
1

EnviroMic: Towards Cooperative Storage and
Retrieval in Audio Sensor Networks

Liqian Luo∗, Qing Cao∗, Chengdu Huang∗, Tarek Abdelzaher∗, John A. Stankovic†, Michael Ward‡
∗Dept. of Computer Science, Univ.of Illinois at Urbana-Champaign, {lluo2, qcao2, chuang30, zaher}@cs.uiuc.edu

†Dept. of Computer Science, Univ. of Virginia, stankovic@cs.virginia.edu
‡Dept.of Natural Resources & Environmental Sciences, Univ. of Illinois at Urbana-Champaign, mpward@uiuc.edu

Abstract

This paper presents the design, implementation, and evaluation of EnviroMic, a novel distributed acoustic monitoring, storage,

and trace retrieval system. Audio represents one of the least exploited modalities in sensor networks to date. The relatively high

frequency and large size of audio traces motivate distributed algorithms for coordinating recording tasks, reducing redundancy

of data stored by nearby sensors, filtering out silence, and balancing storage utilization in the network. Applications of acoustic

monitoring with EnviroMic range from the study of mating rituals and social behavior of animals in the wild to audio surveillance

of military targets. EnviroMic is designed for disconnected operation, where the luxury of having a basestation cannot be assumed.

We implement the system on a TinyOS-based platform and systematically evaluate its performance through both indoor testbed

experiments and a preliminary outdoor deployment. Results demonstrate up to a 4-fold improvement in effective storage capacity

of the network compared to uncoordinated recording.

Index Terms

Sensor networks, applications, acoustics, distributed storage, group management

I. INTRODUCTION

Most prior sensor network research on environmental monitoring has focused on low-bandwidth sensors such as light [1],

temperature [20], motion and magnetic fields [12]. Notable exceptions include efforts such as structural monitoring [32],

where vibrations in a building were recorded at a frequency of a hundred hertz, and volcano monitoring sensor network [30],

where sensors deployed near an active volcano sampled seismic and acoustic data at 100Hz. In such systems, the sensors

(including special-purpose hardware) were used to sample and report non-scalar data to a basestation, leading to challenges

in communicating and correlating bursty measurements. All of the above services, however, assume the availability of a

basestation for data uploading during the operation. The in-network storage capability of sensor networks remains largely

untapped. Another category of environmental monitoring applications focuses on disconnected deployment where data collection

occurs only sporadically when researchers drive by the field as in ZebraNet [17] or when the monitored targets approach the

basestation as in SATIRE [8]. These applications, however, operate on low-bandwidth sensors that do not produce large data

volumes. Comparatively, this paper explores a new direction where the challenges of high-frequency sampling and disconnected

deployment coexist in the system. EnviroMic presents the first implementation of an audio sensor network for recording, storing,

and retrieving environmental acoustic traces geared for a prolonged interval of disconnected operation.

Acoustic sensors have very little energy requirements, which means that they can operate on batteries for prolonged periods

of time. They can be used to detect human speech, geophysical sounds, and distinguish the calls of many birds and animals.

2

The authors are an interdisciplinary team interested in studying the spatial density, frequency, and patterns of vocalizations of

different species to learn about their social behavior, mating, and predatory habits. Compared to video, acoustic sensing has

the advantage of omni-directionality and independence from line-of-sight constraints. Therefore, it presents fewer limitations

on sensor placement, and motivates development of acoustic recording services as the first category of multimedia sensing

applications, to which EnviroMic belongs.

Data is the most important outcome of an environmental study. EnviroMic is designed to maximize the amount of (acoustic)

data collected and stored by the sensor network during a prolonged interval of disconnected operation. Disconnected operation

refers to the fact that no basestation or other real-time uplink is assumed that can drain data continuously from the sensor

network. Instead, data retrieval is done either by occasionally sending data mules into the field or by physically collecting

the sensor nodes after deployment. There are two reasons for considering this mode of operation. First, many environmental

monitoring applications are deployed in harsh unattended environments where access to power is problematic at best, making

long-term deployment of high-power data-collection basestations difficult. Second, basestations are centralized points of failure

that may be induced by environmental conditions, animals, thieves, or other (possibly) malicious entities. It is therefore expedient

to do away with basestations when real-time response requirements do not mandate their existence.

Despite advances in large lower-power flash memory, storage is not an “infinite” resource in disconnected acoustic sensor

networks. For example, an acoustic sensor that has a 1GB flash and is designed to sample the entire audible spectrum (roughly

20kHz) at the Nyquist frequency (twice the spectrum or 40kHz) will run out of storage in 7 hours. Data storage is therefore

a primary concern. Efficient storage management is needed to alleviate this bottleneck in disconnected audio-recording sensor

networks. Current motes are on a trajectory to become viable audio sensing platforms. For example, the original MicaZ mote [3]

had only 0.5MB of flash memory. Assuming a sampling rate of 4kHz, that could be supported by the mote, a node would

exhaust its local storage within two minutes. With advances in NAND flash, new mote prototypes are now available [23] that

interface Mica-class processing and radio hardware to up to 512MB of flash memory; a three orders of magnitude improvement.

This is enough for days of continuous recording (at 4kHz). If recording occurs only when sound is present, the recording

lifetime can be further significantly extended. This trajectory of increasing low-power flash on motes makes it interesting to

investigate recording services based on Mica-class hardware.

Networks of acoustic sensors are needed because of sensitivity limitations of individual sensors that limit their effective

acoustic range. For example, in a forest, it is difficult to record sounds that occur more than, say, a few hundred feet away. If

an area of several tens of acres is to be covered, there is no alternative to using multiple microphones. Moreover, for the same

reason network capacity is maximized when radio ranges are small [13], deployment of more nodes with smaller acoustic

ranges may be preferred to deployment of fewer, more expensive and more sensitive nodes. In the latter case, there is more

opportunity for “collisions” (where nearby sounds drown more distant ones), not to mention a lower fidelity in mapping sounds

correctly in space. The spatial fidelity problem is because sounds can originate anywhere in the sensor range (and hence, a

larger range creates more uncertainty). Angle-of-arrival techniques [25] cannot be used well in forests due to multi-reflections.

Networked deployment of large numbers of low-cost, low-range sensors adds new challenges and opportunities in acoustic

recording service design. The main challenges in the design and implementation of EnviroMic are enumerated below. First,

3

the omni-directional nature of acoustic sensing introduces data redundancy when multiple nodes collectively sense the same

acoustic source. Therefore, it is imperative to ensure that EnviroMic limits redundant recording such that storage is used more

efficiently. Second, since current sensor platforms are severely constrained in CPU bandwidth, they are unable to perform other

activities (such as radio communication) concurrently with high frequency sampling. Therefore, it is important to coordinate

the recording and other tasks such that they do not interfere. Finally, the high data volume generated by an acoustic source,

coupled with the potentially uneven spatial distributions of such sources, may cause some nodes to overflow while others still

have available storage space. Hence, EnviroMic must balance recorded data across nodes to eliminate storage hot-spots and to

make use of storage capacity that is not in direct vicinity of the frequent sound sources.

To address these challenges, we implemented a prototype of EnviroMic using MicaZ motes equipped with MTS300 sensor

boards [4]. We chose MicaZ motes because they are compatible with new large NAND-flash extensions (e.g., [23]) and are

a good example of a low-cost, low-power, and low-range platform that might host future acoustic services. Due to the lack

of availability of large numbers of MicaZ motes with NAND-flash, we used an older readily-available version with only a

0.5MB flash. Note that the research challenges we address on this prototype, however, are not unique to the hardware platform

chosen. Platforms with more storage resources [23][24] still require efficient storage management as argued above. Based on the

prototype implementation, we investigated system performance attributes such as data storage redundancy, load balancing and

quality of recording. Our evaluation results demonstrate the efficacy of this service in conserving storage resources, preserving

the continuity of recordings, and balancing network load.

The rest of the paper is organized as follows. Section II presents the system design. Section III presents the details for

EnviroMic implementation. Section IV analyzes evaluation results of EnviroMic based on both indoor and outdoor experiments.

Section V reviews related work. Section VI concludes the paper.

II. SYSTEM DESIGN

The target application of EnviroMic is long-term acoustic monitoring, which involves high-frequency sampling and high-

volume data storage. The primary concern of the system is to maximize the effective storage capacity of a sensor network,

which is maximizing the amount of data a scientist can collect about the environment in a single experiment. It is assumed that

the network generally remains disconnected from the outside world during the experiment. Hence, there is need for improving

storage capacity. With that design goal in mind, EnviroMic employs mechanisms to reduce storage redundancy and improve

balancing of data storage in the network, when energy permits. Furthermore, recording in EnviroMic is sound activated. In

other words, while sensors are continuously sensing, nothing is recorded unless it exceeds the long-term running average of

background noise by a sufficient margin. Because we only record isolated sound clips, a secondary goal is to facilitate indexing

of such clips. Specifically, we attempt to store continuous sounds in continuous files as much as possible. We assume that

back-end basestations will perform more sophisticated application-specific analysis on data. Such analysis, for example, might

include counting bird populations and inferring social communication patterns from isolated vocalizations. Such analysis can

also compensate for imperfections in online recording. For example, the basestation might recognize that two files, in fact,

refer to the same vocalization. Below, we first briefly highlight the main EnviroMic subsystems.

4

To reduce storage redundancy, EnviroMic employs a distributed algorithm that identifies local acoustic events and rotates the

task of recording such events among nodes near the perceived source (for load balancing purposes).1 The recording service,

which implements its own specialized file-system, attempts to create a single file for each continuous acoustic event. The file is

distributed and consists of different chunks residing on different sensors that recorded parts of the event. We call this subsystem

the cooperative recording subsystem. The cooperative recording subsystem offers two main advantages over uncoordinated

local sampling (in which each sensor independently records local acoustic data). First, redundancy is reduced allowing more

data to be collected. Second, recording that is perceived to belong to the same continuous acoustic event is coalesced into

the same file. However, it is not an objective of the subsystem to guarantee unique file-to-event mapping. It merely does its

best in event-file association to reduce redundancy and facilitate indexing of sound clips. This provides the basis for more

sophisticated algorithms (executed on powerful basestations after collecting all the data) to extract higher-level information.

To improve storage balancing in the network, EnviroMic further allows nodes to transfer data from heavy-loaded areas

to light-loaded areas when energy permits. Such data transfers are triggered whenever the difference in estimated remaining

lifetime (time to overflow) of neighboring nodes, exceeds a certain threshold. We call the subsystem implementing this service,

a distributed storage balancing subsystem.

Finally, a data retrieval subsystem provides a simple mechanism for extracting data from the network. These subsystems

are described in the following subsections respectively.

A. Cooperative Recording

Cooperative recording refers to the act of splitting the task of recording an acoustic event among multiple sensors. An

inherent assumption is that the average acoustic event of interest will be heard by more than one node. While one may argue

that it is possible to deploy microphones far enough apart that they do not hear the same events, it is impossible to choose the

right sensitivity due to the huge variance between signal strength of different acoustic events (e.g., bird singing vs. thunder).

Deploying high-sensitivity microphones sparsely leads to loss of spatial granularity and more opportunity for “collision”

(multiple acoustic events are collapsed into one), while deploying microphones densely leads to duplicate observations. To

err on the safe side, it is better to allow some redundancy and eliminate duplicate observations in software. Finally, note that

acoustic ranges of microphones are not polygons that can be tiled without overlap. Hence, even if redundant coverage was

not a goal, simply ensuring full coverage of an entire area entails that many points will lie in overlap regions within reach of

multiple sensors.

In our protocol, when multiple nodes sense the same acoustic event simultaneously, they form a group. Group members

coordinate to elect a leader, who assigns recording tasks to individual nodes that can hear the event. When the acoustic source

is a mobile object, group membership may change around the object as it moves. A leader handoff mechanism is employed to

preserve the continuity of recording. The rest of this section describe the group management and task assignment mechanisms.

1) Group Management: When an acoustic event occurs, if multiple nodes sense the event within the same locality, they

compete to elect a local leader who will ensure that only one copy is recorded. The detailed leader election algorithm used for

1A controlled amount of redundancy can be introduced if needed for robustness, but it is not the focus of this paper.

5

this purpose is described in our previous work [18]. Briefly, nodes that hear the event start random back-off timers. Upon the

expiration of a timer, a node announces leadership unless it has already heard such an announcement from a neighbor. When a

leader is elected, it gives a new ID to the current event, which is also the file ID. The leader election process is local and does

not involve multihop communication. Hence, leaders are associated with local (i.e., single-hop) neighborhoods in which the

event was heard. Observe that multiple leaders may be elected for the same event which will produce redundant recording. Our

design choice is not to guarantee complete elimination of redundancy. Instead, our leader election algorithm simply attempts

to eliminate redundancy within one-hop communication neighborhoods. This is a compromise between algorithm complexity

and performance. With a suitable choice of communication range (e.g., larger than the sensing range for the average acoustic

event), redundancy will be eliminated except for very loud acoustic events that are hopefully infrequent.

In our implementation, leader election and assignment of the first recording task take a total of up to one second. Hence, the

very beginning of the acoustic event is missed. For relatively long-lasting events such as passage of vehicles and vocalizations

of some (singing) species of birds, this startup time is insignificant. For very short acoustic events, this approach might lead to

non-negligible recording misses. Therefore, we use an optimization to let nodes that hear the event record a configurable small

interval (typically one second), called the prelude, of each new event locally without coordination. If the event continues past

that interval, recording is interrupted to elect a leader and assign recording tasks both for the future and the past. In particular,

a node is chosen among those that recorded the prelude to keep the recorded data. All others erase their recording. In this

scheme, long-term events are recorded with a brief interruption after the prelude period. The length of the prelude can be chosen

such that short-term events are fully recorded with high probability. Leader election cannot be performed concurrently with

recording on the current motes because radio communication can greatly disrupt high-frequency recording due to insufficient

CPU capacity (an issue we will revisit in Section III-B.1). On faster devices, it is possible to overlap prelude recording with

leader election, hence resulting in uninterrupted acoustic records for both short and long events.

Acoustic sources may be stationary or mobile. If a mobile object generates continuous sound along its trajectory, this

continuity is captured by recording in the same file. EnviroMic has a leader handoff mechanism to handle this issue. Specifically,

when a leader ceases to sense the acoustic event, it broadcasts a RESIGN message. Upon receiving this message, nodes that can

sense the event will compete to be the new leader. Note that the ID of the current event is attached in the RESIGN message.

Therefore, the new leader can instruct its members to use the same file ID for their data. File continuity is generally preserved.

It is possible for more than one leader to be elected for a single event, especially when nodes sensing the same event are not

within each other’s communication range. An acoustic event with a large spatial signature (such as thunder) may be associated

with multiple leaders and thus multiple files. For overlapping events (e.g., two birds singing next to each other), only one leader

may be elected, and thus one file may be recorded. Finally, a temporally separated event (e.g., intermittent vocalizations of the

same bird) may give rise to multiple files. Our goal is merely to reduce redundancy such that storage capacity is maximized.

More sophisticated temporal and spatial correlation algorithms can be performed on these files at basestations to extract more

accurate information if needed for the application.

2) Task Assignment: Once a group is formed, the leader is responsible for assigning recording tasks to its group members.

While an event lasts, nodes that can hear the event periodically broadcast a SENSING message to notify the neighbors of their

6

awareness of the event. Hence, the leader knows which neighbors can be assigned a recording task. The leader periodically

selects a node from its member list (i.e., a node that can sense the event) that is most “suitable” for the recording task. It could

be the member that has the highest time-to-live (see Section II-B) or the one that has the best reception of the acoustic signal.

Once the leader selects a member to assign a recording task to, it sends a TASK REQUEST message to the member, hereafter

called the recorder. Note that all the members other than the recorder are listening for control messages. The recorder echoes the

request with a TASK CONFIRM message, and starts recording immediately after the message is successfully sent out. Recorded

data are labeled with the current timestamp, the node ID, and event (i.e., file) ID specified by the leader, and stored in local

flash. The recording lasts for a predetermined period of time, Trc, called recording task period. The leader starts a timer

waiting for a TASK CONFIRM from the recorder. Upon successfully receiving a TASK CONFIRM, the leader schedules the next

task assignment to be Trc away. If the leader times out, either the initial TASK REQUEST or the subsequent TASK CONFIRM

has been lost. The leader immediately selects another member to be the recorder. Note that, this new attempt of selecting a

recorder might be caused by a loss of the previous TASK CONFIRM (instead of the TASK REQUEST), which implies that a node

is already recording. Selecting another recorder in this case may give rise to more than one member recording simultaneously.

We alleviate this problem by an optimization using over-

�������

�������

��	
�� �
�

�
��

�
�

�
�

� �
�

�

��
�

�
��

�
�

�
��

�
�
�
�

�
�

�
��

�
�

�
�

�

�����
���

�
�

�
��

�
 �

�
�

��!�""�	#$"
�##�������

����

Fig. 1. Task assignment optimization

hearing, shown in Figure 1. Upon receiving a TASK REQUEST,

the member responds with a TASK CONFIRM, if it did not

hear a TASK CONFIRM earlier. Otherwise, it responds with

a TASK REJECT message, because it can infer that some

other node is already doing the recording task but the TASK CONFIRM

message was not received by the leader. When a TASK REJECT

or a TASK CONFIRM message is received by the leader, the leader is assured that the task assignment is done, and hence

can schedule the next round of task assignment. This task assignment algorithm minimizes redundant recordings as well as

recording misses caused by protocol control packet losses. Observe that it is still possible that more than one recorder exist

simultaneously because not all the members can always hear each other due to lack of reliable communication. In the scenario

depicted in Figure 1, if the TASK CONFIRM sent by Member1 was not heard by Member2, both nodes would end up recording

simultaneously.

Every node that hears the acoustic event (as opposed to the leader only) maintains a list of nodes that also hear the event

(i.e., send SENSING messages) in its neighborhood. This does not, however, incur extra communication cost because all the

control packets can be overheard. This soft state maintained in every node is necessary because when leader handoff occurs,

the new leader should already have a list of group members to start task assignment right away. The recording continues

uninterrupted as long as a new leader takes over and assigns the next recording task before the current task finishes.

B. Distributed Storage Balancing

To fully utilize available storage capacity, it is essential that EnviroMic eliminates acoustic hot spots in “noisy” regions by

pushing data to nodes in “quiet” regions with more unused storage. This load balancing is possible because acoustic events

7

are likely to be sporadic allowing for migration in between occurrences when needed. Scalability and cost concerns lead us to

a design where nodes make migration decisions based on local information only. Intuitively, if a node is much more likely to

run out of its storage space than its neighbors, it should migrate some of its local data to some neighbors.

Another issue that must be considered in the storage balancing subsystem is energy. Observe that nodes will miss acoustic

events after they have saturated their storage or run out of energy, whichever comes first. Given the current energy level of

a node as well as the recorded average input rate due to local acoustic sources, the node can compute (i) the time when its

flash will saturate at this rate if it does not move data out, and (ii) the time when it will run out of energy if it moves data.

When an imbalance in storage utilization occurs, a node decides on whether or not to move data based on what maximizes the

remaining lifetime (of the two options above). Formally, we use a metric called time-to-live (TTL) to quantify the expected

time when a node runs out of its storage space or its energy. We define TTLstorage, denoting when a node i is expected to

run out of storage space, as:

TTLstorage =
Ci(t)
Ri(t)

where Ci(t) is the current unused storage of the node, and Ri(t) is the data acquisition rate of node i (when it is awake),

measured as the number of bytes recorded over the (waking) interval during which recording took place. It is periodically

updated using an exponentially weighted moving average:

Ri(t) = Ri(t− 1) · (1− α) + r · α

where r is the amount of newly recorded data per unit time during the last period).

The initial data acquisition rate R0 can be set to zero, or inferred from an estimated average acoustic data generation rate

Exp(Revent) (i.e., the average amount of data generated by acoustic events across the network per unit time): R0 = Exp(Revent)
N ,

where N is the number of nodes in the network. This R0 is basically the average data acquisition rate if acoustic events are

uniformly distributed among the nodes. An inaccurate R0 has little impact on the system behavior in the long run because the

data rate is dynamically adjusted.

We also define the TTLenergy , denoting when a node i is expected to run out of energy, as:

TTLenergy =
Ei(t)

D(Ri(t))

where D(Ri(t)) represents the rate of energy drain if the current node moves data out at the acquisition rate Ri(t). It can be

easily computed from the idle power consumption, the radio power consumption, and the expected percentage of time radio

must be active to transmit at rate Ri(t). The load-balancing sub-system compares TTLstorage and TTLenergy , and uses the

bottleneck (the one that is shorter) to determine the appropriate action. If the former is shorter, the current node is allowed to

move data out to other nodes. If the latter is shorter, the current node should store data locally. Because load balancing is only

triggered when the TTLstorage is the bottleneck, in the rest of this section, we use TTL to refer to the TTLstorage unless

otherwise stated.

Note that the above computations are completely oblivious to any duty-cycling that the node may be performing. This is

8

acceptable because when the node is asleep, neither flash not energy is consumed. Furthermore, Ri(t) refers to the rate of

data input from the environment when the node is awake. Consequently, any duty-cycling will simply extend TTLstorage and

TTLenergy with the same proportion. The bottleneck TTL remains the same.

In the current motes where local storage lasts a few minutes whereas local battery lasts several days, load balancing almost

always makes sense. We believe that future mote prototypes will always have spare energy beyond what it takes to simply fill

up the local data storage at the expected rate of environmental input. The converse would be questionable from an engineering

standpoint. Why bother add so much storage that the battery is not enough to last the time it takes to fill it up?

During their lifetime, nodes monitor their own TTL as well as their neighbors’. To enable nodes to maintain relatively

up-to-date views of their neighborhoods, nodes need to update their state information by local broadcasting. This requirement

does not incur much extra overhead because the group management component in Section II-A.1 already maintains soft states

for neighbors. When a node i notices that its TTLi differs from that of some neighbor j by a certain factor β:

TTLj

TTLi
> βi (1)

and its current TTLenergy is larger than its TTLstorage, it will request to migrate some data to node j. Data are transferred

from node i to j until condition (1) no longer holds or its TTLenergy drops below TTLstorage.2 The parameter βi determines

how sensitive nodes are to storage imbalance. In practice, we set an upperbound βmax for βi, and let βi varies linearly between

1 and βmax, depending on the current TTL. The larger the βi, the less sensitive the nodes are. Observe that nodes are relatively

insensitive to imbalanced storage when their TTLs are long, and can become more sensitive as TTLs decrease, which is ideal.

After receiving data transferred from a neighbor, a node might further transfer some of the data to its own neighbors, if

necessary. This way, data recorded by nodes in hot-spots can gradually migrate to nodes far away. A relatively balanced storage

is hence achieved across the network.

C. Data Retrieval

In designing a data retrieval algorithm to extract acoustic data from the network, our first intuition was to construct doubly-

linked lists for each file to allow efficient retrieval once one chunk of the file was found. Together with some distributed

indexing algorithm, the scheme would have optimized retrieval efficiency.

However, as mentioned above, EnviroMic targets long-term, unattended, and disconnected acoustic monitoring and storage

applications. Data retrieval occurs very rarely; usually, exactly once when the experiment is over. Hence, reducing retrieval

energy does not optimize for the common case. Our next inclination was therefore to trade some retrieval efficiency for

simplicity of design. Considering the stringent resource constraints on current motes, a simple design is very desirable even at

the expense of some loss of performance.

The inclination was therefore to construct a spanning-tree-based simple broadcast service. Similar to directed diffusion [15],

the spanning tree is rooted at the user (the sink). Recall that recorded data are labeled with timestamps, node IDs (which

may be mapped to locations if localization services are available), and event IDs. User queries specifying the time range and

2An alert reader will notice that the scheme makes the implicit assumption that the bottleneck resource tends to be the same on nearby nodes.

9

sources that are of interest can be broadcast to the network. The nodes that have files satisfying the query will send these

chunks and their file IDs along the spanning tree up to the user. If gaps are observed in retrieved files, their IDs are flooded

until all parts are retrieved successfully.

Further interaction with our system user revealed that the most common query would be one that simply retrieved all files,

suggesting further reductions in complexity. Moreover, commonly, the user wished to retrieve the data at the end of the whole

experiment when it would be time to physically retrieve the motes from the environment as well. At that point, the need for a

multihop broadcast seemed questionable. A single hop version of the aforementioned retrieval scheme was found adequate, since

data would usually be retrieved when the motes were physically back in the researcher’s lab. When worried about intermediate

progress of the experiment, the researcher could enter the sensor network and sample one-hop local measurements.

This design proved to be robust, easy to implement, and at the same time, provided users a reasonably simple and efficient

way to retrieve information. It raises the more general question of the future of data collection when low-power storage

capacity increases at a higher rate than low-power communication bandwidth. As the gap widens, solutions that minimize

communication (e.g., ones based on data mules) may be increasingly preferred. In our case, the user acts as the data mule

when they physically collect the motes at the end of the experiment.

III. IMPLEMENTATION

A. Implementation Overview

We implemented EnviroMic on MicaZ motes running TinyOS. We chose MicaZs since they are good representatives of

a large class of off-the-shelf hardware platforms with various sensing and storage capabilities. Though MicaZs are severely

constrained in storage capacity and may not be the most appropriate for our specific application, the challenges we experienced

in building EnviroMic are not specific to MicaZs, but are in fact general to the large class.

The implementation consists of 12 nesC modules, and 10,282 lines of nesC code. The system occupies 61.5KB of code

memory and 2.8KB of data memory on MicaZ. Figure 2 gives an overview of the major modules of our implementation, and

the interface relationships between them.

A few words are in order to describe some modules in

���������	
����

��������

�
�
��

�
�

�
��

�
�

�
��

��
�
�

�
�
�
�

���������
�����������

������������ ���

������������� ���

���������	
����
���������

������������������

���� ���������
������� ���

����������
�

���������� ������

��� ������ ���� ! ����
��
��

�
�

�
�
 �

�
�
 �
�
�

 �
��

�
 �

"
�

��
�

�
#�

�

Fig. 2. Modules of EnviroMic implementation

Figure 2 that are not discussed in previous sections. Recall

that recorded acoustic data are associated with timestamps

to ensure they are semantically meaningful. This requires

nodes to be (loosely) time-synchronized. Our time-stamping

module is adapted from FTSP [21]. To make it more power-

efficient, we reduce synchronization frequency when events

are rare. Besides, clocks at recorders are further synchronized

by the receipt of the leader’s task assignment messages.

A number of modules in the system require local broadcast, as shown in Figure 2. Messages of some of the modules are

delay sensitive (e.g., task management), while messages of some other modules are delay tolerant (e.g., storage balancing).

10

To minimize communication overhead, we implemented a neighborhood broadcast module. All modules that need to do local

broadcast register with this module. When a delay sensitive broadcast message is about to be sent out, the neighborhood

broadcast module queries all the registered modules to check the possibility of piggybacking some messages from other

modules. This mechanism is especially effective when a lot of activities are happening. We also implemented a local reliable

bulk-transfer component which is utilized by storage balancing to exchange data between neighbors.

B. Implementation Issues

In this subsection we present a few technical issues we encountered in our implementation, and our solutions to these

problems.

1) Acoustic Sampling: To record acoustic data with reasonable quality, nodes need to do acoustic sampling at a high

frequency. However, with very limited CPU capacity, nodes can not simultaneously perform a high-sampling-rate recording

job and a communication task. Hence, we do not allow a node to communicate when recording. When it comes to our

implementation, it is also important to make sure that recorders do not experience disturbance from receiving packets for it

can significantly slow down the acoustic sampling as well.

Figure 3 illustrates this effect. In this experiment, we set the sampling intervals to 10 jiffies (1 jiffy is 1/32768 second),

and measured the real intervals over time by time-stamping each sample, using MicaZ motes. Figure 3 shows the observed

intervals for different scenarios.

In Figure 3(a), the node is exclusively sampling data. There-

 0
 5

 10
 15
 20

 0 50 100 150

S
am

pl
in

g
In

te
rv

al

Samples

(a) No communication

 0
 5

 10
 15
 20

 0 50 100 150

S
am

pl
in

g
In

te
rv

al

Samples

(b) Sending a packet

 0
 5

 10
 15
 20

 0 50 100 150

S
am

pl
in

g
In

te
rv

al

Samples

(c) Receiving a packet

Fig. 3. Measured sampling interval between consecutive samples

fore, the observed sampling intervals are fixed at 10 jiffies. In

Figure 3(b), the node sends out a packet as soon as it starts

sampling. Observe that the sampling interval now jumps be-

tween 9 and 16 jiffies. Similarly, when a node receives a

packet in Figure 3(c), we observe jitter in the sampling inter-

val. Note that this jitter is observed even though the applica-

tion layer does not process the incoming packets. The reason

is that the underlying radio layer still consumes CPU cycles

to process packets whenever radio activities are detected.

When a node becomes a recorder, it therefore turns off

the radio transceiver completely during the recording task.

It is possible that a recorder misses some protocol control

messages (e.g., neighbor state updates). Therefore, when the

node turns on its radio again, some of its state information is stale. We choose not to synchronize state at this point to simplify

design and conserve energy. Observe that completely up-to-date state information is not required in our protocol.

2) Seamless Task Assignment: As discussed in Section II-A.2, a leader assigns recording tasks to its group members to

achieve continuous recording of events. Since each successful recording task lasts for a fixed interval, Trc, conceptually, leaders

11

��������

������ 	

��

�
�
�
�
��
	 	

��

�
�
�
�
��
�

���������

�����	����

���������

 ��

	��

	����

���������

���!��

��������������

Fig. 4. Expected task assignment delay Dta is necessary for seamless task
assignment

�����������
	�
����
��

������

�������
���������

�������

������

������� �
�
�

!�
�"
#
��
�

�
�
�
!$
%
�
&
��
�

���������

��'��(������)	�
	��
����������	

Fig. 5. Leader handoff process is unlikely to cause recording misses

should schedule a new task (i.e., a new recording node) every Trc. In the implementation, we observe that task assignment

itself actually takes time. In order to achieve a seamless transition from one recording node to another (i.e., ensure that there

is no gap between consecutive recording intervals), the leader must initiate a new round of task assignment before Trc expires.

In practice, we let the leader initiate a new task assignment at Trc − Dta after the previous assignment, where Dta is the

expected task assignment delay, shown in Figure 4. Although Dta can be affected by current traffic conditions, we find that

using an empirically determined fixed value suffices in our case. The reason is that traffic that can affect Dta has very little

variation: the group management and task management packets are pretty regular, and storage balancing traffic is rare.

Obviously, an underestimated task assignment delay can cause recording misses. However, a significantly overestimated

task assignment delay is also undesirable. This is because starting a task assignment too early (due to an overestimated task

assignment delay) can potentially make the leader’s selection of the recording node inferior, since it will be based on older

information. By the time that node’s turn comes to record, the acoustic source may have moved away and can be better heard

by a different node. Hence, we want a relatively accurate estimated task assignment delay. We shall further evaluate the impact

of choosing a different Dta in the evaluation section.

Note that leader handoff is very unlikely to cause recording misses because of the way task management works. As shown

in Figure 5, when the current leader resigns (because it can not hear the event anymore), a recording task is still ongoing. In

the RESIGN message sent out by the resigning leader, the scheduled next task assignment time is attached, so that the new

leader can start its first task assignment at the right time. As long as the leader handoff process, which is very quick, finishes

before the previously scheduled next task assignment time, no recording gap should occur.

3) Local Data Organization: The local storage space of a node (flash memory) is broken into fixed-length blocks (of 256

bytes in our current implementation), organized as a circular buffer. Data acquired by a node from its sensor or received from

neighbors are stored as fixed-sized storage blocks. The stored data chunks form a circular queue. Incoming data chunks are

enqueued at the tail of the queue. Data chunks sent to neighbors (to balance storage) are taken from the head of the queue.

The benefit of this implementation is that all the blocks receive almost the same number of write operations (different by at

most 1). This is desirable because flash memory has write limits. We periodically save the head and tail pointers of the queue

to the in-chip EEPROM of MicaZ motes, which has a much larger write limit, so that even if a node fails we can still correctly

retrieve its locally stored data after the node is collected.

Each data chunk is associated with certain metadata, including start and end timestamps, a location-stamp (or the ID of the

recording node which can be translated to location in a data post-processing stage), and an event (i.e., file) ID. Such information

12

is necessary for serving data retrieval requests in the future. Note that data chunks stored at a node are not necessarily recorded

by the node itself. They could be transferred from a remote node that was short of storage. With the time- and source-stamps

attached to each data chunk, a basestation can easily figure out activities in the monitored area across time and space. The

event ID further identifies a series of chunks that correspond to a single continuous event as far as EnviroMic could tell.

IV. EVALUATION

We evaluate EnviroMic using both an indoor testbed and an outdoor deployment in a forest. The acoustic sampling frequency

is set to be 2.730kHz throughout the experiments.The indoor testbed consists of 48 MicaZ motes placed as a 8×6 grid with

unit grid length 2ft. We use this testbed together with controlled acoustic events described below to achieve repeatability in

our experiments so we could perform valid comparisons and empirically determine the effects of some system parameters. To

further understand the performance issues of EnviroMic in realistic environments, we conducted experiments using 36 MicaZ

motes in a nearby forest.

A. Cooperative Recording

Efficiency of the cooperative recording subsystem comprises two related properties. First, we want the acoustic event recording

to be complete (i.e., no recording gaps). Second, we want to reduce recording redundancy. Our design and implementation

of seamless task assignment (Section II-A.2 and III-B.2) ensures that recorded data redundancy is almost eliminated. The

only (rare) case that could lead to recording redundancy is control packet loss. As mentioned in Section II-A.2, losses of

TASK CONFIRM may cause multiple nodes to record simultaneously. Hence, in this subsection, we focus on recording misses.

Recall that in the implementation of our cooperative recording task assignment mechanism we introduce the estimated task

assignment delay parameter, Dta. Estimated task assignment delay represents how far in advance of the termination of the

current recording task a leader should start assigning a new one. As mentioned in Section III-B.2, a Dta that is too small can

cause recording misses, while one that is too large can potentially cause leaders to select inappropriate recorders (those that

no longer hear the acoustic source).

Similar to the estimated task assignment delay, there is a trade-off in deciding the value of the task period Trc. A shorter

task period means more task assignments for the same amount of acoustic events, and hence a higher control overhead. On

the other hand, a large task period has a problem with mobile acoustic events. When an acoustic event is present, the node

performing the recording task should be able to hear the event clearly. If the task period is too long, the acoustic object might

leave the sensing range of the node currently recording before the expiration of its recording interval.

To study these trade-offs and empirically determine the values of Dta and Trc, we used an acoustic mobile target moving

through the testbed at a speed of one grid length per second. The event lasts for a total of 9 seconds. The volume was adjusted

to set the microphone sensing range of the motes to be about one grid length as well. We ran the experiments 15 times for

each combination of the parameters. Figure 6 presents the average and 90% confidence interval of recording miss ratios. The

metric recording miss ratio is defined as the sum of the lengths of recording gaps divided by the duration of the acoustic event.

From the figure, we can observe that the recording miss ratio first decreases with increasing the expected task assignment

delay Dta, then levels off after Dta reaches 70ms, and stabilizes at about 8%. Further investigation reveals that this fixed

13

 0

 0.1

 0.2

 0.3

 10 30 50 70 90 110 130

R
ec

or
di

ng
 M

is
s

R
at

io

Expected Task Assignment Delay Dta (ms)

Task Period Trc = 0.5s
Task Period Trc = 1.0s
Task Period Trc = 1.5s

Fig. 6. Recording miss ratio

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 0 2 4 6 8 10

N
od

e
ID

Time (s)

Task Period
Event Duration

Fig. 7. One instance of recording a mobile acoustic object

recording miss ratio is due to the initial leader election delay when nodes are forming a group (and no one records). The

first leader election, group creation, and first task assignment take 0.7 seconds on average. Divided by the event duration of 9

seconds, it yields an average recording miss ratio of about 0.08. If desired, the initial startup miss can be eliminated by the

prelude optimization we proposed in Section II-A.1.

Note that when Dta is small (<=30ms), a longer task period (Trc) has a lower recording miss ratio. The reason is that for

a certain acoustic event, a longer task period requires fewer invocations of the task assignment process, which causes fewer

recording gaps. When Dta is large enough, task period has no impact on the recording miss ratio anymore because recording

gaps between task assignments are essentially eliminated. The only source of misses comes from the startup delay when the

object first enters the network.

Based on the experimental data, 1.0s and 1.5s seem to be good values for the task period. However, we found that the

recorded data quality for a task period of 1.5s is noticeably worse than that for a period of 1.0s because the long recording

period causes loss of quality when sources are mobile (as the source moves further away from the recorder). Hence, we picked

1.0s as the task period for the rest of our experiments and accordingly 70ms as the expected task assignment delay.

Figure 7 plots the recording periods of the nodes, as well as the acoustic event duration of one instance of our experiments

in which task period is 1.0s, and estimated task assignment delay is 70ms. Note that not all nodes performed a recording task

due to the cooperative task assignment. Recordings happened at different nodes seamlessly. Also note the recording miss at

the very beginning when the acoustic target enters the network and nodes are still in the leader election phase.

To better appreciate the efficacy of our cooperative recording subsystem, in Figure 8 we present an experiment of recording

human voice. In this experiment, a person read out the title of this paper while moving across the 7×4 grid of motes at

a constant speed of one grid length per second. An extra mote was held by the person during the experiment to record a

reference “ground truth”. Figure 8(a) plots the sensor readings of the mote held by the person, while Figure 8(b) plots the

sensor readings of all the EnviroMic nodes that performed recording tasks, stitched together based on their timestamps. The

visual similarity of the two figures is obvious. The clips recorded by the single mote and by EnviroMic are available online

for qualitative comparison if the reader is interested: http://www.cs.uiuc.edu/homes/lluo2/enviromic

14

 0

 128

 256

 0 1 2 3 4 5 6 7

S
en

so
r

R
ea

di
ng

Time (s)

(a) Recorded by a single mote

 0

 128

 256

 0 1 2 3 4 5 6 7

S
en

so
r

R
ea

di
ng

Time (s)

(b) Recorded by EnviroMic

Fig. 8. Recording voice of a moving human being

B. Distributed Storage Balancing

In this section, we evaluate the performance of distributed storage balancing. First, we describe the testbed. Next, we present

the experiment results, including different performance metrics, such as miss ratio, redundancy ratio and the number of load

transfer messages. We also give intuitive illustrations showing spacial distributions of storage occupancy.

In the following experiments, we evaluate EnviroMic using

Fig. 9. Indoor testbed setup

our indoor testbed consisting of 48 MicaZ motes placed

as a 8×6 grid (shown in Figure 9). We inject controlled

acoustic events into this testbed to achieve repeatability in

our experiments, so that we could perform valid comparisons

and empirically determine the effects of system parameters.

Controlled acoustic events are generated as follows. We use two acoustic sources (laptops) as event generators to play audio

clips as events. The locations of the two sources are shown as shaded circles in Figure 9. All events are generated following

a Poisson-distributed event arrival process with an expectation of 20 seconds between the start of two consecutive events. The

duration of each event follows a uniform distribution between 3 and 7 seconds. Hence, on average, 220 events are generated

over a period of 4400 seconds. The average sum of the durations of all events is around 1100 seconds (i.e., 25% of the length

of the experiment). To experiment with load balancing, we restrict that only four nodes can hear and record each event.

Leaders assign tasks using a Trc of one second, where Trc is the fixed recording task period. We compare different βmax

values in the load balancing subsystem, where we choose values of 2, 3 and 4, respectively. Recall that the actual β value

varies linearly between 1 and βmax, depending on current TTL. A larger βmax means that the load balancing subsystem is less

sensitive to load imbalance. We also use two baselines (in which load balancing is disabled). In one baseline, only cooperative

recording is used (but without load balancing). In the other, cooperative recording is disabled as well. Each node independently

records for Trc upon detecting an acoustic event. These baselines help estimate the total performance improvement of EnviroMic

(in terms of reduced acoustic miss ratio), and estimate which mechanism accounts for what part of this improvement.

15

2) Experiment Results: We now present the results. Two important metrics of load balancing are recording misses and data

redundancy. We want recording misses to be low so that recordings can capture the fidelity of acoustic events with minimal

data loss. We want data redundancy ratio to be low so that EnviroMic can fully utilize storage capacity of the network.

Recording misses come from two major sources in this ex-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 600 1200 1800 2400 3000 3600 4200

R
ec

or
di

ng
 M

is
s

R
at

io

Time (s)

Baseline
Cooperative Recording Only
Load Balance (betamax = 4)
Load Balance (betamax = 3)
Load Balance (betamax = 2)

Fig. 10. Comparison of acoustic recording miss ratio

periment. First, as described in Section II, it takes a while for

nodes to elect a leader and be assigned tasks, upon detecting

an acoustic event. We empirically measured this delay to be

less than 1 second. In long-term experiments where events

are stationary and short, this warm-up time may contribute to

a majority of recording misses. Second, when βmax is high

(i.e., when the load balancing sub-system is less sensitive to

data distribution imbalances), one node may not balance its

load in time to avoid storage overflow, thereby leading to

recording misses, especially when its neighbors are also low on remaining storage space. The results of our experiments on

recording misses are shown in Figure 10.

In Figure 10, we compare five curves, including the two baselines. Observe that in Figure 10, TTL-based load balancing

achieves a significantly better performance in terms of miss ratio compared to the two baselines. In these baselines, after

the four nodes that can detect events fill up their storage spaces, the miss ratio increases considerably. For example, by the

end of the experiment, 80% of the data are lost when only local recording is used. On the other hand, with load balancing,

the recording miss ratio is much lower. As expected, βmax = 2 achieves the least miss ratio among the different settings

because this setting is the most sensitive to load imbalance. By the end of the experiment, less than 20% of the data are lost,

which is more than a 4-fold miss ratio improvement. In this case, four times more data were recorded with EnviroMic than

without. This is of great value, making EnviroMic an attractive research tool for data intensive acoustic studies in biological

and environmental science.

Note that, on the current mote prototype, the improvement in the amount of recorded data comes almost for free in terms of

energy. Uploading the entire flash of a MicaZ mote takes less than three minutes. That is an insignificant fraction of lifetime

(which is closer to a week). Even if each mote in a “noisy” area was responsible for completely filling up flashes of 10 motes

in other areas, the lifetime reduction due to such load balancing should be below one hour. For all practical purposes, it can

be ignored. There is therefore no point in evaluating the energy cost of load balancing on the current mote prototype.

The second metric we evaluate is the recording redundancy ratio, which we define as the ratio between redundant recordings

and all recordings. Intuitively, this metric reflects how efficient we are in eliminating data duplication. We carried out this

experiment using the same settings as above, and plot the redundancy ratio in Figure 11. First, observe that the settings where

cooperative task assignment is enabled achieve a significantly smaller redundancy compared to the baseline where each node

records independently. This observation validates our motivation to design cooperative task assignment as a key strategy to

reduce recording redundancy. Second, note that when βmax is lower, the observed data redundancy ratio is higher. The reason

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 600 1200 1800 2400 3000 3600 4200

R
ec

or
di

ng
 R

ed
un

da
nc

y
R

at
io

Time (s)

Baseline
Cooperative Recording Only
Load Balance (betamax = 4)
Load Balance (betamax = 3)
Load Balance (betamax = 2)

Fig. 11. Comparison of acoustic recording redundancy ratio

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 600 1200 1800 2400 3000 3600 4200

N
um

be
r

of
 M

es
sa

ge
s

Time (s)

Cooperative Recording Only
Load Balance (betamax = 4)
Load Balance (betamax = 3)
Load Balance (betamax = 2)

Fig. 12. Comparison of the number of data transfer messages

is that a lower βmax leads to more data transfers. Such transfers may not be completely reliable: one node may replicate its data

in multiple neighbors incidentally, resulting in a higher redundancy ratio. At last, observe that for the baseline where each node

independently records data, the recording redundancy ratio stabilizes around 0.5. This is slightly less than the expected ratio

of 0.75 (three out of four traces should be redundant) because individual nodes may not detect the event reliably. Therefore,

after one node records for 1 second, it may or may not detect the event again even if the event persists. This effect goes away

in cooperative recording as the odds are high that at least one of the motes surrounding the event will hear it.

We also compare the amount of control messages across different settings during the experiment. Control messages include

both task assignment messages and load transfer messages. This metric reflects the overhead of load balancing sub-system. The

comparison results are shown in Figure 12. In this figure, the baseline without cooperative recording is not included because it

does not generate any control messages. For the other four settings, as expected, a βmax value of 2 generates the most control

messages, because it is the most aggressive to transfer load between nodes. Additionally, observe that the number of control

messages increases almost linearly with time for the four settings plotted. This is intuitive because our event injection has a

constant rate. Therefore, this observation implies that the incremental overhead for load balancing is proportional to the newly

captured data as long as the network capacity is not exhausted.

We now illustrate the spatial distribution of storage occupancy and overhead, measured in the number of control messages

sent, from an example run. The evaluation settings are the same as above, except that we do not include the two baselines,

since they do not perform load-balancing. We select βmax = 2. For other βmax values, the results are similar.

Ideally, at any instant, we hope that acoustic recordings can be distributed evenly in the face of uneven spatial distributions

of acoustic sources. We plot contours of spatial data distributions at times 1500s, 3000s and 4500s, respectively, in Figure 13.

First, observe that although the two acoustic sources are relatively far away from each other, data storage is spread out quite

evenly in the whole area. Second, observe that the areas near the event sources appear to be the most dense, in terms of storage

occupancy, across the three time points. This observation is intuitive given the way the load-balancing mechanism works. A

third observation is that in part (c), we notice a boundary effect, where nodes in the (very quiet) bottom-left area are pushed

a significant amount of data, but have not been able to transfer them out because of the high capacity consumption of nodes

surrounding them. Observe that nodes in very quiet areas have a low incoming data rate and thus a very high TTL, causing

them to be loaded up with data to a higher level.

17

���

���

���

�	�

��

����

(a) t = 1500s

���

���

���

����

����

����

(b) t = 3000s

���

���

���

����

����

����

(c) t = 4500s

Fig. 13. Spatial distribution of storage occupancy, in bytes, from an example indoor run

����

����

����

�����

�����

�����

(a) t = 1500s

����

�����

�����

�����

�����

�	���

(b) t = 3000s

����

�����

�����

�����

�����

�����

(c) t = 4500s

Fig. 14. Spatial distribution of load transfer overhead, in the number of messages, from an example indoor run

Similarly, we plot contours of spatial distributions of the number of control messages sent in Figure 14. Observe that the

nodes near event sources generate significantly more messages than the other nodes, because these nodes are expected to

record more data, requiring more load balancing transfers to avoid storage overflows. Furthermore, by comparing Figure 14 to

Figure 13, we observe that generally, the number of message transfers for a node is correlated with its storage occupancy. The

reason is that when nodes record more data, they become more aggressive in transferring these data out, generating a larger

number of load-balancing messages.

C. Preliminary Outdoor Deployment

To understand the efficacy and limitations of our current

(a) A bird-eye view of the deployment (b) A mote installed on a tree

Fig. 15. Deployment in a natural forest

design and implementation of EnviroMic in more realistic

environments, we deployed a EnviroMic system that consists

of 36 MicaZ motes in a forest (Figure 15). On the west side

of the forest is a road where vehicles pass by during the

day. The experiment was conducted on a day in April 2006.

The motes, enclosed in plastic containers, are attached to the

trunks of the trees. The deployment area is approximately 105ft×105ft. We were not able to deploy the motes as a grid (to

facilitate post-processing of recorded data) because the trees in the forest are in irregular positions. We therefore had to

reconstruct the map (Figure 15(a)) manually. After the motes were installed, a person holding a mobile device walked around

the network to activate the EnviroMic application in each mote. This is to avoid acoustic disturbance caused by installing

18

 0

 20

 40

 60

 80

 100

10:45 11:15 11:45 12:15 12:45 13:15 13:45

R
ec

or
de

d
D

at
a

(s
/m

in
ut

e)

Time

Fig. 16. Amount of acoustic event data over time

���

����

����

����

	���

Fig. 17. Amount of acoustic data, in bytes, generated in different locations

motes in the containers and attaching them to the trees. We collected data recorded by the motes during a period of 3 hours.

The first set of data of interest is how acoustic events are temporally distributed. Figure 16 plots the amount of acoustic data

collected by all the sensors at different times. The numbers on the y-axis represent the total amount of recording (in seconds)

done by all nodes within one-minute intervals. They are plotted versus time. There are two spikes in the figure. The first spike

(11:30-11:40), as we found out later, was caused by people from another department in our university doing an experiment in

the forest. The second spike (12:15-12:45) contains some very long events (up to 73 seconds) that, we conjecture, were caused

by the motion of heavy agrarian equipment on a neighboring road.

Next, we look at the geographic distribution of the events.

123456
1

2
3

4
5

6

0

10

20

30

40

50

60

A
m

ou
nt

 o
f D

at
a

T
ra

ns
fe

rr
ed

fr

om
 N

od
e

(4
, 2

)
(K

B
)

X

Y

Fig. 18. Distribution of data migrated to nodes for load-balancing

From the data stored in the motes, we reconstructed the

information on how much acoustic data was generated from

which sensors throughout the experimentation period. Map-

ping node IDs to geographic locations, we plotted a contour

graph of total volume of acoustic events (in seconds) shown

in Figure 17. We can see that there are two high data volume

regions. The one on the left side is caused by vehicles passing

on the road to the west of the forest. The other region that is

rich in acoustic events in the figure roughly matches a trail

in the forest.

Since we can not repeat the events, we are unable to compare the performance of EnviroMic with baselines as we did in

the indoor experiments. However, it is still interesting to see how data recorded in those acoustically-rich regions migrated to

other nodes. We therefore picked the node that recorded the highest volume of data, and plotted the amount of data migrated

from that node to other nodes in the network in Figure 18. The node that recorded the most data is at coordinate (4, 2) in the

rough grid of our deployment. As can be seen in the figure, the node migrated a lot of data to its immediate neighbors, which

further migrated some of those data to their neighbors, and so on. This demonstrates the ability of EnviroMic to gracefully

handle acoustic event hot-spots.

19

D. Long-term Deployment Plan

Given the encouraging results obtained from preliminary outdoor testing, we plan to do a long-term deployment of EnviroMic.

The objective is a study in avian ecology. In particular, we explore when and where birds vocalize. There are two questions

related to bird vocalizations that remain largely unaddressed; why diurnal birds sing at night and what the function of dawn

chorus is. Although it has been known for years that many diurnal species vocalize at night, little data, and few hypotheses

have been put forth to explain this phenomenon. The reason for the paucity in data is the cost and logistics of recording

vocalizations at night. EnviroMic provides an ideal way to record the species that are vocalizing, determine how often different

species vocalize, and identify whether or not there is a temporal aspect to nocturnal singing. For example, one hypothesis

for why diurnal birds sing at night is that males sing to attract females as they migrate over (most migratory birds migrate

at night). The aforementioned study can verify this hypothesis. If it is true, you would expect that EnviroMic would record

more vocalizations early in the spring. As males attracted mates they would no longer need to sing at night, so the number of

vocalizations would decline throughout the season. Results of the above study, when complete, will be reported separately in

a more appropriate forum.

Another prospective study enabled by EnviroMic is the study of dawn chorus. Dawn chorus refers to the fact that many

species sing at the highest rate at dawn. There are several hypotheses for why this may occur, some relating to the quality of a

male and some to the quality of the habitat a male is occupying. One of the limitations researchers face is the ability to collect

a sufficient amount of data to begin to determine if different species, individuals in different habitats, or the condition/age of a

male affects the intensity with which it sings at dawn. The EnviroMic can help determine the environmental influences related

to this question.

In general, EnviroMic can be used to investigate social and mating behavior of species such as small mammals, insects, and

amphibians that are located in areas with limited access. Several such studies are currently being planned.

V. RELATED WORK

1) Acoustic Applications: Sensor network applications have used acoustic sensors for different purposes, including local-

ization [28], surveillance [12], communication [29], and geophysical monitoring [30]. Interestingly, none of these applications

let users retrieve raw acoustic sensor samplings: they either use filtered samplings for application needs [12], or use acoustic

signals for purposes other than recording [28]. Comparatively, in EnviroMic, we store raw sampling results in a cooperative

manner into local storage (flash memory), and retrieve them later upon user request. The way we handle data remotely echoes

data-mule [27], which also uses a store-and-fetch model.

For acoustic systems, challenges arise to handle the high data volume generated by high frequency sampling of acoustic

sensors. To tackle the problem, EnviroMic mainly focus on reducing data redundancy. Obviously, other techniques including

in-network filters [11] and data compression algorithms [26] can be easily integrated into EnviroMic to further reduce the data

volume to be stored in network.

Also, EnviroMic has a great potential to be applied in applications which previously did not use acoustic sensors. For example,

in animal monitoring [20][17] EnviroMic may characterize the behavior of animals from perspectives totally different from

20

previous approaches using temperature or GPS sensors: acoustic data are much richer in nature and provide direct reflections

of animal behavior. Furthermore, data retrieved by EnviroMic can be correlated with data from other sensors to reveal hidden

behavior patterns that may not be possible to obtain without using acoustic sensors. The authors of [14] implemented an

acoustic sensor network application that monitors cane toads. However, they assume the existence of more storage-rich devices

for real-time data uploading.

2) Cooperative Storage: Most storage services were usually designed for individual nodes, such as ELF [5], Matchbox [9],

MicroHash [33], and Capsule [22]. Several distributed storage services have also been designed. One example is TSAR [6],

which features a two-tier storage and indexing architecture: local storage at the sensor nodes and distributed indexing at the

proxies. TSAR is different from our design in that storage is not a cooperative activity among nodes. DIMENSIONS [7] is

another system that is designed to store long-term information by constructing summaries at different spatial resolutions using

various compression techniques. Our previous work EnviroStore [19] presents a storage service that tries to maximize the

effective storage capactiy of disconnected sensor networks, but it focuses on how to take the best advantage of uploading

opportunities when data mules [27] become close.

However, none of these storage services is appropriate for EnviroMic because of its unique challenge of achieving spontaneous

and cooperative storage. To achieve this purpose, we use a leader election algorithm similar to the model presented by

EnviroTrack [18], where leaders are elected dynamically to coordinate and assign recording tasks to non-leader nodes.

3) Load Balancing: One key challenge of our distributed storage service is load balancing. Load balancing has been used

for other purposes in sensor networks, including maximizing system lifetime by balancing energy consumption of different

nodes [16], and improving fairness by balancing MAC layer accesses [31]. Load balancing in EnviroMic is similar to the

former, where the available storage space is similar to the remaining battery for each node. However, previous energy load-

balancing algorithms can not be directly used for EnviroMic because when applied to storage, we have the additional control

knob of exchanging data between nodes, which is impossible in energy-centered load balancing since nodes can not charge

each other using their own batteries.

More broadly, load-balancing comprises many algorithms that are studied in different application contexts. Representative

applications include load-balancing in web servers [2] and P2P networks [10]. These applications commonly involve many

nodes, which can range from web servers to P2P clients, each with a finite resource capacity. The particular resource may

be bandwidth, computing power, or storage space. When more resource than desired is consumed, this node tries to reduce

its resource consumption by transferring some load to its peers. While this general description also holds for EnviroMic,

there are considerable differences. First, EnviroMic has a much higher cost associated with load transfer compared to other

load balancing applications, where the load transfer cost is usually sufficiently small [2][10]. In EnviroMic, however, it may

be the opposite: the energy consumption to transfer acoustic recordings between nodes is usually higher than the energy

consumption to write such recordings into flash. Therefore, EnviroMic must explicitly take into account this aspect and make

load-balancing decisions based not only on resource consumption, but on energy consumption as well. Second, because of the

limited resource limitations of an individual node, no single node is able to coordinate all the other nodes. Therefore, load

balancing in EnviroMic must be distributed, and be scalable in the face of the size of the network.

21

VI. CONCLUSION

In this paper, we presented EnviroMic, a novel distributed acoustic monitoring, storage, and trace retrieval system. The

long-term disconnected service model for our target applications calls for a design which stores recorded acoustic data in the

network. EnviroMic employs a cooperative recording scheme and a distributed balanced storage mechanism to address unique

challenges arising from high-frequency acoustic sampling and high-volume sensory data storage. Data chunks recorded are

tagged with timestamps, node IDs, and event (file) IDs to facilitate data retrieval. EnviroMic is implemented on MicaZ motes

running TinyOS. Evaluation results drawn from both indoor and outdoor deployments demonstrate the efficacy of our design.

Significant system (storage) lifetime improvement is observed compared to baseline algorithms at a modest overhead.

We are currently working on a large-scale long-term deployment of EnviroMic for bird vocalization monitoring and recording.

We plan to investigate more intelligent storage balancing algorithms, such as data compression and global (as opposed to local

greedy) load-balancing. In a long-term deployment, reliability is apparently a concern. Defunct or lost motes can cause data

loss. In this case, a controlled data redundancy may become desirable.

REFERENCES

[1] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J. Kaiser, M. Hansen, G. J. Pottie, M. Srivastava, and D. Estrin. Call and

response: experiments in sampling the environment. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor

systems, pages 25–38, 2004.

[2] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on web-server systems. In IEEE Internet Computing, 1999.

[3] Crossbow Technology Inc. micaz motes, 2006. http://www.xbow.com.

[4] Crossbow Technology Inc. MTS300 Multi Sensor Board, 2006. http://www.xbow.com.

[5] H. Dai, M. Neufeld, and R. Han. Elf: an efficient log-structured flash file system for micro sensor nodes. In SenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems, 2004.

[6] P. Desnoyers, D. Ganesan, and P. Shenoy. Tsar: a two tier sensor storage architecture using interval skip graphs. In SenSys ’05: Proceedings of the 3rd

international conference on Embedded networked sensor systems, pages 39–50, New York, NY, USA, 2005. ACM Press.

[7] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An evaluation of multi-resolution storage for sensor networks. In SenSys ’03:

Proceedings of the 1st international conference on Embedded networked sensor systems, pages 89–102, 2003.

[8] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, and J. A. Stankovic. Satire: a software architecture for smart attire. In MobiSys 2006: Proceedings of

the 4th international conference on Mobile systems, applications and services, pages 110–123, 2006.

[9] D. Gay. Matchbox: A simple filing system for motes, 2003. http://www.tinyos.net/tinyos-1.x/doc/matchbox.pdf.

[10] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in dynamic structured p2p systems. In IEEE Infocom, 2004.

[11] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy, and D. Estrin. Capturing high-frequency phenomena using a bandwidth-limited

sensor network. In SenSys ’06: Proceedings of the 4th ACM Conference on Embedded Networked Sensor Systems, November 2006.

[12] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. A. Stankovic, T. Abdelzaher, and B. H. Krogh. Lightweight detection and

classification for wireless sensor networks in realistic environments. In SenSys ’05: Proceedings of the 3rd international conference on Embedded

networked sensor systems, 2005.

[13] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2):388–404, March 2000.

[14] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor. The design and evaluation of a hybrid sensor network for cane-toad monitoring. In

IPSN ’05: Proceedings of the 4th international symposium on Information processing in sensor networks, page 71, 2005.

[15] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw.,

11(1):2–16, 2003.

[16] Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless ad-hoc networks. In Mobicom, 2001.

22

[17] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing software on resource-constrained mobile sensors: experiences with impala and zebranet.

In MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services, 2004.

[18] L. Luo, T. Abdelzaher, T. He, and J. Stankovic. Envirosuite: An environmentally immersive programming framework for sensor networks. In ACM

Transactions on Embedded Computing Systems (TECS), 2006.

[19] L. Luo, C. Huang, T. Abdelzaher, J. A. Stankovic, and X. Liu. Envirostore: A cooperative storage system for disconnected operation in sensor networks.

In INFOCOM, 2007.

[20] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02: Proceedings of

the 1st ACM international workshop on Wireless sensor networks and applications, pages 88–97, New York, NY, USA, 2002. ACM Press.

[21] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchronization protocol. In SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems, pages 39–49, New York, NY, USA, 2004. ACM Press.

[22] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule: An energy-optimized object storage system for memory-constrained sensor devices. In

SenSys ’06: Proceedings of the Fourth ACM Conference on Embedded Networked Sensor Systems, November 2006.

[23] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage for sensor networks. In IPSN/SPOTS ’06: Proceedings of the Fifth

International Conference on Information Processing in Sensor Networks, April 2006.

[24] A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. High-performance, low-power sensor platforms featuring

gigabyte scale storage. In SenMetrics ’05: Proceedings of the Third International Workshop on Measurement, Modeling, and Performance Analysis of

Wireless Sensor Networks, July 2005.

[25] D. Niculescu and B. Nath. Ad hoc positioning system (aps) using aoa. In INFOCOM ’03: the 22nd Annual Joint Conference of the IEEE Computer

and Communications Societies, March 2003.

[26] C. M. Sadler and M. Martonosi. Data compression algorithms for energy-constrained devices in delay tolerant networks. In SenSys ’06: Proceedings of

the Fourth ACM Conference on Embedded Networked Sensor Systems, November 2006.

[27] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a three-tier architecture for sparse sensor networks. In IEEE Workshop on Sensor

Network Protocols and Applications (SNPA), 2003.

[28] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper system. In

SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, 2004.

[29] I. Vasilescu, K. Kotay, D. Rus, P. Corke, and M. Dunbabin. Data collection, storage, and retrieval with an underwater sensor network. In SenSys ’05:

Proceedings of the 3rd international conference on Embedded networked sensor systems, 2005.

[30] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and yield in a volcano monitoring sensor network. In OSDI ’06: Proceedings

of the 7th USENIX Symposium on Operating Systems Design and Implementation, November 2006.

[31] A. Woo and D. E. Culler. A transmission control scheme for media access in sensor networks. In MOBICOM, pages 221–235, 2001.

[32] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin. A wireless sensor network for structural monitoring. In

SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, pages 13–24, 2004.

[33] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar. Microhash: An efficient index structure for flash-based sensor devices. In

FAST ’05: Proceedings of the 4th USENIX Conference on File and Storage Technologies, December 2005.

