
An In-Field-Maintenance Framework for
Wireless Sensor Networks ?

Qiuhua Cao and John A. Stankovic

Department of Computer Science
University of Virginia

{qhua, stankovic}@cs.virginia.edu

Abstract. This paper introduces a framework for in-field-maintenance
services for wireless sensor networks. The motivation of this work is
driven by an observation that many applications using wireless sensor
networks require one-time deployment and will be largely unattended.
It is also desirable for the applications to have a long system lifetime.
However, the performance of many individual protocols and the over-
all performance of the system deteriorate over time. The framework we
present here allows the system or each individual node in the network
to identify the performance degradation, and to act to bring the sys-
tem back to a desirable coherent state. We implement and apply our
framework to a case study for a real system, called VigilNet [5]. The per-
formance evaluation demonstrates that our framework is effective and
efficient.

1 Introduction

Many applications [5] in wireless sensor networks (WSN) typically initialize
themselves by self-organizing after deployment. At the conclusion of the self-
organizing stage it is common for the nodes of the WSN to know their locations,
have synchronized clocks, know their neighbors, and have a coherent set of pa-
rameter settings such as consistent sleep/wake-up schedules, appropriate power
levels for communication, and pair-wise security keys. However, over time these
conditions can deteriorate.

The most common (and simple) example of this deterioration problem is
with clock synchronization. Over time, clock drift causes nodes to have different
enough times to result in application failures. While it is widely recognized that
clock synchronization must re-occur, this principle is much more general. For
example, even in static WSN some nodes may be physically moved unexpectedly.
More and more nodes may become out of place over time. To make system-wide
node locations coherent again, node re-localization needs to occur (albeit at a
much slower rate than for clock sync).

Many WSN protocols have similar characteristics with respect to the need
for re-applying computation. Reasons for this include the decentralized nature
? Supported in part by NSF grants CNS-0435060, CNS-0626616, and CNS-0720640.



of many protocols in WSN, the large scale of these systems and a high degree
of loss and uncertainty experienced in these systems. WSN systems are in need
of systematic mechanisms to dynamically adjust themselves at runtime based
on the current performance. Moreover, many systems require mechanisms to
understand which set of protocols/services are contributing to the degradation
of the system performance. For example, typical tracking applications [1] might
notice that the accuracy of the object classification is not acceptable, and many
of these applications consider that the classification protocol is the only cause.
However, the routing and localization protocols also have the impact on the
classification accuracy. The unacceptable accuracy may be due to a low packet
deliver ratio or incorrect location information in the detection report messages
from the nodes to the base station.

In this paper we consider the entire set of services that keep or restore system
coherence as in-field-maintenance services. We call these maintenance services
since they follow the concept that systems tend to disorder unless explicit ac-
tion is applied to keep them ordered. In other words, specific energy (in the
form of executing specific code) has to be applied to keep or regain system-wide
coherency.

Our framework allows users to (1) define the coherency requirements of the
states of protocols, (2) specify the maintenance/repair policy (i.e., when to self-
heal the system, and who invokes the maintenance service), and (3) define which
set of protocols need maintenance services in order to satisfy a system perfor-
mance requirement and the dependency constraints among the services, accord-
ing to the system specification and constraints. And our framework (1) enforces
the dependency requirements among maintenance services, (2) supports differ-
ent memory requirements for different maintenance services, (3) implements an
online monitor to measure system performances and states of protocols, and (4)
provides mechanisms for on-demand real-time self-healing of the system.

However, the resource constraints in terms of memory, energy, and bandwidth
of WSN systems present challenges to implement such a framework. We address
the challenges in our framework by supporting different memory management
strategies to satisfy different maintenance policies specified by users, by enabling
both global (the whole network) and local (a specified region) maintenance ser-
vices so that global maintenance services are only invoked when needed, by
executing only the necessary maintenance services via the dependency enforce-
ment instead of maintaining all the protocols in stack at each time a maintenance
service required, and by implementing both global and local monitors and pig-
gybacking report messages in the monitors.

2 Our In-Field-Maintenance Framework

Our framework works side by side with system protocols and application code
as shown in Figure 1. We present the details of the two main components of our
framework in subsections 2.1 and 2.2, respectively.



2.1 Maintenance Policy

The maintenance policy component takes the system specification and defines:
(1) the conditions under which a main-

MAC
Sensing 

Driver

Routing Sensing

Maintenance 

Policy

Maintenance 

Engine

Application

Middleware Services

Fig. 1. System Architecture

tenance service is to be invoked, (2)
the dependency constraints of a par-
ticular maintenance service, (3) the re-
gion a maintenance service is to be ap-
plied, i.e., global or local, and (4) the
state update policy to define when the
states of a protocol are to be updated.
The first 3 sub-components take en-

ergy efficiency into consideration when defining what to support in the frame-
work. The 4th sub-component deals with the memory constraints imposed by
WSN systems.

Conditions. Maintenance services might be triggered when there is (1) a system
sensing coverage failure, or (2) a system communication coverage failure, or (3)
a system density coverage failure or periodically.

Dependency Constraints. Dependency constraints define (1) the relationship
between a system performance measurement and the protocols contributing to
the measurement, and (2) the dependencies among protocols in a WSN system.
Consequently, the constraints define the dependencies among the maintenance
service for each system measurement and for each protocol. The dependency
specifications are defined according to the system requirements and look similar
to dependency graphs in the real-time scheduling research domain (but cannot
be shown here due to lack of space). Briefly, the specifications define the sequence
of a set of protocols to be executed.

As a result of dependency specifications, two energy inefficient situations are
avoided. The first is avoiding executing unnecessary maintenance services. Two,
avoiding invoking a maintenance service unnecessarily.

Regions. The region specification for a maintenance service gives the system the
flexibility to accommodate different strategies for different services to minimize
the energy consumption of each maintenance service. The coherent states of the
protocols in WSN are organized into two categories:

Global View of Coherent States – requires the states of the protocols to
be the same value within some acceptable range for every node in the system.
For example, time synchronization requires every node in the system to have the
consistent time view with the base station within some ε.

Local View of Coherent States – the local view of coherent states is
defined from the node’s point of view, i.e., by whether a node perceives the true
state in the system. For example: node A thinks that node B is its neighbor,
but actually node B is either out of its communication range due to the change
of the communication quality, or unexpected movement (i.e, wind blows node B



away), or node B is not functional due to running out of energy. In this case,
node A does not have a coherent view of its local neighborhood states.

The two different types of coherency requirements require different capa-
bilities to bring the system back to coherent states. Our in-field-maintenance
framework is designed to provide the flexible and efficient approaches to handle
both cases.

Guidelines for choosing a global service are when: (1) all the nodes in the
network demonstrate similar properties over a period of time. If each node in
the system has similar clock skew or drift, then it is reasonable to globally run
the time synchronization maintenance service to resynchronize the clocks; (2)
applications or maintenance policies require all the nodes in the network to
contain the same information or to take the same action. If an application or
a maintenance policy requires updating the report rate of all the nodes in the
network with a new rate; (3) replacing a protocol with a new implementation. In
order to defend against a newly expected security attack to the routing algorithm
currently deployed in the network, it is desirable to globally disseminate a new
routing algorithm to all the nodes. Otherwise, the nodes with different routing
algorithms may not be able to communicate.

The recommendations to choose local services are when: (1) the states of
concern only have local meanings. For example, the link quality of a node to its
neighbors only makes sense to be defined as a local parameter; (2) an application
or a maintenance policy only requires local repair.

Update Policies. In WSN, the memory of sensor nodes (128K ROM, 4K RAM
for MICA series devices) is very limited. When applications become more com-
plex, the memory is even a bigger concern. Moreover, some applications may
require that the system does not stop from its normal processing while main-
taining the system. The maintenance service requires extra available memory to
be allocated. Our framework supports three update policies to give the system
the capability to balance the trade-off between memory constraints and event
detection delays.

Delay Update until Commit Time : This policy delays the update of
the states to right before the conclusion of the maintenance process for a given
protocol. It does not stop a system from its normal processing, but requires the
maintenance service to allocate memory space to back up the old states.

Immediately Update, but Disable Sensor Interrupts: Here when a
maintenance service is invoked, all sensor interrupts are disabled. The result
is that the maintenance service does not demand substantial memory and race
conditions don’t exist. But the applications can not detect any new sensor events
during the execution of the service.

Immediately Update, but do not Disable Interrupts: This policy delays
the sensor reports until the end of the maintenance service, but allows sensor
interrupts during the execution of the maintenance service. The sensor readings
are stored in a buffer, so that no event is missed, but the time to report the
events to the applications is delayed.



2.2 Maintenance/Repair Engine

The maintenance engine implements the policies discussed in subsection 2.1. It
is composed of 4 parts: monitors, dependency checks, memory management, and
in-field-maintenance services. We next discuss the functionality of each.

Monitors. Monitors collect the specified states of concern and initiate main-
tenance services according to the policy specification. Our framework designs
a two tier monitoring architecture as shown in Figure 2. The global monitor
enables the base station to collect and process the performance and/or state
information from each individual node in the network via the collector. The
processed information then feeds into the controller. The controller generates
the list of the protocols to execute maintenance services and floods the list to
the network. Each node runs a local monitor. The local monitor acquires the
information on what to monitor from the base station, collects the requested
information through the local collector, and reports the requested information
back to the base station if required.

The monitors are capable of col-

controller

report

collector

Base Stationcontroller collector

controller
N1 Nn

Global Monitor

Local Monitor Local Monitor

states

report

collector

statesList of 

Procotols

List of 

Procotols

Fig. 2. Two Tire Monitor Architecture
for the Global In-Field-Maintenance Pol-
icy Enforcement

lecting specified state information
in 5 categories. And the 5 categories
comprehensively consider different
data required and system conditions
so that our framework can flexibly
be integrated with many existing
systems. (1) States that are avail-
able via directly interfacing with the
hardware layer, for instance, energy
remaining, and the clock. (2) States
that are obtainable through the in-
terfaces provided in the original sys-

tem without the need to interact with the nodes in the neighborhood, such as
the maximum number of neighbors in a node’s neighbor table or the maximum
number of parents of a node. (3) States that require the cooperation among the
nodes in a neighborhood with explicit message exchanges. Link quality is one
example of those states. (4) States that are specified as the states to be moni-
tored but the original system does not provide interfaces to expose those states.
(5) States that are not maintained by any components in the original system.

Dependency Checks. This component checks if a maintenance service has
to be executed together with some other services according to the dependency
constraints specified in subsection 2.1, and generates the correct execution flow
for the set of services. It also provides mechanisms to enforce the dependencies
when the maintenance services are invoked.

Memory Management. To support the “Delay Update until Commit Time”
policy specified in subsection 2.1, our memory management provides three prim-
itives to manage the states of maintenance services. The primitives are:



– MaintenanceAlloc: allocates memory to backup the state information of a
protocol before executing the maintenance service for the protocol.

– MaintenanceCommit: makes the new state information accessible to the ap-
plications right before the maintenance service finishes its execution.

– MaintenanceRelease: releases the allocated memory locations after the com-
mitment.

In-Field-Maintenance Services. This component provides the mechanisms
to execute the requested maintenance services.

3 A Case Study

In this section, we present one implementation of our framework for a real appli-
cation, VigilNet [5] [6] [7]. We choose VigilNet because it is a typical surveillance
and tracking application. Note that our framework is applicable to many other
types of applications.

3.1 Brief Overview of VigilNet

VigilNet is a recent major effort to support long-term military surveillance using
large-scale micro-sensor networks. The primary design goals of the VigilNet sys-
tem are to detect events or moving targets appearing in the system, to keep track
of the positions of moving targets, and to correctly classify the detected targets
in an energy-efficient and stealthy manner. Power management and collaborative
detection are two key research problems addressed in VigilNet. As discussed in
[8], VigilNet provides a three level power management service, namely tripwire
service, sentry service, and duty cycle scheduling.

After initialization, the tripwire service divides the system into multiple trip-
wire sections. A tripwire section can be either in an active or a dormant state.
The uniform discharge of energy in a section is achieved through rotation strate-
gies based on the remaining energy within individual nodes. Together with the
motivation to balance the energy consumption among all the nodes in the net-
work, at the same time to synchronize the time of all the nodes in the network
with the base station, and also to heal any transient node failures, VigilNet im-
plemented a rotation scheme to reinitialize the whole network for all the services
once per day.

The timeline to control the rotation is given by the phase transition graph
[5]. VigilNet starts with system initialization at phase I and follows the phase
transition graph through phase VIII. The duration of each phase is a control
parameter that is dynamically configurable at the base station. The initialization
process from phase I to phase VII normally takes 3 minutes, but it is a tunable
parameter according to the network size and system requirements. As we can see
that during the rotation/reinitialization process, the system stops functioning to
reinitialize itself.



3.2 One Application on VigilNet

Different from the execution sequence of the original VigilNet system, the new
VigilNet system we implemented, called SelfHealingVigilNet, executes as shown
in Figure 3. When the system transits into the tracking phase (phase VIII), Self-
HealingVigilNet also enters to the maintenance service phase which is in parallel
with the tracking phase. There is no rotation service in SelfHealingVigilNet as
it would be redundant.

Maintenance Policies in SelfHealingVigilNet : We define the mainte-
nance policy in SelfHealingVigilNet based on the system specification of VigilNet,
(1) Longevity, (2) Effectiveness, (3) Adjustable Sensitivity, and (4) Stealthiness.

In this case study, our main-
Phase II

Time Sync

Phase III

Localization

Phase IV

Asymmetric 

Detection

Phase V

Backbone 

Creation

Phase I

System 

Initialization

Phase VI

Sentry Selection

Phase VII

Health Report

Phase VIII

Event 

Tracking

Power Mgmt

Phase VIII

Power Mgmt

Event 

Tracking

Dormant Section

Active Section

Wakeup Service

start

Self-Healing/

Maintenance 

Service

Monitor

Fig. 3. Phase Transition in SelfHealingVigilNet

tenance policy focuses on the
longevity and the effectiveness
of the system. More specifi-
cally, time synchronization and
localization services are impor-
tant for the effectiveness of the
system. VigilNet requires the
clock drift to be confined to
the millisecond range. We use
the same maintenance policy
for the time synchronization
protocol, once per day. Due
to practical constraints, each
node in VigilNet obtains its
location at system deployment

time.
Besides time synchronization (Time Syn) and localization protocols, sens-

ing coverage (Sensing Cov) and communication coverage (Comm Cov) are also
crucial to the system performance. The sensing coverage depends on the sen-
try selection protocol. The communication coverage involves protocols such as a
asymmetric detection protocol (Asym D), and a backbone creation/robust diffu-
sion tree protocol (R. Diff Tree). The definitions of sentry selection, asymmetric
detection, neighbor discovery and backbone creation are the same as defined
in [5]. For the case study of our framework, we specify the minimum sensing
coverage requirement as 1 (100%), and the minimum communication coverage
requirement as 1 (100%).

We also observe that time synchronization, backbone creation/robust diffu-
sion tree creation, and self-configuration of the system need system-wide broad-
cast. Sentry selection (Sentry Sel) can be global or local. The region of a local
maintenance service (Local R) is defined by hop counts k, meaning that a local
maintenance process takes effect in its initiator’s k hop neighborhood.

In summary, the maintenance policies in SelfHealingVigilNet for the case
study are shown in Table 4(a). And the maintenance policies also demonstrate
that our framework is capable of supporting combinations of different condi-



Time Syn Sensing Cov Comm Cov

Condition 1day 1 1

Dependency No Sentry Sel Asym D

R. Diff Tree

Region Global Local R Global

Update P Delay Disable Int. Immediate U

(a) Maintenance Policy.

BPeriod=beaconP;CollectorBTimer(CBT)=T-beaconP;

ReportTimer = T; ConnectivityTable(CT) = ø;

CBT.fired() {Broadcast(CollectorBeaconMsg (CBM));}

RecvedCollectorBeaconMsg(CBM) {Update CT;}

ReportTimer.fired() {

signal ConnectivityReady to the report component}

(b) Pseudo Algorithm of the Local Collector.

tions, different dependency check requirements, different maintenance regions,
and different state update strategies to invoke a maintenance service. In Ta-
ble 4(a), Delay means “Delay Update until Commit Time”, Disable Int. stands
for “disable sensor interrupts”, Immediate U is for “Immediately Update but do
not Disable Interrupts”.

Monitors in SelfHealingVigilNet : The base station initiates the mainte-
nance process on time synchronization when the invocation condition is satisfied,
which is the pre-calculated period based on the one-hop clock drift/skew and the
number of the hops in the network. For the communication coverage, we imple-
ment a two-tier monitor as discussed in subsection 2.2. The local collector on
each individual node collects the connectivity information using the algorithm
as shown in Figure 4(b) and reports the information back to the collector on
the base station very period T . Period T and beacon period (BeaconPeriod) are
specified by the base station and tunable.

The communication coverage of the network is computed at the base sta-
tion by constructing a connectivity graph based on the connectivity information
reported from the nodes. As we observe from the VigilNet system, the nodes
on the communication backbone are also the sentry nodes. To be more energy
efficient, we piggyback the collecting of the states of the sentry selection protocol
and the connectivity.

Dependency checks in SelfHealingVigilNet : The maintenance service
for the time synchronization protocol is independent from all the other protocols
in VigilNet. The maintenance service for the sentry selection protocol also can be
independent. However, when the base station starts the maintenance process to
heal the communication coverage, it has to run the service for the asymmetric de-
tection protocol first, then the backbone creation/robust diffusion tree protocol.
These dependencies are declared and then followed by the in-field-maintenance
framework.

4 Performance Evaluation

We organize our performance evaluation into two parts. First, we demonstrate
that our framework works with VigilNet effectively by implementing SelfHeal-
ingVigilNet on XMS2 motes, the supported platform by VigilNet. Second, we
use the overhead, energy saved, system blackout time, and event detection prob-
ability as the performance metrics to analyze our framework. We choose the
latter 3 metrics because they are critical to VigilNet. Because it is not easy to



deploy a large system unattended for days we use simulations to analyze Self-
HealingVigilNet.

4.1 Experiments

In total, our framework uses 2,197 bytes of code memory and 115 bytes of data
memory and there were some modifications to the original VigilNet mainly in
the top level components (MainControlM.nc and MainControlC.nc).

In the experiments we enable the magnetic sensors. We deploy 10 XMS2
motes programmed with SelfHealingVigilNet in two lines (2 by 5) in our lab and
a base station connecting to a PC. We define that maintenance period is the time
between two maintenance services and maintenance phase is the time to execute
a maintenance service. We set the maintenance phase for both the time syn-
chronization and the sensing coverage to be 20 seconds and the communication
coverage to be 40 seconds, to be compatible with the default parameters defined
in VigilNet. However, the maintenance phase is a tunable parameter depending
on the network size. In order to speed up the experiments and without effecting
the correctnesses of the experiments, based on observations, we set the beacon
period to 10 seconds and the beacon rate to 0.5 (one beacon message every 2 sec-
onds) for the monitors, the maintenance period to 10 minutes, and we manually
create the sensor and communication coverage failures. All experiments start the
system from the initialization phase to the tracking phase as shown in Figure 3.
The real testbed experiments demonstrate that our framework can (1) execute
in parallel with the original system, (2) efficiently monitor specified performance
measurements, (3) enforce different maintenance policy specifications, and (4)
effectively manage the memory constraints. Due to lack of space the details are
not presented.

4.2 Analysis

In this section, we analyze the performance of SelfHealVigilNet using the metrics
defined above. The performance of VigilNet is the baseline. In our analysis, each
node has a radio range of 30 meters and a sensing range of 10 meters as in
VigilNet. Nodes are uniformly distributed over an area with 300 meters by 300
meters. The average density of the deployment is 10 nodes per radio range.
Radio consumes 48mW at transmit state and 24mW at receive state as studied
in. When a message is transmitted, the radio switches to the transmit state for 30
milliseconds, a typical time required by XSM motes to send a message under the
MAC contention. The beacon period for monitors and the maintenance phases
for each maintenance services are the same as in the experiments. The report
period and report rate for monitors are 20 seconds and 0.2 (one report every
5 seconds), respectively. Each battery of XSM motes has an energy capacity
uniformly chosen between 2,848mAh and 2,852mAh, voltage at 3V. Each analysis
result is the mean of 10 runs, with a confidence interval of 95%.

Overhead : The energy consumption of the monitors is the main overhead
of our framework. And the main energy consumer of the monitors is the radio,



 0

 2

 4

 6

 8

 10

 12

 14

 16

 5  10  15  20  25  30  35  40

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

ou
le

)

Beacon Period (seconds)

Local Maintenance Service
Global Maintenance Service

(c) Overhead per Maintenance Service

per Node.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1  2  3  4  5  6  7  8  9  10

E
ne

rg
y 

C
on

se
rv

ed
 (

Jo
ul

e)

Maitenance Period (days)

Sensing Cov Maintenance
Communication Cov Maintenance

Time Syn Maintenance

(d) Absolute Energy Saved per Node.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1  2  3  4  5  6  7  8  9  10

E
ne

rg
y 

C
on

se
rv

ed
 R

at
io

Maintenance Period (days)

Sensing Cov Maintenance
Communication Cov Maintenance

Time Syn Maintenance

(e) Ratio of Energy Saved per Node.

Fig. 4. Energy Analysis of the In-Field-Maintenance Framework

exchanging beacon messages around a neighborhood to collect the states infor-
mation of concern and reporting the states. We do not consider the overhead
to compute the connectivity graph in the communication coverage maintenance
service because the computation is done at the base station, and energy is not
a severe concern of the base station. Meanwhile, the computation overhead of
a node to calculate the sensing coverage is minimal as compared to the energy
consumed by the radio. During beacon and report periods, the radio is at either
the transmit state or receive state. For local maintenance services, the energy
consumed by a local collector is the overhead. For global maintenance services,
the local collector and reporting cause the overhead.

Figure 4(c) shows that the overhead of a node for both a local and a global
maintenance service at different beacon periods, while we fix the beacon rate at
0.5 (one beacon message every 2 seconds). We can see that the beacon period
has an approximately linear impact on the overhead. But the overheads for both
local and global services are minimum (less than 1.2mAh) by comparing with a
battery’s capacity (2,848mAh).

Energy Conserved Per Node : We analyze the impact of the maintenance
period to the energy consumption of SelfHealVigilNet. Different from the original
VigilNet system, our framework allows different maintenance periods for different
maintenance services. We investigate different maintenance periods over a period
of 60 days system lifetime. In VigilNet, all the protocols are reinitialized once per
day without considering if a protocol needs the reinitialization. During these 60
days, VigilNet reinitializes the system 60 times, where each reinitialization takes
approximately 24.3Joules calculated using the data available in [5]. Figure 4(d)
and Figure 4(e) show that the absolute energy saved per node can be as high
as 1,483.6Joules (137.4mAh), which is around 5% of a node’s battery capacity.
And the ratio of the energy saved is always above 60% and can save up to 98%,
which is significant. The ratio of the energy conserved is the difference between
the energy consumed during rotation services (eR) and the energy consumed by
individual maintenance services (eE) divided by eR.

Our experiments and analysis results show that our framework can be ef-
fectively incorporated with a complex legacy system (VigilNet) to improve the
performance of the system. For example, SelfHealingVigilNet saves up to 5% of
a node’s battery capacity, decreases the system blackout time to less than 11%



of the original system, and always detects an intruder, with minimum overhead
(less than 1.2mAh).

5 Related Work

SASHA [2] proposed a self-healing architecture for WSN. While SASHA is a cen-
tralized approach, our framework supports both global and local maintenance
services. A timeout control mechanism with two timers was studied in [10] to
enable the control center of a WSN system to be constantly aware of the exis-
tence/health of all the sensor devices in the network. The two-tier monitors in
our framework can collect 5 different categories of information of concern both
globally or locally.

Sympathy [13] proposed a prototype tool for detecting and debugging failures
for WSN applications in both pre-deployment and post-deployment. It detects
failures based on data quantity, rather than data quality at a centralized loca-
tion. Different from Sympathy, our framework not only supports globally and
locally collecting failure detection information, it also provides mechanisms to
recover the system. LiveNet [3] provides tools to understand the behavior of or to
provide a global view on the dynamics of WSNs. Passive monitoring infrastruc-
ture sniffers are implanted into the networks to collect the traffic traces. Offline
trace merging and analysis tools are developed to reconstruct the network con-
nectivity, to infer the routing path, and to identify hotspots of the system. In our
system, different from LiveNet, the state information are collected, distributed
or processed online by the sensor nodes themselves. Memento [14] is designed
for inspecting the health state of nodes in WSNs. It provides failure detection
and symptom alerts via an energy efficient protocol to deliver state summaries.
Our monitored state information not only is about node failure detection, but
also includes the performance and resource usage information of protocols in the
stack.

[15] presented a distributed algorithm to configure the network nodes into a
cellular hexagonal structure. The self-healing under various perturbations, such
as node joins, leaves, deaths, movements, and corruption, is achieved by the
property of the hexagonal structure. And [9] [12] [11] [4] achieve the reliability
or resilience toward failures or dynamics in the system via model or analysis
redundancy. However, these solutions are designed for individual protocols.

6 Conclusion

In this paper, we study an efficient and effective in-field-maintenance framework
for WSN under the resource constraints. The framework is composed of two com-
ponents, a maintenance policy and a maintenance engine. As far as we know,
our in-field-maintenance service framework is the first effort to build an efficient
and effective framework for WSN that supports the following collection of fea-
tures:(1) efficiently monitor both system performance measurements and states
of protocols of a system, locally and globally, (2) enforce dependency constraints,



(3) provide mechanisms to recover the system, and (4) provide different strate-
gies to manage memory. Based on the case study, both experiments and analysis,
for a real application VigilNet, our framework demonstrates that it improves the
performance of the original VigilNet system, such as energy conservation, system
blackout time, detection probability, with minimum overhead.

References

1. A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam,
M. Nesterenko, A. Vora, and M Miyashita. A wireless sensor network for target
detection, classification, and tracking. In Computer Networks (Elsevier), 2004.

2. T. Bokareva, N. Bulusu, and S. Jha. Sasha:toward a self-healing hybrid sensor
network architecture. In EmNetS-II, 2005.

3. B. Chen, G. Peterson, G. Mainland, and M. Welsh. Livenet: Using passive monitor-
ing to reconstruct sensor network dynamics. Technical report, Harvard University,
2007.

4. L. S. Crawford, V. Sharma, and P. K. Menon. Numerical synthesis of a failure-
tolerant, nonlinear adaptive autopilot. In CCA, 2000.

5. T. He, S. Krishnamurthy, L. Luo, T. Yan, B. Krogh, L. Gu, R. Stoleru, G. Zhou,
Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, and J. Hui. Vigilnet: An inte-
grated sensor network system for energy-efficient surveillance. ACM Transactions
on Sensor Networks, 2(1):1 – 38, 2006.

6. T. He, S. Krishnamurthy, J. A. Stankovic, T. F. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, J. Hui, and B. Krogh. An energy-efficient surveillance system using
wireless sensor networks. In ACM MobiSys, 2004.

7. T. He, L. Luo, T. Yan, L. Gu, Q. Cao, G. Zhou, R. Stoleru, P. Vicaire, Q. Cao,
J. A. Stankovic, S. H. Son, and T. F. Abdelzaher. An overview of the vigilnet
architecture. In RTCSA, 2005.

8. T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A.
Stankovic, and T. F. Abdelzaher. Achieving long-term surveillance in vigilnet. In
IEEE INFOCOM 2006, 2006.

9. G. Hoblos, M. Staroswiecki, and A. Aitouche. Optimal design of fault tolerant
sensor networks. In CCA, 2002.

10. C. Hsin and M. Liu. A distributed monitoring mechanism for wireless sensor
networks. In Proceedings of the 3rd ACM workshop on Wireless security, 2002.

11. K. Marzullo. Tolerating failures of continuous-valued sensors. In ACM Transac-
tions on Computer Systems, 1990.

12. G. Provan and Y. Chen. Model-based fault tolerant control reconfiguration for
discrete event systems. In CCA, 2000.

13. N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In ACM SenSys, 2005.

14. S. Rost and H. Balakrishnan. Memento: A health monitoring system for wireless
sensor networks. SECON, 2006.

15. H. Zhang and A. Arora. Gs3: Scalable self-configuration and self-healing in wireless
networks. In ACM PODC, 2002.


