, classification delay, and ro-
bustness of our expert classifiers. An overall system evaluation
of Kintense is described in the next section.

We create an empirical dataset by collecting data from
19 users from 2 sites (UVA and DGIST, Korea) which is

publicly available [4]. Each participant performs 4 actions
(hitting, kicking, pushing, and throwing) plus some random
actions such as jumping, waving hands, sit-ups, and clapping
in front of a Kinect. We vary the relative distance (9 locations
forming a 3× 3 grid) and angle (7 angles: 0 ◦, ±20 ◦, ±40 ◦,
±60 ◦) between the Kinect and the performer. Each action is
performed 4 − 8 times by a participant. In total, we have a
dataset with about 13, 000 action instances. To the best of
our knowledge, this is the largest publicly available dataset
having skeleton data from Kinect with such a large number of
participants, actions, and variations in distance and angles.

Fig. 5. A multi-Kinect setup to expedite the data collection.

We have two baselines. The first one is a DTW-based
gesture matching algorithm for Kinect [3] which we modified
to process 3D skeleton data from our dataset. The second one
is a posture-based gesture recognizer, similar to [10], where we
use sequences of stick figures as templates and use an SVM
classifier. These two baselines are referred to as DTW and
Pose, respectively. All the experiments are performed using
Kinect sensors connected to a laptop having a 2.3 GHz Intel
Core i5 processor and 4 GB RAM.

A. Accuracy

We evaluate the accuracy of our expert classifiers and
compare it with the two baselines for various amount of
training. For each data point, we randomly select a subset
of action instances from our dataset, train the algorithms
using two-thirds of the data, and run tests on the rest. Each
experiment is repeated 5− 10 times.

0.1 1 2 3 4 5 6
25

50

75

100

Training Examples (x103)

Ac
cu

ra
cy

 (%
)

DTW Pose Kintense

Fig. 6. Kintense is 11%− 16% more accurate than the baselines.
Figure 6 shows the accuracy of the 3 algorithms for

training set sizes of 100 − 6000 examples. The DTW, being
a matching algorithm, performs the worst at the beginning,
but later crosses Pose when it sees 2500 or more training
examples. The accuracies of these two baselines do not rise
much after 4000 examples, and converge to 83.3% and 78.1%,
respectively when we have the largest training set. Kintense,
on the other hand, is always leading and its accuracy reaches
94.1%, which is 11%− 16% higher than the baselines.

B. Classification Delay

We measure the time Kintense takes to process and classify
each window of skeleton frames, and compare it to DTW and
Pose algorithms. For Kintense, this includes pre-processing
(e.g., coordinate transformation), feature extraction, smooth-
ing, and SVM classification.

0.1 1 2 3 4 5 6
10−6

10−4

10−2

100

102

Training Examples (x103)

R
ec

og
ni

tio
n

Ti
m

e
(S

ec
)

pe
r T

es
t E

xa
m

pl
e

DTW Pose Kintense

Fig. 7. Kintense shows an average delay of 336 ms which is higher than
Pose, but is only 20% of an average action-length.

Figure 7 shows the average classification time per test
example for each of the 3 algorithms. We use a log-scale
on the Y-axis since the classification time for DTW is up
to 102 − 106 times higher compared to the other two. The
DTW is the slowest, as it compares each test example with
every training example in the training set to find a match.
Pose and Kintense, on the other hand, are offline-trained, and
hence their classification time is much faster and both of them
can be run in real-time. Among Kintense and Pose, Kintense
is comparatively slower due to its expensive operations which
results in a classification delay of about 336 ms. However,
compared to the average duration of an action in our dataset,
the delay is < 20%. This means we can comfortably run
Kintense in real-time even if multiple aggressive actions are
performed back-to-back.

C. Robustness

Unlike Kintense, none of the baselines explicitly handle
robustness issues such as changes in distance, body orientation,
speed of motion, and person. We describe a set of experiments
to compare the robustness of the 3 algorithms.

1) Distance: To evaluate the robustness with respect to
changes in distance, we measure the accuracy of each of the
algorithms in two setups: (a) Fixed - the training and the test
examples are from the same location, and (b) Varied - they are
from different locations.

DTW Pose Kintense

25
50
75

100

Ac
cu

ra
cy

 (%
)

Fixed Varied

Fig. 8. Kintense is 24.2%−44.14% more accurate than the baselines when
they are trained and tested on examples from different locations.

Figure 8 shows the accuracy of each of the 3 algorithms
for the two setups that we just described. We observe that,
Kintense shows a great resistance with respect to changes in
distance, sacrificing merely 2% accuracy. On the other hand,
Pose loses 27.2% and DTW loses 10.6% accuracy when the

location is varied. In general, Kintense is 24.2% − 44.14%
more accurate than the baselines when they are trained and
tested on examples from different locations.

2) Body Orientation: To evaluate the robustness with re-
spect to changes in body orientations, we measure the accuracy
of each of the algorithms in 3 setups: (a) Zero - the person
is facing the camera, (b) Fixed - the angle is fixed, and (c)
Varied - trained and tested on two different angles.

Zero Fixed Varied

50

75

100

Training and Test Angles

Ac
cu

ra
cy

 (%
)

DTW Pose Kintense

Fig. 9. Kintense is 23.8% − 54% more accurate than the baselines when
the angle is varied.

Figure 9 shows the accuracy of each of the 3 algorithms for
the three setups. The accuracy of DTW and Pose are similar
when the user is facing the camera, but they are still ∼ 16%
less than Kintense’s. The accuracy of all 3 algorithms drop
at the fixed-angle case. This is because, when the angle is
between 45◦ − 60◦, some body joints are occluded and it is
difficult to locate them with Kinect. Kintense resists this to
some extent, due to its feature smoothing capability and shows
16%− 23% more accuracy. When the training and test angles
are different, we see a further reduction in accuracies. Espe-
cially, Pose becomes extremely inaccurate with only 36.1%
accuracy, while the DTW and Kintense show 66.2% and 90%,
respectively. Overall, Kintense is 23.8%− 54% more accurate
than the baselines when the angle is varied.

3) Speed: To evaluate the robustness with respect to
changes in speed of motion, we measure the accuracy of each
of the algorithms in 3 setups: (a) Slow - both training and
test examples are performed slowly, (b) Fast - performed fast,
and (c) Mixed - trained and tested on different speeds. Using
the timestamps of the first and last frame of an action, we
computed the speed, sorted the actions based on speed, and
then took the first one-third as slow and last one-third as fast
actions.

Slow Fast Mixed

50

75

100

Speed of Motion

Ac
cu

ra
cy

 (%
)

DTW Pose Kintense

Fig. 10. Kintense is 10.9%− 51% more accurate than the baselines when
the speed is varied.

Figure 10 shows the accuracy of each of the 3 algorithms
for the three setups. We observe that, both DTW and Kintense
are resilient to changes in speed, and their accuracies are
similar in all 3 cases with Kintense showing 10.9%− 12.43%
more accuracy than DTW. Pose, however, is slightly better than

DTW for slow actions, but its accuracy sharply drops when
the actions are performed fast and especially when we train
and test it with actions of different speeds. Overall, Kintense
is 10.9% − 51% more accurate than the baselines when the
speed is varied.

4) Person: To evaluate the robustness with respect to
changes in person, we measure the accuracy of each of the
algorithms in two setups: (a) Fixed - the training and the test
examples are from the same person, and (b) Varied - they are
obtained from different persons.

DTW Pose Kintense

25
50
75

100

Ac
cu

ra
cy

 (%
)

Fixed Varied

Fig. 11. Kintense is 16.14%−46.4% more accurate than the baselines when
the person is varied.

Figure 11 shows the accuracy of each of the 3 algorithms
for the two setups. We observe that, both DTW and Kintense
are more resilient to changes in person compared to Pose.
DTW loses 6.5% and Pose loses 31% accuracy when they are
trained and tested on different persons. Kintense, on the other
hand, loses only 2.1% accuracy and is overall 16.14%−46.4%
more accurate than the baselines when the person is varied.

VII. DEPLOYMENT AND FULL SYSTEM EVALUATION

To evaluate Kintense’s performance in a real-world envi-
ronment, we deploy the system in the living rooms of 2 two-
person households, each having dimensions of approximately
12 × 12 square feet. The purpose of this experiment is to
evaluate Kintense in a natural environment and with natural
movements of the individuals, but we do identify the general
script for a person to follow in order to perform the evaluation.

TABLE II. PERFORMED ACTIONS AT EACH HOME

Round Known Unknown Classes of

Actions Actions Unknown Actions

1 60 × 4 0 none.
2 60 × 4 60× 3 grab, poke, scratch.
3 60 × 4 60× 5 grab, poke, scratch, resist, duck.
4 60 × 4 60× 5 grab, poke, scratch, resist, duck.

TABLE III. DESCRIPTION OF UNKNOWN ACTIONS

Action Description

Grab Grabbing action.
Poke Poke own body (chest area) with a finger.
Scratch Scratch head with a hand.
Resist Waving a hand to show negativity.
Duck Ducking action.

The experiment is performed in multiple rounds. During
each round, the two individuals of the household perform
different aggressive actions, including the four actions that the
expert classifiers are trained for. We ask them to perform each
action with certain number of repetitions. However, they are

not constrained to how to perform an action, what other actions
to perform, the order of the actions, the speed, the duration,
the body orientation, the distance from Kinect, etc. A human
observer keeps records of the time and type of the actions they
perform.

Kintense detects the actions it is trained for while iden-
tifying potential ones for human feedback. After each round,
the operator is shown snapshots of potential aggressive actions
from two different clusters and is asked to label them if they
are from the same action. Once the labeling is done, the
clusters are updated and the next round starts. Each round
lasts for about 20− 30 minutes, and we stop after 4 rounds.

Table II shows the number and type of actions performed
by our participants at different rounds. The known actions refer
to the classes our expert classifiers are trained for, and the
unknown actions, which are described in Table III, are the
ones that Kintense discovers and learns via user feedback.

A. Accuracy and Evolution

After each round, we evaluate the accuracy of the expert
classifier and the cluster-based classifier, and compute the
overall accuracy of Kintense from the weighted average of
the two. These are shown in Table IV.

TABLE IV. KINTENSE EVOLVES TO LEARN NEW ACTIONS AND TO
IMPROVE ITS ACCURACY

Round Household 1 Household 2

Expert Cluster Average Expert Cluster Average

1 86.0% - 86.0% 89.3% - 89.3%
2 73.1% - 73.1% 78.0% - 78.0%
3 91.9% 51.3% 69.3% 87.5% 52.0% 67.8%
4 94.0% 84.7% 88.8% 94.7% 89.3% 91.7%

At round 1, the cluster-based classifier is not effective and
hence the overall accuracy is the same as that of the expert’s.
At round 2, we introduce 3 new actions, and the accuracy
of the expert drops by 11.3% − 12.9%. But new clusters are
created by Kintense to model them and they are recognized in
the next round. At round 3, for the first time we see the cluster-
based classifier’s effect which has 51.3% − 52% accuracy
as it recognizes only 3 out of 5 classes it has seen so far.
The accuracy of the expert also rises as the examples that
it misclassified previously are now handled by the cluster-
based classifier. At round 4, the accuracy of cluster-based
classifier, which now has the knowledge of all 5 classes,
reaches 84.7%− 89.3%, and the overall accuracy of Kintense
becomes ∼ 90%. Note that, the apparent loss of accuracy in
round 2 and 3 are transitional and is shown to demonstrate how
Kintense catches up to its accuracy in the very next round.

In summary, Kintense accurately recognizes the aggressive
actions of interest, and when new actions are introduced to
it, the system automatically identifies them and lets a human
operator decide if they are of any interest. And if he says they
are, the system evolves to learn them, and correctly recognizes
them in the very next round.

B. Classification Delay

Table V shows the classification delays by both of the
classifiers. As these classifiers run in parallel, we see an

average delay of 345 ms, which is ∼ 20% of a typical action’s
length. Hence, even when multiple actions are performed back-
to-back, Kintense is able to detect and classify them in real-
time.

TABLE V. CLASSIFICATION DELAY

Classifier Time (ms)

Experts 297
Cluster-based 393

C. False Alarms

We express the false alarms in terms of the false positive
rate (FPR) which is the ratio of the false positives and the total
number of positively classified examples by Kintense. These
are shown in Table VI. We observe that, initially the system
has a very low FPR of 7.3%− 8.6%, but when 180 unknown
examples from 3 unknown classes are introduced, it jumps
to 24.7% − 33.2%. About half of these are absorbed by the
cluster-based classifier after round 3, and after round 4, the
FPR becomes 6.4% − 7.1% as both the expert classifier and
the cluster-based one become aware of all 9 types of actions.

TABLE VI. FPR REDUCES AS THE SYSTEM EVOLVES AND LEARNS
NEW ACTIONS.

Round 1 Round 2 Round 3 Round 4

Household 1 7.3% 24.7% 13.6% 6.4%
Household 2 8.6% 33.2% 16.2% 7.1%

D. User Feedback

Table VII shows the number of discovered actions and the
amount of user interactions (i.e. queries) after each round. The
first round having no unknown actions, the two values are zero.
During the next two rounds, on average, Kintense discovers
203 and 155 action instances per household, corresponding
to 180 and 120 newly introduced instances. The last round
discovers 58 more. A naive approach would require a human
operator to individually tag each of these newly discovered
instances. However, with the hierarchical clustering technique,
Kintense reduces the amount of user interactions by 4.0 −
13.8 times, and thus saves valuable work-hours of the human
operator.

TABLE VII. KINTENSE REDUCES REQUIRED USER INTERACTIONS BY
4.0− 13.8 TIMES.

Round Household 1 Household 2

Discovered Queries Ratio Discovered Queries Ratio

1 0 0 - 0 0 -
2 207 15 13.8 198 22 9.0
3 166 18 9.2 144 20 7.2
4 26 6 4.3 32 8 4.0

VIII. RELATED WORK

Several agitation detection techniques have been proposed
in the past. Physiological signals, such as the galvanic skin re-
sponse [20], [26], blood volume pressure [20], heart rate [26],
skin temperature [26], and EEG waveforms [15] have been
used to train models of agitating behavior. Studies on the
acceleration of the wrists, ankles, and waist are performed to

understand their association with agitation scale variables [6],
[30]. The downside of these techniques is that, they require an
active engagement of the person while collecting data – which
is highly inconvenient. Compared to these techniques, Kintense
is a completely non-invasive and passive monitoring system.
Remote monitoring of sleeping patients for agitation has been
performed using regular video cameras [12]. However, their
downside is that they do not provide skeleton level information
to accurately classify an action, and compared to video images,
the stick figures from Kinect are far less privacy invasive.

Gesture recognition, specially hand gestures, from se-
quence of images are studied by many. [18] uses Hidden
Markov Model (HMM) to spot and recognize hand gestures
from a sequence of hand images. [8] uses tracking to recognize
hand gestures. In our case, we get tracked skeleton information
directly from the Kinect. Similar to Kintense, [34] uses
location, angle and velocity as features, however, they solve a
simpler problem of hand gesture recognition in 2D plane. [10]
defines a gesture as a sequence of postures, recognizes poses
using template matching and then uses an HMM to recognize
gestures. This is similar to our pose-based baseline recognizer
except that we use stick figures as templates.

Kinect has recently been used in several gesture recognition
applications. Depth image from Kinect is used to recognize
sign language [17], recognizing gaming actions [19], hand
gestures [24], fall detection [28], gait analysis [29], predicting
joint coordinates [27], and actions [32]. Our work is different
from these as we use skeleton data whereas all these works
have used only depth images from Kinect. However, skeleton
data from Kinect has also been used in applications such as
evaluating dance performance [5], mining actions [33], gait
analysis [13], and simple gesture recognition [7]. However,
unlike Kintense, none of these works consider issues such as
the relative position, body orientation, and speed of motion of
the person.

IX. CONCLUSION

This paper describes Kintense, which is a robust, accurate,
real-time, and evolving system for passively monitoring ag-
gressive actions. Kintense employs a set of supervised learners
to recognize well-known aggressive actions such as hitting,
kicking, pushing and throwing with 11− 16% more accuracy
and 10% − 54% more robustness to changes in distance,
orientation, speed, and person than state-of-the-art techniques.
Kintense employs semi-supervised learning to discover poten-
tial aggressive actions, and evolves itself to learn them with up
to 13 times fewer user interactions than a typical user feedback
based system. The evolving nature of Kintense makes it ideal
for an agitation monitoring system where the actions to be
detected are often not well-defined and the system needs to
discover and evolve to learn them.

REFERENCES

[1] AceTek System. acetek.com.au/services/dementia-monitoring.
[2] Kinect SDK. http://kinectforwindows.org.
[3] Kinect SDK DTW Gesture Recognition. kinectdtw.codeplex.com.
[4] Kintense Dataset. http://tinyurl.com/cwy5a3x.
[5] D. S. Alexiadis, P. Kelly, P. Daras, N. E. O’Connor, T. Boubekeur, and

M. B. Moussa. Evaluating a dancer’s performance using kinect-based
skeleton tracking. In ACM Multimedia, 2011.

[6] A. Bankole, M. Anderson, T. Smith-Jackson, A. Knight, K. Oh,
J. Brantley, A. Barth, and J. Lach. Validation of noninvasive body sensor
network technology in the detection of agitation in dementia. American
Journal of Alzheimer’s Disease and Other Dementias, 27(5):346–354.

[7] S. Celebi, A. S. Aydin, T. T. Temiz, and T. Arici. Gesture recognition
using skeleton data with weighted dynamic time warping.

[8] F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand gesture recognition using
a real-time tracking method and hidden markov models. Image and
Vision Computing, 21(8):745–758, 2003.

[9] J. Cohen-Mansfield et al. Conceptualization of agitation: Results based
on the cohen-mansfield agitation inventory and the agitation behavior
mapping instrument. International Psychogeriatrics, 8(s 3):309–315.

[10] A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis. Gesture recognition
using a probabilistic framework for pose matching. In ICARCV 2002.

[11] S. I. Finkel, J. S. Lyons, R. L. Anderson, et al. A brief agitation
rating scale (bars) for nursing home elderly. Journal of the American
Geriatrics Society, 41(1):50, 1993.

[12] F. Fook, P. V. Thang, T. M. Htwe, Q. Qiang, A. A. P. Wai, M. Jay-
achandran, J. Biswas, and P. Yap. Automated recognition of complex
agitation behavior of dementia patients using video camera. In e-Health
Networking, Application and Services, 2007.

[13] M. Gabel, R. Gilad-Bachrach, E. Renshaw, and A. Schuster. Full body
gait analysis with kinect. In EMBC, pages 1964–1967, 2012.

[14] D. P. Hay et al. Agitation in Patients with Dementia: a practical Guide
to diagnosis and Management. American Psychiatric Pub, 2008.

[15] G. Henderson, E. Ifeachor, N. Hudson, C. Goh, N. Outram,
S. Wimalaratna, C. Del Percio, and F. Vecchio. Development and
assessment of methods for detecting dementia using the human elec-
troencephalogram. Biomedical Engineering, 53(8):1557–1568, 2006.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM computing surveys (CSUR), 31(3):264–323, 1999.

[17] A. Kurakin, Z. Zhang, and Z. Liu. A real time system for dynamic
hand gesture recognition with a depth sensor. In Signal Processing
Conference (EUSIPCO), 2012.

[18] H.-K. Lee and J.-H. Kim. An hmm-based threshold model approach
for gesture recognition. IEEE PAMI, 21(10):961–973, 1999.

[19] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d
points. In IEEE CVPRW, pages 9–14, 2010.

[20] W. Liao, W. Zhang, Z. Zhu, and Q. Ji. A real-time human stress
monitoring system using dynamic bayesian network. In IEEE CVPRW,
pages 70–70, 2005.

[21] T. Monahan and T. Wall. Somatic surveillance: Corporeal control
through information networks. Surveillance & Society, 4(3), 2002.

[22] V. Patel and R. Hope. A rating scale for aggressive behaviour in the
elderly–the rage. Psychological medicine, 22(01):211–221, 1992.

[23] W. K. Pratt. Digital Image Processing. John Wiley & Sons, 1978.
[24] D. Ramirez-Giraldo, S. Molina-Giraldo, A. M. Alvarez-Meza, G. Daza-

Santacoloma, and G. Castellanos-Dominguez. Kernel based hand
gesture recognition using kinect sensor. In STSIVA, 2012.

[25] A. Rosenblatt. The art of managing dementia in the elderly. Cleveland
Clinic journal of medicine, 72(Suppl 3):S3, 2005.

[26] G. E. Sakr, I. H. Elhajj, and H.-S. Huijer. Support vector machines
to define and detect agitation transition. Affective Computing, IEEE
Transactions on, 1(2):98–108, 2010.

[27] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore. Real-time human pose recognition in parts
from single depth images. Communications of the ACM, 56(1):116–124.

[28] E. E. Stone and M. Skubic. Evaluation of an inexpensive depth camera
for passive in-home fall risk assessment. In PervasiveHealth, 2011.

[29] E. E. Stone and M. Skubic. Passive in-home measurement of stride-
to-stride gait variability comparing vision and kinect sensing. In
Engineering in Medicine and Biology Society, pages 6491–4, 2011.

[30] T. Tamura, T. Fujimoto, and T. Togawa. Quantitative assessment of be-
havior in dementia patients by continuous physical activity monitoring.
In Engineering in Medicine and Biology Society, 1997.

[31] T. Voisin, S. Andrieu, C. Cantet, and B. Vellas. Predictive factors of
hospitalizations in alzheimers disease: a two-year prospective study in
686 patients of the real. fr study. The journal of nutrition, health &
aging, 14(4):288–291, 2010.

[32] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3d action
recognition with random occupancy patterns. In ECCV. 2012.

[33] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for
action recognition with depth cameras. In CVPR, 2012.

[34] H.-S. Yoon, J. Soh, Y. J. Bae, and H. Seung Yang. Hand gesture
recognition using combined features of location, angle and velocity.
Pattern Recognition, 34(7):1491–1501, 2001.

