
Design and Comparison of Lightweight Group

Management Strategies in EnviroSuite⋆

Liqian Luo, Tarek Abdelzaher, Tian He, and John A. Stankovic

Department of Computer Science, University of Virginia,
Charlottesville, VA 22904

{ll4p, zaher, th7c, stankovic}@cs.virginia.edu

Abstract. Tracking is one of the major applications of wireless sensor
networks. EnviroSuite, as a programming paradigm, provides a compre-
hensive solution for programming tracking applications, wherein moving
environmental targets are uniquely and identically mapped to logical
objects to raise the level of programming abstraction. Such mapping is
done through distributed group management algorithms, which organize
nodes in the vicinity of targets into groups, and maintain the uniqueness
and identity of target representation such that each target is given a
consistent name. Challenged by tracking fast-moving targets, this paper
explores, in a systematic way, various group management optimizations
including semi-dynamic leader election, piggy-backed heartbeats, and im-
plicit leader election. The resulting tracking protocol, Lightweight Envi-

roSuite, is integrated into a surveillance system. Empirical performance
evaluation on a network of 200 XSM motes shows that, due to these op-
timizations, Lightweight EnviroSuite is able to track targets more than 3
times faster than the fastest targets trackable by the original EnviroSuite
even when 20% of nodes fail.

1 Introduction

The increasing popularity of sensor networks in large-scale applications such as
environmental monitoring and military surveillance motivates new high-level
abstractions for programming-in-the-large. As a result, several programming
models that encode the overall network behavior (rather than per-node behav-
iors) have been proposed in recent years. Examples include virtual machines
[1][2], and database-centric [3][4][5], space-centric [6][7], group-based [8][9], and
environment-based [10] programming models, which offer virtual machine in-
struction sets, queries, sensor node groups and environmental events, respec-
tively, as the underlying abstractions with which the programmer operates.
These abstractions capture the unique properties of distributed wireless sensor
networks and expedite software development.

⋆ The work reported in this paper is funded in part by NSF under grants CCR-0208769
and ITR EIA-0205327.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 155–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



156 L. Luo et al.

An important category of sensor network applications involves tracking en-
vironmental targets. In these applications, some internal representation of the
external tracked entity is maintained such as a state record, a logical agent, or a
logical object representing the physical target. A given target in the environment
should be represented uniquely and its identity should be preserved consistently
over time. One way to ensure unique, consistent representation is to relay all
sensor readings to a centralized base-station which runs spatial and temporal
correlation algorithms to infer the presence of targets, assign them unique iden-
tities, and maintain such identities consistently. Such a centralized approach,
however, is both inefficient and vulnerable. In addition to relying on a single
point of failure, it results in excessive power consumption due to communication
with a centralized bottleneck and may unduly increase latency, especially when
targets move far away from the base-station.

To avoid these limitations, in EnviroSuite, we take the alternative approach
of processing target data at or near the location where the target is sensed.
Hence, appropriate distributed group management policies are needed to ensure
the uniqueness and identity of target representation such that targets are given
consistent names and sensors agree on which target they are sensing. This paper
systematically investigates different system optimizations in the design of such
group management algorithms in a sensor network. The resulting tracking sys-
tem, Lightweight EnviroSuite, is used in a sensor network surveillance prototype
that has since been transferred to the Defense Intelligence Agency (DIA). It is
evaluated on a sensor network of 200 XSM motes [11]. Results from field tests
of the overall system are provided, focusing on tracking performance. (Other
performance aspects of the system such as efficacy of energy management algo-
rithms will be reported elsewhere.) It is seen that realistic targets can indeed be
tracked correctly despite environmental noise using low-range sensors. Our field
test results show that even when 20% of nodes fail, Lightweight EnviroSuite is
able to track targets more than 3 times faster than the fastest targets trackable
by the original EnviroSuite, due to the optimizations described in this paper.
The improved tracking coincides with reduced communication cost.

The remainder of the paper is organized as follows. Section 2 presents the
background information and enumerates limitations of the original EnviroSuite.
Section 3 explores group management strategies and their effects that consti-
tute Lightweight EnviroSuite. Section 4 analyzes the performance results of a
surveillance system that is constructed from Lightweight EnviroSuite. Finally,
Section 5 supplies a summary and concludes the paper.

2 Background

Target tracking has received special attention in recent ad hoc and sensor net-
works literature. Many prior approaches (e.g., in the ubiquitous computing and
communication domains) focused on tracking cooperative targets. Cooperative
targets are those that allow themselves to be tracked typically by exporting a
unique identifier to the infrastructure (such as a cell-phone number). Examples



Design and Comparison of Lightweight Group Management 157

of cooperative targets include cell phones, RFID tags [12] and smart badges [13].
Since such devices are preconfigured with a unique identity, the tracking prob-
lem is generally reduced to that of locating the uniquely identified device and
performing hand-offs if needed (e.g., in cellular phones). In contrast, our goal
is to track non-cooperative targets such as enemy vehicles that do not broad-
cast self-identifying information. The presence and identity of such targets can
only be inferred from sensory signatures, as opposed to direct communication
with the target. Tracking non-cooperative targets is more challenging due to the
difficulty in associating sensory signatures with the corresponding targets (e.g.,
all tanks look the same to our unsophisticated motes). The presence of target
mobility further complicates the tracking problem.

One of the first research efforts on group management for non-cooperative
target tracking has been conducted by researchers at PARC [14]. Their group
management method dynamically organizes sensors into collaborative groups,
each of which tracks a single target. Typical tracking problems such as multi-
target tracking and tracking crossing targets are solved elegantly in a distributed
way. Other approaches to target tracking include [15] which presents a particle
filtering style algorithm for tracking using a network of binary sensors which
only detect whether the object is moving towards or away from the sensor.
A scalable distributed algorithm for computing and maintaining multi-target
identity information in described in [16]. In [17] a tree-based approach is proposed
to facilitate sensor node collaboration in tracking a mobile target.

The authors have investigated the tracking problem in several of their own
prior publications. Similar to [8], in [18] we present a set of group management
algorithms which form sensor groups at the locations of environmental events of
interest and attach logical identities to the groups. Based on [18], EnviroTrack
[19] proposes an environmental computing paradigm which facilitates tracking
application development. EnviroSuite [20] further extends the paradigm to sup-
port a broader set of applications that are not limited to target tracking. Geared
for tracking of fast-moving targets with low communication cost on available
hardware platforms that have limited sensing and communication abilities, this
paper proposes lightweight group management algorithms for EnviroSuite. Op-
timizations described in this paper may be applicable to other systems such as
[8] as well.

The design of EnviroSuite assumes that each node can independently detect
the potential presence of a target (subject to false alarms). For example, the
presence of a magnetic signature, motion, and engine sound can be independently
detected by each XSM mote to signify the potential presence of a nearby moving
vehicle in a desert surveillance scenario. It is further assumed that sensor readings
do not interfere with each other. Hence, tracking reduces to the problem of
correct mapping of nodes that detect target signatures to the actual physical
target identities responsible for these signatures. EnviroSuite therefore organizes
nodes that detect targets of interest into groups, each representing one target.

Different from traditional centralized tracking schemes, the data association
between targets and groups in EnviroSuite is done in a distributed way. Namely,



158 L. Luo et al.

all nodes that sense a target and can communicate directly assume that they
sense the same target and consequently join the same group. The resulting aggre-
gate behavior is that connected regions of sensors that sense the same signature
are fused into the same group. Observe that when the target moves, group mem-
bership changes reflecting the changing set of sensors that can sense it at the
time. A leader is elected for the group among the current members. A leadership
hand-off algorithm ensures that group state is passed to each new leader.

In this paper, we focus on point targets (i.e., those approximated by a point
in space, such as a vehicle), as opposed diffuse region targets (given by an area,
such as a chemical spill). It is assumed that the communication range of a node
is sufficiently larger than its sensing range. Hence, all group members sensing
a point target are within each other’s radio range. Consequently, the data dis-
semination scheme within each group can simply use local broadcast to share
sensory information. The leader performs data fusion in an application-specific
manner to collect higher-level target information. Geographic forwarding [21] is
used for communication with destinations external to the group. For example,
in the evaluation section, each group leader estimates target position by aver-
aging locations of group members and sends the result to remote base-stations
periodically. Extensions of this scheme to diffuse region targets are described
elsewhere [20].

This section briefly reviews the EnviroSuite programming paradigm and its
core component, MGMP (multi-target group management protocol). It also ana-
lyzes and evaluates the limitations of MGMP when facing the practical require-
ments of a typical surveillance system.

2.1 EnviroSuite Abstractions and Challenges

EnviroSuite [20] is an object-based framework that supports environmentally im-

mersive programming for sensor networks. Environmentally immersive program-
ming refers to an object-based paradigm in which logical objects and objects
representing physical environmental entities are seamlessly combined. Hence,
EnviroSuite differs from other object-based systems in that its objects may be
representations of elements in the external environment. At the implementation
level, such objects are maintained by the corresponding group leaders. Upon de-
tection of external elements of interest, nodes detecting the element self-organize
into a group. The group leader in EnviroSuite dynamically creates an object
instance to represent the tracked target. The group management protocol main-
tains a unique and identical mapping between object instances (or group lead-
ers) and the corresponding environmental elements they track, such that object
instances float across the network geographically following the elements they
represent. This co-location is ideal for the execution of location sensitive ob-
ject code that carries out sensing and actuation tasks. Objects encapsulate the
aggregate state of the elements they represent (collected and stored by group
leaders), making such state available to their methods. They are therefore the
units that encapsulate program data, computation, communication, sensing and
actuation. Object instances are destroyed when their corresponding environmen-



Design and Comparison of Lightweight Group Management 159

tal elements leave the network. This occurs naturally when the membership of
the corresponding sensor group is reduced to zero.

Objects can be point objects (created for mobile targets that dynamically
change their geographical locations), region objects (mapped to static or slowly
moving regions), or function objects (not mapped to an environmental element).
EnviroSuite is able to support both point objects and region objects in the
same framework due to their similarities. Namely, (i) the corresponding external
elements are detected by a group of geographically continuous nodes, and (ii)
the aggregate state of the elements are collected by group leaders. However, the
focus of this paper is on target tracking applications. Hence, we discuss mainly
maintenance of point objects.

The biggest problem faced in EnviroSuite is the challenge of maintaining a
unique and identical mapping between each object and the corresponding envi-
ronmental element despite of distribution and possible mobility in the environ-
ment. In the rest of this paper, a target refers to a geographically continuous
activity in the physical environment that persists over some interval of time.
Object uniqueness dictates that each target be represented and that it be rep-
resented by exactly one logical object instance. Object identity dictates that the
mapping between targets and objects be immutable. In other words, a target is
always mapped to the same object instance identified by its object ID.

The problem of object uniqueness and identity is complicated by several
factors. One is the need for seamless object migration across nodes as the target
moves. Another is that sensor nodes that become aware of an external target
should be able to tell whether it is a target previously seen by other neighboring
sensors or not. Otherwise, an incorrect target list will be collectively maintained
or an incorrect mapping will result between targets and objects. In the following
we describe a solution to these problems.

2.2 MGMP and Its Limitations

The core component of EnviroSuite previously proposed by us is a set of multi-
target group management protocols, named MGMP, which resolves the object
uniqueness and identity problem. When predefined target signatures are detected
by a set of nearby nodes, MGMP reacts by creating a group attached with
a unique object ID. The set of nodes become group members, whose task is
to periodically sense, calculate and report predefined object attributes (such as
temperature, location, etc.) to the group leader. These reports are called member

reports. A single leader is elected among these members to uniquely represent
the group as one object to the external world. To avoid electing a node that is
imminently going out of sensing range which results in yet another election, it is
preferred to elect nodes near the target. Though current leader election doesn’t
enforce such preference, it can be easily adapted to do so if distances to the
target can be inferred from detection results.

The leader is responsible for the maintenance of object attributes. It records
member reports keeping only the most recent one from each member. It period-
ically creates a digest of the reports, and either keeps it as the internal state or



160 L. Luo et al.

Resigning-

Leader

Leader-

Candidate

Leader

Member

Follower

Null

                        Win in

                 Leader Election

leave()

Resigning timeout

    Object

             timeout

                        join()

                                        Lose in

                                      Leader Election

             Receive

           RESIGN

      message or

    notice leader

                failure

Lose in Leader

Competition

Join()

Leave()

                    Receive

                   heartbeats

Fig. 1. Node state transitions in MGMP

 

Sensing Range 

Object Resolution 

Event 
Leader 

Members 

Nulls 

Followers 

Fig. 2. States of nodes around a target

sends it to the external world (e.g., base stations) based on user specification.
These reports are called leader reports. The leader is also responsible for object
uniqueness and identity maintenance. It periodically sends leader heartbeats to
nodes within half an object resolution (in meters, defined by users) to advertise
the object ID as well as its internal states. By design, half the object resolu-
tion must be larger than twice the sensing range such that every member can
receive leader heartbeats. Nodes within half the object resolution, which cannot
sense, but are aware of the target through heartbeats, are called group followers

as distinguished from members. Follower nodes are prevented from spawning
new groups. Follower nodes are centered around the leader since leader locations
provide a good approximation of target positions. Though centering around the
target would be a better solution, given the fact that both communication range
and sensing range are irregular, the extra complexity required to do so is not
worth it.

Nodes dynamically join or leave the group whenever they detect or lose the
target. If a leader loses the target, it sends out a RESIGN message to request
a leadership handoff. Upon the reception of such messages, the most current
members reelect a new leader to take over leadership. Figure 1 illustrates the
complete node state transitions in MGMP and Figure 2 depicts a typical node
state distribution around a target. MGMP employs two important strategies to
enhance robustness in the face of failures:

1. Dynamic Leader Election: Leaders are always dynamically elected among
all current members. There are no pre-designated leader candidates. When
leader election starts, each member sets a timer at random from 0 up to
maximum back-off time and, when the timer expires, claims its leadership
by messages, the reception of which terminates other members’ timers as well
as their unsent messages. This strategy ensures robustness to node failures.

2. Periodic Leader Heartbeats: Leaders periodically send out heartbeats so
that leader failure can be detected by neighboring nodes.

The main goal of our deployed system is to alert a military command and
control unit of the occurrence of targets of interest in hostile regions. Targets of
interest may include civilian persons (unarmed), armed persons or vehicles. The
system is required to obtain and report current positions of such targets to a



Design and Comparison of Lightweight Group Management 161

remote base station to create tracks in real time. Several application requirements
must be satisfied to make this system useful in practice. First, the application
must have the ability to track typical military vehicles with velocities varying
from 5 mph to 35 mph. Object uniqueness and identity must be ensured. Second,
in our application, real-time updates on target trajectory must be sent to a
base-station to be used by other devices such as cameras, which requires high
accuracy and low reporting latency. Given the severely constrained bandwidth of
current mote platforms, the communication cost should be minimized to reduce
communication latency and maximize information throughput.

Does MGMP satisfy these requirements? We first try to answer the question
through experimental results on TOSSIM [22]; a simulator for TinyOS [23] that
emulates the execution of application code on the motes. Our experiments consist
of 120 nodes deployed in a 30×4 grid 10 meters apart. Sensing range is set to be
1 grid length and communication range is 3 grid lengths. These settings reflect
our real system where sensor devices are deployed in a grid 10 meters apart,
sensing range is around 10 meters, and communication range is approximately
30 meters. We simulate a target moving across the field in a straight line to test
tracking performance. The target is tracked with a sensor polling period of 0.02 s.
Consistent with the real system requirements, members report to leaders their
own locations twice a second. Leaders triangulate received locations to estimate
target position and report estimations to the base station (located in a corner
node) twice a second. The same testbed is used in later sections to evaluate new
schemes.

Figure 3 shows the number of objects formed for the single target during
its presence in the field. The uniqueness of target representation requires that
only one object be formed. As is seen in figure, this is not always the case.
The number of objects formed is one at lower target velocities, but it increases
as target velocity increases. This violation is due to the difficulty in reaching
agreement on target identity quickly enough which leads some sensors to believe
that they are seeing different targets. The effects of maximum back-off time are
more subtle. As is seen from Figure 3, if maximum back-off time is too small
such as 0.2 s, the number of objects generated can be large since multiple nodes
may become leaders and create new groups at the same time to represent the
same target. If it is too large, fast targets may move out of the sensing range of
a node before its back-off timer expires, so that the current object is lost and
spurious ones are created. In theory, it is possible to derive the appropriate back-
off time analytically for a particular target velocity. The main idea is that leader
migration (via election and hand-off) should be faster than target speed for the
target to never escape its tracking group. Nevertheless, such a derivation would
have to be experimentally validated since it is difficult to account for various
imperfections such as the irregularity of the sensing and communication ranges
and the non-uniform distributions of nodes in practice.

Observe that no back-off timer value in Figure 3 can maintain object unique-
ness at target speeds more than 1 grid length per second (grid/s) or 22 mph
(since grid length is 10 meters). These results are far from the desired perfor-



162 L. Luo et al.

0

1

2

3

4

5

6

7

0.5 1.5 2 2.5
Target Velocity (grids/s)

N
um

be
r 

of
 O

bj
ec

ts

Maximum Backoff Time = 0.2 s
Maximum Backoff Time = 0.6 s
Maximum Backoff Time = 1.0 s
Maximum Backoff Time = 1.4 s

Fig. 3. Number of objects for varied max-
imum back-off time and target velocities

0

2000

4000

6000

0.125 0.25 0.5 1
Target Velocity (grid/s)

N
um

be
r 

of
 M

es
sa

ge
s

heartbeat period=0.2s (control msg)
heartbeat period=0.2s (data msg)
heartbeat period=0.4s (control msg)
heartbeat period=0.4s (data msg)
heartbeat period=0.8s (control msg)
heartbeat period=0.8s (datal msg)

Fig. 4. Number of messages for varied
heartbeat periods and target velocities

mance (35 mph). The overhead of dynamic leader election is the main reason why
better results cannot be achieved, since long leader-election delays slow down the
migration of groups, thus making fast-moving targets untrackable.

Figure 4 depicts the number of control messages (leader heartbeats and other
group maintenance messages) and data messages (member reports and leader
reports) sent during the presence of a target. The number of data messages de-
creases with increasing target velocity, because it is proportional to the duration
of target presence due to periodicity of member reports and leader reports. The
number of control messages exhibits similar trends since heartbeats that dom-
inate control messages are also periodic. Obviously, control messages also de-
crease with longer heartbeat periods. However, minimizing communication cost
by indefinitely increasing heartbeat periods is not feasible since longer heartbeat
periods increase the vulnerability to message loss.

The above observations give insights into improvements to EnviroSuite that
enhance tracking performance and reduce communication cost while maintaining
robustness to failures. These improvements are described next.

3 Group Management Strategies in Lightweight

EnviroSuite

This section explores in more detail the performance problems of current strate-
gies, proposes a series of new strategies, and applies them one by one to Enviro-
Suite to verify their individual effects on the current system. These new group
management strategies, as a whole, constitute a very practical and efficient ver-
sion of EnviroSuite, called Lightweight EnviroSuite.

3.1 Semi-dynamic Leader Election

Dynamic leader election, as the main factor that limits tracking performance
of MGMP, affects the maintenance of object uniqueness and identity in two
ways. First, it causes long leader handoff delays. In dynamic leader election,
all members are competitors for leadership. Hence, consensus has to be achieved
among all on a single leader. Obviously, the more members participate, the slower



Design and Comparison of Lightweight Group Management 163

Resigning-
Leader

Leader-
Candidate

Leader

Member

Follower

Null

                        Win in
                 Leader Election

leave()

Resigning timeout

    Object
             timeout

                        join()

                                        Lose in
                                      Leader Election

             Receive
           RESIGN
      message or
    notice leader
                failure

Lose in Leader
Competition

Join()

Leave()

                    Receive
                   heartbeats

                        join()

transition for all nodes

transition for non-candidates

transition for candidates

Fig. 5. Node state transitions for semi-
dynamic leader election

0

1
2

3
4

5
6

7

8

0.5 1.5 2.5 3.5 4.5
Target Velocity (grid/s)

N
um

be
r 

of
 O

bj
ec

ts

Density = 0.5 grid Density = 1.0 grid
Density = 1.5 grid Density = 2.0 grid

Fig. 6. Number of objects for varied tar-
get velocities and candidate densities

the consensus. Second, it increases the possibility of message collisions since all
members are exchanging messages to compete for leadership.

A better solution is to allow only a portion of all members to compete for
leadership, which we call semi-dynamic leader election. Semi-dynamic leader
election includes an initialization phase which pre-elects a portion of the nodes
to be candidates (the potential competitors for leadership); others become non-

candidates. The pre-election of candidates is similar to dynamic leader election
in EnviroSuite. Each node sets a random timer and, when the timer expires,
claims itself as a candidate. Nodes within distance x that receive this claim mes-
sage become non-candidates. Ideally, the algorithm elects at least one candidate
within any circular area of radius x. We call this x the candidate density. The
node state transition changes accordingly as shown in Figure 5. Transitions to
Leader-Candidate occur only when the corresponding nodes are candidates.
Null nodes become Members instead of Leader-Candidates when they are non-
candidates. Since only Leader-Candidate nodes attend leader election, these
changes make candidates the only ones competing for leaderships.

Figure 6 illustrates the number of objects created for targets with different
velocities when different candidate densities are set. Semi-dynamic leader elec-
tion allows for a smaller maximum back-off time (set to 0.2 s in the following
experiment) in leader election due to a reduced number of competitors. The
Density = 0.5 grid curve performs the same as dynamic leader election since
all nodes are candidates (maximum back-off time is set to 0.6 s for better per-
formance in this case). As seen from Figure 6, a proper candidate density, say
1.0 grid, makes the semi-dynamic scheme outperform the dynamic one.

Observe that, a very low candidate density results in worse performance than
dynamic leader election since candidates are so scarce that, in most groups, no
leader is elected to maintain objects. We call the phenomenon a leader desert.
The dark grey circle in Fig. 7 shows a leader desert where no candidate exists. If
the target moves further to the right and gets detected by the nearest candidate
outside the follower set, a spurious object is created by the candidate since it
is not aware of the existing object. Even when candidate density is 1.0 grid, a
leader desert still appears occasionally, which hurts object uniqueness slightly.



164 L. Luo et al.

 

Sensing Range 

Object Resolution 

Event 

Members 

Followers 

Candidate 

Non-candidate 

Fig. 7. Leader desert

0

1000

2000

3000

4000

5000

6000

7000

0.125 0.25 0.5 1
Target Velocity (grid/s)

N
um

be
r 

of
 M

es
sa

ge
s

Dynamic Leader Election (Control Msg)
Dynamic Leader Election (Data Msg)
Semi-dynamic Leader Election (Control Msg)
Semi-dynamic Leader Election (Data Msg)

Fig. 8. Comparison of number of mes-
sages for different target velocities

This explains why semi-dynamic leader election performs a little worse when
target velocity is 0.5 grid/s. The leader desert problem is solved in later sections.
As a side-effect, semi-dynamic leader election also results in lower communication
cost since fewer control messages are sent to compete for leadership, which is
shown in Fig. 8.

On the disadvantage side, robustness to node failures is expected to degrade
when using semi-dynamic leader election due to a higher vulnerability to failures
of leader candidates. However, this can be partially compensated by executing
candidate pre-election more frequently. We discuss the overall failure robustness
of the new scheme in later sections.

3.2 Piggy-Backed Heartbeat

Periodic leader heartbeat entails big overheads that are not affordable in appli-
cations with severe bandwidth constraints. Yet, it plays the most critical role in
MGMP. First, it recruits followers to prevent these boundary nodes from cre-
ating spurious groups. Second, its periodicity makes leader failures perceivable,
and thus recoverable. Third, the periodicity also improves robustness to mes-
sage loss. Therefore, the challenge is how to reduce overhead while retaining the
advantages of frequent heartbeats.

Fortunately, another component in MGMP exhibits the behavior of sending
periodic messages; namely, object attribute collection. Members periodically send
sensed attribute data to leaders and leaders periodically aggregate received data,
process it, and send results to the external world if required. If heartbeats can
be piggy-backed into these member reports and leader reports, periodic heart-
beat becomes almost free. We call this new scheme piggy-backed heartbeat, where
heartbeats are transformed into leader heartbeats (heartbeats piggy-backed into
leader reports) and member heartbeats (heartbeats piggy-backed into member
reports). Leader desert is no longer an obstacle to object state dissemination,
since members take over this task during leader absences. Since object unique-
ness is ensured through leader uniqueness, members are only allowed to repeat
heartbeats originated from leaders and leaders are still the only authority that
may update object information.



Design and Comparison of Lightweight Group Management 165

0

1

2

3

4

5

6

0.5 1 2 4 8 16 32 64
Target Velocity (grid/s)

N
um

be
r 

of
 O

bj
ec

ts

Fig. 9. Object maintenance in semi-
dynamic leader election

0

2000

4000

6000

0.125 0.25 0.5 1 2
Target Velocity (grid/s)

N
um

be
r 

of
 M

es
sa

ge
s

Semi-dynamic Leader Election (Control Msg)
Semi-dynamic Leader Election (Data Msg)
Piggy-backed Heartbeats (Control Msg)
Piggy-backed Heartbeats (Data Msg)

Fig. 10. Comparison of communication
overhead

In the piggy-backed heartbeat scheme, member heartbeats and leader heart-
beats are treated differently: only the reception of leader heartbeats transits
pre-elected candidates from state Null to Follower, while member heartbeats
transits them into an intermediate state, called Null-Follower. If a node de-
tects a target while in this state, it transits to Leader-Candidate to compete for
leadership. This is unlike a regular Follower, which becomes a Member upon
target detection. Without these changes, member heartbeats may transit all po-
tential leaders to Follower state and then to Member upon the detection of the
target, making the group follow a target without any leaders.

The aforementioned efforts make the piggy-backed heartbeat scheme a big
improvement in object maintenance. Compared with the maximum trackable ve-
locity seen in MGMP (1 grid/s), this improved version maintains object unique-
ness and identity for targets with velocities up to 8 grid/s as shown in Figure 9.
Figure 10 suggests another big improvement in reducing control messages.

3.3 Implicit Leader Election

It is possible to further reduce the protocol costs by employing an implicit leader

election scheme. An assumption is made in this scheme that monitoring tasks
are periodic and that after each period monitoring results are communicated
by each tracking group to the external world. This assumption is reasonable
since periodicity is a typical property of sensor network applications. The scheme
allows candidates to start the execution of leader tasks such as data aggregation,
whenever they detect the target. Note that, their task periods are unsynchronized
since nodes usually do not begin to sense the target at exactly the same time. As
a result, multiple but limited potential leaders are executing tasks in a group.
At any point in time, if the node that first reaches the end of a task period sends
out a result report, other neighboring nodes including other potential leaders
simply accept the results and become inactive in their current task periods,
which prevents them from reporting the same redundant results when finishing
their periods. Hence, the external world sees the illusion of a single group leader.

Figure 11 illustrates an example. Candidate A senses the target from time
0 to 2.5 and B from 0.25 to 3.5. The length of task period is 1. Both A and
B are initially active. At time 1, A reaches the end of its period and sends a
result report. Receiving this report, B admits A as the current leader, accepts



166 L. Luo et al.

 

A 

B 

t 

0 0.25 2.5 3.5 

send a 
message 

active inactive 

Fig. 11. An example of implicit leader
election

Leader

Member

Follower

Null

join() when
inactive

Receive
heartbeats

leave()

 join()
when active

Receive heartbeats
from leader

leave()

Object
timeout

              join()

join()

activate()

join()

transition for all nodes

transition for non-candidates

transition for candidates

Fig. 12. Node state transitions for im-
plicit leader election

0

5

10

15

0.5 1 2 4 8 16 32 64
Target Velocity (grid/s)

N
um

be
r 

of
 O

bj
ec

ts

Fig. 13. Object maintenance in implicit
leader election

0

200

400

600

800

1000

1200

1400

0.5 1 2 4 8 16
Target Velocity (grid/s)

N
um

be
r 

of
 M

es
sa

ge
s

Piggy-backed Heartbeats (Control Msg)
Piggy-backed Heartbeats (Data Msg)
Implicit Leader Election (Data Msg)

Fig. 14. Comparison of communication
overhead

A’s results and makes itself inactive, which makes B silent at time 1.25 when
it finishes its task period. Similarly B is still silent in the next period since A
sends a message first. Finally, A quits the leader competition at time 2.5 when
it loses the target. B continues A’s work and reports the results at the end of
its third period (time 3.25). This way, tasks are executed continuously between
different leaders, the results of which are exposed to the external world at a rate
(3/3.5 ≈ 0.9 report/s) that is very near to the defined rate (1 report/s).

Figure 12 depicts the new node state transition graph. activate() is called
by each node when beginning a new task period. Different from all previous
versions, intermediate states (LeaderCandidate, ResigningLeader) no longer
exist since implicit leader election eliminates the need for nodes to stay at the
LeaderCandidate state sending CANDIDATE messages to compete for leadership
and to stay at ResigningLeader sending RESIGN messages to start new leader
election. The elimination of control messages further improves communication
performance as shown in Figure 14. Meanwhile, a comparable performance in ob-
ject maintenance (maximum trackable velocity 8 grid/s) is achieved as Figure 13
shows.

Note that implicit leader election can not be applied to applications where
duplicate execution of tasks is not allowed or where tasks are not periodic. How-
ever, since the EnviroSuite compiler [20] has the ability to dynamically select



Design and Comparison of Lightweight Group Management 167

modules during compilation based on programmer’s application definition, a
version without implicit leader election can be composed in such cases.

Overall, due to the optimizations mentioned above, Lightweight EnviroSuite
achieves roughly an order of magnitude improvement in maximum trackable ve-
locity (8 grid/s compared with 1 grid/s in EnviroSuite). The number of messages
per second for targets at 0.5, 1 and 2 grid/s is reduced 25%, 12% and 37%,
respectively.

3.4 Failure Tolerance

This section discusses the overall robustness of Lightweight EnviroSuite to typ-
ical failures in the sensor network: message loss and node failures. Message loss
harms object maintenance by making the existence of the current leader unno-
ticed by other candidates, which may result in multiple nodes sending duplicate
leader reports in the same period to the external world. However, the external
world can always recognize duplicate reports through version numbers attached
in the reports. Message loss can also prevent nodes on a group’s outer bound-
aries from getting heartbeats. Consequently, these nodes may not become aware
of the object and create spurious objects. However, Lightweight EnviroSuite al-
lows members to disseminate heartbeats, which maintains a comparatively high
heartbeat frequency and makes the possibility that a node fails to get any heart-
beats very low. At the same time, objects attach their ages, which increase with
the increase of finished task periods, to heartbeats. Object information from
younger objects is discarded in favor of older ones. Therefore, spurious objects
are eventually terminated due to their young ages.

0

5

10

15

0.5 1 2 4 8 16 32 64
Target Velocity (grid/s)

N
um

be
r 

of
 O

bj
ec

ts

  0% message loss
10% message loss
30% message loss
50% message loss

Fig. 15. Performance of object mainte-
nance for varied message loss

0

5

10

15

0.5 1 2 4 8 16 32 64
Target Velocity (grid/s)

N
um

be
r 

of
 O

bj
ec

ts

  0% node failures
10% node failures
30% node failures
50% node failures

Fig. 16. Performance of object mainte-
nance for varied node failures

Lightweight EnviroSuite is also robust to node failures. As stated earlier, it
can go through leader deserts without losing object information or terminating
task execution. In a similar way, it is able to overcome node deserts smaller than
half an object resolution. Although we may temporarily lose track of the target
inside a node desert, the target and its associated object can be picked up again
in most cases after passing the node desert.

Experimental results confirm our conclusions as shown in Figure 15 and Fig-
ure 16. Lightweight EnviroSuite shows consistently good performance in object



168 L. Luo et al.

maintenance for targets with velocities up to 4 grid/s. However, after velocities
exceed 8 grid/s, surprisingly bigger message loss results in fewer objects. This is
because the number of objects is counted based on leader reports at the base
station and a higher message loss results in fewer received leader reports, and
thus fewer observed objects. For node failures up to 50%, Lightweight Envi-
roSuite exhibits comparable performance at velocities between 1 and 4 grid/s.
However, when target velocities are as low as 0.5 grid/s, higher node failures do
hurt performance. That is because higher node failures result in larger node or
leader deserts. Slower targets may fail to cross the deserts before followers forget
about the object.

4 System Evaluation

We integrated Lightweight EnviroSuite into an energy-efficient surveillance sys-
tem, called Vigilnet [24], subsequently transitioned to the DIA. In December
2004, in the process of technology transition, we deployed 200 XSM motes run-
ning the Vigilnet system on sandy and grassy roads with a 3-way intersection
and collected performance data in field tests. Figure 17 depicts the deployment
of the system. Nodes are approximately deployed in a grid 10 meters apart,
covering one 300-meter road and one 200-meter road. Each rectangular dot rep-
resents one XSM mote in the field. Several base-stations were deployed. Some
nodes are missing in the GUI because they are turned off to emulate failures.

The XSM mote extends the MICA2 platform [25] by improved peripheral
circuitry, new types of sensors and better enclosures. It communicates approxi-
mately 30 meters when deployed on grassy ground. The primary goal of the field
test is to evaluate system ability to detect, classify and track one or multiple
moving targets, which can be either SUVs, persons or persons carrying a ferrous
object (suggestive of a weapon).

Fig. 17. System deployment

4.1 Overview of Vigilnet

Vigilnet is implemented on top of TinyOS. Figure 18 shows the layered archi-
tecture of Vigilnet. Components colored in dark grey are those implemented by
Lightweight EnviroSuite.



Design and Comparison of Lightweight Group Management 169

 
 Tracking Classification Velocity Regression False Alarm Filtering Engine 

Time Sync Group Mgmt Sentry Service Power Mgmt Tripwire Mgmt Localization Report Engine 

Application Layer 

Middleware Layer 

Network Layer 

Data Link Layer 

Robust Diffusion 
Tree 

Asymmetric 
Detection 

Radio-Base 
Wakeup 

MAC Sensor Drivers 

ExScal Motes 

Interference Avoidence 

Frequency 
Filter 

Continuous 
Calibrator 

 

Fig. 18. System architecture of Vigilnet

Time synchronization (Time Sync), localization (Localization), and commu-
nication (MAC, Robust Diffusion Tree, Asymmetric Detection, and Report En-
gine) services constitute the lower-level components that are the basis for imple-
menting higher-level services. Power management (Radio-Base Wakeup, Sentry
Service, Power Mgmt, and Tripwire Mgmt), target classification (Sensor Drivers,
Frequency-filter, Continuous Calibrator, Classification, and False Alarm Filter-
ing Engine) and tracking (Group Mgmt, Tracking, and Velocity Regression) com-
prise main higher-level services. Target classification detects and classifies three
types of targets with the help of collaborative group management provided by
Lightweight EnviroSuite. Tracking components are responsible for estimating
target positions and calculating target velocities.

Overall the system consists of 21,457 lines of source code, among which 2,884
are contributed by Lightweight EnviroSuite. The executable binary of Vigilnet
occupies 85,926 bytes of code memory and 3,154 bytes of data memory, which can
easily fit into XSMs equipped with 4KB data memory and 128KB code memory.

4.2 Tracking Performance Evaluation

Consistent with simulation, tracking modules in Vigilnet report to the base sta-
tion estimations of target positions twice every second to provide sufficient data
for false alarm processing and classification. A spanning-tree based routing [24]
is used to disseminate such reports. The communication latency of these reports
plays a critical role in achieving good tracking performance. Therefore, we sug-
gest that when the system scales up to cover bigger fields, multiple base stations
should be deployed. The false alarm filtering engine component executed in the
base mote filters these reports and slows down the report rate to upper layers to
once every 3 seconds due to bandwidth limitations. Target velocity calculation
takes such reports as inputs.

Table 1 lists the comparison of tracking performance between Vigilnet
equipped with the original EnviroSuite (measured at a previous field test con-
ducted in August 2003) and Vigilnet equipped with Lightweight EnviroSuite.
As is seen, without Lightweight EnviroSuite the maximum trackable velocity is
about 5 to 10 mph, while the new Vigilnet system tracks targets up to 35 mph.



170 L. Luo et al.

Table 1. Tracking performance comparison

Target vel. Vigilnet with EnviroSuite Vigilnet with Lightweight EnviroSuite

5 mph successful successful
10mph partially successful successful
20mph failed successful
30mph untested successful
35mph untested partially successful

Table 2. Tracking performance of Vigilnet with Lightweight EnviroSuite

Target type Avg. tracking errorStd. dev. of tracking errorsActual vel.Calculated vel.

walking person 6.19meter 3.28meter 3±1mph 2.9mph

running person 6.67meter 3.89meter 7±1mph 6.9mph

vehicle 7.06meter 3.98meter 10±1mph 10.5mph

vehicle 5.91meter 3.02meter 20±1mph 23.5mph

two 1 5.58 meter 4.76meter 10±1mph 9.2mph
vehicles 2 6.33meter 3.52meter 10±1mph 9.9mph

Note that, the success of tracking is an end-user metric measured by the ac-
curacy of position and velocity calculations, which depend on several factors
besides EnviroSuite group management protocols. A track is said to be success-
ful only when the final calculated velocity within a 20% error. Due to the limited
length of the field and the fixed report rate (once every 3 seconds), velocity cal-
culation does not perform well when the velocity reaches 35 mph. However, the
tracking performance of Lightweight EnviroSuite itself is actually better than
the reported results for the integrated system.

Table 2 shows in more details the tracking performance of the new Vigilnet
system. As seen, tracking errors are between 5.5 meters and 7.5 meters. These
results were collected with 20% of the nodes randomly turned off to emulate
failures. In all listed targets whose velocities vary from 3 mph to 20 mph, the
maximum error of velocity calculation is less than 10%, which reflects the good
tracking performance supplied by Lightweight EnviroSuite.

To give a more concrete view of the tracking performance of Lightweight En-
viroSuite, Figure 19 shows the tracking trajectories for the following scenarios:
(i) one vehicle drives across the field from left to right; (ii) two vehicles keep a dis-
tance of about 50 meters before they separate (the first one goes from left to right
and turns right at the intersection and the second one goes from left to right). In
the one-vehicle-tracking case, the rugged trajectory in the center of the horizon-
tal road shows explicitly that existing node failures do affect tracking accuracy.
The two-vehicle-tracking case proves the ability of Lightweight EnviroSuite to
track multiple targets with the same sensory signatures as long as they keep a
distance (50 meters) that is more than half an object resolution (set to 30 meters
in the system). This was deemed sufficient by the client for operational use.



Design and Comparison of Lightweight Group Management 171

0

100

200

0 100 200 300
X (meter)

Y
 (

m
et

er
)

0

100

200

0 100 200 300
X (meter)

Y
 (

m
et

er
)

Fig. 19. Tracking trajectories for one vehicle and two vehicles

Field test results show that Lightweight EnviroSuite successfully improves the
maximum trackable speed from near 10 mph to near 35 mph. Given our 10-meter-
apart grid deployment and 20% node failures, tracking errors are still as small
as about 6 meters and the maximum error in velocity calculation doesn’t exceed
10%. These results from physically deployed systems validate that Lightweight
EnviroSuite is practical, effective, and efficient on current hardware with limited
communication and sensing capabilities. In this paper, we did not supply an ex-
perimental comparison between EnviroSuite and other high-level sensor network
programming systems. This is, in part, due to the difficulty in porting application
code across the different systems. If applications are re-implemented (as opposed
to ported), it is hard to separate the effects of application-level implementation
decisions from the inherent strengths and weaknesses of the underlying program-
ming frameworks when interpretting performance comparison results.

5 Summary

Research on programming paradigms and frameworks in sensor networks has
been very active in recent years. This paper presents our effort in improving an
existing programming paradigm (EnviroSuite) into a more practical and efficient
version (Lightweight EnviroSuite) that can be directly utilized to build practical
large-scale systems with realistic requirements. The resulting version is shown to
be efficient via experimental testing on a physically deployed large-scale surveil-
lance system consisting of 200 XSM motes. This is one of the first attempts to
use high-level sensor network programming languages in building and deploying
real sensor network applications.

References

1. Boulis, A., Srivastava, M.B.: A framework for efficient and programmable sensor
networks. In: OPENARCH ’02. (2002)

2. Levis, P., Culler, D.: Mate: a virtual machine for tiny networked sensors. In:
ASPLOS. (2002)

3. Li, S., Son, S.H., , Stankovic, J.: Event detection services using data service mid-
dleware in distributed sensor networks. In: IPSN ’03. (2003)



172 L. Luo et al.

4. Madden, S.R., Franklin, M.J., Hellerstein, J.M., , Hong, W.: The design of an
acquisitional query processor for sensor networks. In: SIGMOD. (2003)

5. Yao, Y., Gehrke, J.E.: The cougar approach to in-network query processing in
sensor networks. In: Sigmod Record, Volume 31, Number 3. (2002)

6. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions.
In: NSDI ’04. (2004)

7. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: DMSN ’04: Proceeedings of the 1st international workshop on Data
management for sensor networks, New York, NY, USA, ACM Press (2004) 78–87

8. Liu, J., Liu, J., Reich, J., Cheung, P., , Zhao, F.: Distributed group management
for track initiaition and maintenance in target localization applications (2004)

9. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: A neighborhood abstrac-
tion for sensor networks. In: MobiSYS ’04. (2004)

10. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: State-centric programming for sensor-
actuator network systems. In: IEEE Pervasive Computing. (2003)

11. XSM motes: (http://www.cast.cse.ohio-state.edu/exscal/index.php?page=main)
12. Stockman, H.: The active badge location system. In: Proceedings of the IRE.

(1948) 1196–1204
13. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system

(1992)
14. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: Distributed state representation for

tracking problems in sensor networks. In: IPSN ’04. (2004)
15. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a

moving object with a binary sensor network. In: SenSys ’03, New York, NY, USA,
ACM Press (2003) 150–161

16. Shin, J., Guibas, L., Zhao, F.: A distributed algorithm for managing multi-target
identities in wireless ad-hoc sensor networks. In: IPSN ’03. (2003)

17. Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in
sensor networks. In: INFOCOM ’04. (2004)

18. Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T., Son, S., Stankovic, J.: An
entity maintenance and connection service for sensor networks. In: MobiSys ’03.
(2003)

19. Abdelzaher, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T.,
Luo, L., Son, S., Stoleru, R., Stankovic, J., Wood, A.: Envirotrack: Towards an
environmental computing paradigm for distributed sensor networks. In: ICDCS
’04. (2004)

20. Luo, L., Abdelzaher, T., He, T., Stankovic, J.A.: Envirosuite: An environmentally
immersive programming framework for sensor networks. (In: Submitted to ACM
Transactions on Embedded Computing Systems)

21. Karp, B.: Geographic Routing for Wireless Networks. PhD thesis, Harvard Uni-
versity (2000)

22. Levis, P., Lee, N., Welsh, M., , Culler, D.: Tossim: Accurate and scalable simulation
of entire tinyos applications. In: SenSys ’03. (2003)

23. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for networked sensors. In: ASPLOS-IX, New York, NY, USA,
ACM Press (2000) 93–104

24. He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L., Stoleru, R.,
Yan, T., Gu, L., Hui, J., Krogh, B.: Energy-efficient surveillance system using
wireless sensor networks. In: MobiSYS ’04, New York, NY, USA, ACM Press
(2004) 270–283

25. UC Berkeley. MICA motes: (http://www.tinyos.net/scoop/special/hardware/)


