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ABSTRACT

Auditeur is a general-purpose, energy-efficient, and context-aware
acoustic event detection platform for smartphones. It enables app
developers to have their app register for and get notified on a wide
variety of acoustic events. Auditeur is backed by a cloud service
to store user contributed sound clips and to generate an energy-
efficient and context-aware classification plan for the phone. When
an acoustic event type has been registered, the smartphone instan-
tiates the necessary acoustic processing modules and wires them
together to execute the plan. The phone then captures, processes,
and classifies acoustic events locally and efficiently. Our analysis
on user-contributed empirical data shows that Auditeur’s energy-
aware acoustic feature selection algorithm is capable of increas-
ing the device-lifetime by 33.4%, sacrificing less than 2% of the
maximum achievable accuracy. We implement seven apps with
Auditeur, and deploy them in real-world scenarios to demonstrate
that Auditeur is versatile, 11.04% — 441.42% less power hungry,
and 10.71% — 13.86% more accurate in detecting acoustic events,
compared to state-of-the-art techniques. We present a user study
to demonstrate that novice programmers can implement the core
logic of interesting apps with Auditeur in less than 30 minutes, us-
ing only 15 — 20 lines of Java code.
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1. INTRODUCTION

Being able to deliver smartphone apps quickly to customers is
crucial in today’s highly competitive app market. Developers de-
pend heavily on APIs provided by their smartphone platform for
common tasks, but when it lacks necessary functions for their ap-
plication, it costs developers weeks of time for implementation.
Beyond just time, many developers do not have the necessary tech-
nical background to implement these functions correctly or effi-
ciently. Because of this, there is a growing trend where smartphone
apps are paired with numerous web services by other providers to
get access to specialized or computationally demanding tasks. Mi-
crosoft’s Hawaii [1], for example, supports path prediction, key-
value storage, translator, relay, rendezvous, OCR, and speech-to-
text services. Google provides services such as web search, maps,
play, YouTube, cloud drive, and Gmail. Other providers give access
to data sources such as weather, financial data, airline information,
and parcel tracking.

Smartphones have begun to use their microphones for various
acoustic processing tasks, but most of the apps are special purpose
acoustic event detectors. Examples of voice and music based sys-
tems include: speaker identification [16], speech recognition [31],
emotion and stress detection [18, 28], conversation and human be-
havior inference [20, 21], music recognition [32], music search and
discovery [3], and music genre classification. There are other types
of apps that fall into the non-voice, non-music category, such as
a cough detector [14], a heart beat counter [23], and logical lo-
cation inference [4, 6]. These examples are limited in number and
acoustic sensing is often one of multiple sensing modalities in these
works. There are existing works [17, 19] that consider multiple
types of acoustic events. SoundSense [17] considers speech, music
and ambient sound, and provides a mechanism to label clusters of
ambient sounds to extend the set of classes. Jigsaw [19] considers
speech and sounds related to activities of daily living. These sys-
tems still lack in providing tools and mechanisms to easily extend
detection capabilities and effectively support development process.
They are limited for general purpose acoustic event detection ser-
vice for smartphones and in exploiting the promising opportuni-
ties given by already prevailing smartphones equipped with micro-
phones.

To address this need, we have built a general-purpose acoustic
event detection platform called Auditeur. Compared to the previ-
ous works in the literature, we position Auditeur as a developer
platform rather than just a system detecting a set of sounds. Au-
diteur provides APIs to developers to enable their app to regis-



ter for and get notified on a wide variety of acoustic events such
as speech, other types of man-made sounds, such as emotional
or physiological sounds, music, environmental sounds, sounds ob-
served in households, offices, or public places, sounds of vehicles,
tools and so forth. Auditeur achieves this capability of classifying
general-purpose sounds by utilizing its fagged soundlets concept
which are crowd-contributed, short-duration audio clips recorded
on a smartphone along with a list of user given tags and automati-
cally generated contexts. The cloud hosts the collection of tagged
soundlets and provides a set of services, which are used by the
smartphones, to upload new soundlets and to obtain a detailed clas-
sification plan to recognize sounds specified by the list of tags as
parameters. Typically a plan contains one or more acoustic pro-
cessing pipeline configurations, corresponding to different energy-
requirements and user-contexts, specifying the required acoustic
processing units, their parameters, and how they are connected.

Several salient features when taken in combination make Au-
diteur unique. First, Auditeur provides a simple yet powerful API
which novice developers with basic object-oriented programming
skills can learn easily. Second, Auditeur supports both personaliza-
tion and generalization. It is possible to manage personal sounds
and classifiers as well as obtain sounds and classifiers that were
created by other users of the system. Third, the acoustic process-
ing pipeline inside the phone is flexible and extensible. The phone
contains a wide range of acoustic processing primitives. However,
only the ones that are required to recognize the desired sounds (as
mentioned in the classification plan from the cloud) are dynami-
cally instantiated and wired to form the pipeline. Addition of a new
primitive is easy since the processing units have a generic structure
and are dynamically wired. Fourth, the sound recognition service
running on the phone is adaptive. Apps are notified on a change
of context or at a specific battery level, and a new pipeline con-
figuration is loaded to adapt to the change. Fifth, Auditeur is de-
signed for efficiency in communication, computation, and energy
consumption. The phone needs to connect to the cloud only once
to obtain the classification plan. Hence an uninterrupted Internet
connectivity is not a requirement. Acoustic processing in Audi-
teur is efficient as only the necessary components run within the
phone. An energy-aware acoustic processing plan to be executed
by the phone is generated at the cloud to increase the lifetime of
the device while maintaining high accuracy.

Partitioning the planing and execution between the cloud and
the phone let Auditeur have the best of both of an in-phone [17,
16, 18] sound recognizer and a cloud-assisted [28, 32, 14] one. In-
phone recognizers perform all of the processing inside the phone.
Typically, they are highly tuned to the application scenario, and
use a fixed set of features and an offline-trained, fixed classifier.
Thus, they are rigid and are not usable if either the application or
its context changes. Cloud-assisted recognizers, on the other hand,
send unprocessed or partially processed data to a server, and rely on
web services to perform further processing and classification. This
approach is more flexible, but has several limitations such as the
requirement for an uninterrupted Internet connectivity, high band-
width, and the expense of sending a large chunk of data over the
cellular network. Our approach for Auditeur takes the best of these
two strategies. Auditeur performs the signal processing and feature
classification completely inside the phone, but uses the cloud to
store user contributed sound clips, build new classifiers, and obtain
an energy-aware classification plan. Once the smartphone receives
the classification plan from the cloud, it dynamically instantiates
the components required to execute the plan, and keeps detecting
acoustic events efficiently and locally.

Auditeur and its energy and context-aware classification plan-

ning architecture are different from existing context monitoring and
mobile sensing platforms [11, 12, 13, 7, 20]. SymPhoney [11]
requires developers specify their hand-tuned processing pipelines,
whereas the acoustic processing pipeline in Auditeur is generated
automatically. SeeMon [12] maintains an essential set of sensors to
optimize the sensing and transmission cost associated with the sen-
sors. Orchestrator [13] provides a plan-based execution framework
with policy-based system optimization which dynamically adapts
to the changing system and application situations. It opportunis-
tically changes its execution plan based on the current status of
resources under a specified policy such as minimum accuracy or
minimum overall energy cost. Unlike [12, 13], Auditeur maintains
an informative set of acoustic features and takes a deterministic ap-
proach in maximizing its classification accuracy while satisfying
the developer specified minimum lifetime goal. Certain aspects of
Kobe [7] such as the API to create a classifier, the search for an
optimum configuration, and runtime adaptation are conceptually
similar to Auditeur’s, however, they are quite different in design
and technical details. For example, Kobe requires explicit decla-
ration of the processing pipeline, performs an exhaustive search,
and offloads code to server, whereas Auditeur generates pipelines
automatically, applies dynamic programming instead of a search,
and does not offload code to satisfy its energy constraint. Darwin-
Phones [20] proposes a collaborative approach of exchanging clas-
sifiers and classification results among phones. Auditeur’s shows
it collaborative nature at the data level via its crowd-contributed
tagged soundlets.

We evaluate Auditeur with four types of experiments. First, we
measure CPU and memory footprints, and energy consumptions of
different processing units. Second, we perform an empirical study
on different categories of sounds to demonstrate the efficacy of our
energy-aware feature selection algorithm. Third, we describe case
studies on seven apps, implemented with Auditeur, to demonstrate
the versatility of Auditeur, and to quantify their energy efficiency,
accuracy of event detection, and context awareness. Fourth, we
describe a user study on developers evaluating the usability of the
Auditeur APL

The contributions of this paper are the following:

e A versatile, general-purpose, flexible, extensible, context-aware,
and efficient end-to-end acoustic event detection platform for
smartphones, backed by the cloud.

e A sound recognition service on the smartphone, capable of dy-
namically wiring acoustic processing units, and running an app-
tailored and context-aware classification plan on the phone, and
an API to register and get notified on specific sound events.

e A collection of crowd-contributed, admission controlled, and
contextually-tagged short sound clips in the cloud available to
the developers, and an API to upload and manage them.

e A dynamic programming based acoustic feature selection al-
gorithm that generates energy-aware acoustic event detection
plans for smartphones. Our empirical evaluation shows that
the algorithm is capable of increasing the device-lifetime by
33.4%, sacrificing less than 2% of its maximum achievable ac-
curacy.

e We implement 7 apps with Auditeur, and deploy them in real-

world scenarios to demonstrate that Auditeur is versatile, 11.04%—

441.42% less power hungry, and 10.71% — 13.86% more ac-
curate in detecting acoustic events, compared to state-of-the-art
techniques. A user study demonstrates that novice program-
mers can implement the core logic of interesting apps with Au-
diteur in less than 30 mins, using only 15 — 20 lines of Java
code.



2. USAGE SCENARIOS

We describe three scenarios to illustrate the use cases of Audi-
teur.

Auditeur is for Developers. Alice is a smartphone app de-
veloper who has an exciting idea for an app. Her envisioned app
listens to a piece of music, determines its genre, and suggests sim-
ilar music to the user. But the problem is, Alice does not know the
technical details of how to classify music based on their acoustic
features. She finds Auditeur helpful which has a collection of short
music clips and their genre. She uses Auditeur’s API to obtain a
music genre classifier by specifying the music-types she wants to
recognize, uses Auditeur’s API to perform the classification on the
phone, and uses Auditeur (or, any other online music databases) to
get a list of songs of the same genre.

Auditeur is for Researchers. Bob is a behavioral researcher
who wants to perform a quick study on how people interact socially.
For his study, he gathers some volunteers and collects samples of
their voice, laughter, and yelling sounds using a custom app pow-
ered by Auditeur. At first, he uses Auditeur’s API to record the
audio and add proper tags, e.g., voice, laughter, yell, context, and
recording environment, to it. Then he uses Auditeur’ API to upload
the samples, and obtains a classifier from the cloud which detects
speaker id, laughter, and yelling sounds in different environments
and contexts. Finally, he uses Auditeur API to continuously listen
to the microphone and log social interactions of his study subjects.

Auditeur is for End-users. Cathy is a busy housewife, a mother
of a newborn, and a smartphone user. Recently she installed a
smartphone app that monitors her sleeping baby when she is busy
working downstairs. During the configuration of the app, the GUI
asks her to record sound samples of her baby crying, whining,
coughing, and doing baby-talks as well as other possible sounds
that might occur in the room, e.g., the sound of the air condi-
tioner, hanging toys, door squeaking, and noise made by the pet.
She records all of these sounds using the app, protects them with a
password, and selects the ones she wants to be notified of. Once the
configuration is completed, she keeps the phone on a table within
the suggested distance from the baby and starts the app. The app
keeps monitoring the baby and whenever a sound of interest occurs,
the phone alerts her by calling the phone in the kitchen.

3. THE TAGGED SOUNDLET CONCEPT

A tagged soundlet is a short-duration (3 — 30s) audio clip,
recorded on a smartphone along with two types of contextual in-
formation: user given tags and phone generated context.

3.1 Tags

The logical tags associated with a soundlet are the user given
identifiers that describe its content and the surrounding environ-
mental context. Examples of tags are in Table 4 of Section 8.3.

Content and Container Tags. While the user chooses the tags
that he wants to use to describe a soundlet, we require him to en-
list two kinds of tags: content, and container tags. The content
tags describe what the sound is, and the container tags describe the
background which contains the sound. For example, a 15s record-
ing of Alice’s voice at her office should have {voice, female,
Alice} in the list of content tags, and {office} in the list of con-
tainer tags.

Lookfor and Within Tags. The content tags are used in two
different ways during the training of a soundlet classifier. The look-
for tags describe a class of soundlets that the user wants to recog-
nize, and the within tags describe the class of soundlets that repre-
sents the universe of sounds, i.e. the set of sounds that might be
present in the environment along with the sound that he wants to

recognize. For example, when creating a training set for a classifier
that detects Alice’s voice at her office: the lookfor tags should have
{voice, Alice} onthe list, the within tags should include{voice,
printer, phone}, and the container should be {office} as be-
fore.

3.2 Phone Contexts

The phone context refers to additional information about the
soundlets which may or may not be conveyed by the tags. These
are similar to the tags in the manner they are used by the recogni-
tion algorithm, but they are different in the manner they are gen-
erated. The phone context is either automatically generated by an
algorithm using information from the on-board sensors, or they are
assumed. The developer of the app specifies whether an automati-
cally generated context or an assumed context — whichever is more
suitable to the app — should be used.

Aside from basic audio information such as the sampling rate,
encoding, duration, and timestamp, Auditeur generates three other
types of contexts, which are: (1) the location of the phone, (2) the
position of the phone with respect to body, and (3) the environ-
mental noise level. Section 6.2 provides an elaboration of phone
contexts. Note that, the developer of an app can always override
the context generation process. We keep this provision in Auditeur
as context generation has its overhead and in many cases an app is
used only in a few specific presumed contexts. For example, an app
that detects vehicle sounds can assume that the location is outdoors
instead of periodically getting it computed.

3.3 Public and Private Spaces

The space of soundlets is logically partitioned into two sub-
spaces from a user’s point of view — public and private. A user of
Auditeur is anyone who has an account in Auditeur. Typically, the
user is an app developer, who uses the public space by default, but
may use a private space with proper permissions from an end-user.

3.3.1 Public Soundlets

The public space contains shared soundlets, contributed by all
users of Auditeur. This is visible to everyone, and does not require
any authentication to access. However, there are two constraints
that must be met by each soundlet.

Tag and Sanity constraints. There is a predefined fixed set
of tags that can be attached to public soundlets. The user cannot
create, modify or delete any tag. The set of tags is maintained by
the system admin of Auditeur. Although, at present, there are over
1000 different tags, we admit that no fixed set is ever sufficient to
cover the enormous possibilities of tags. However, limiting the tags
in the public space keeps the space manageable and provides us a
way to ensure the confidence in sound recognition.

Every public soundlet goes through a sanity check to ensure
that it is not an outlier with respect to other soundlets with the
same tags. Thus, a public soundlet is not immediately made vis-
ible to everyone until it passes an outlier detection test. This is to
ensure that no attacker can mess up the public space by filling it
up with soundlets with non-representative tags. A service running
on the cloud automatically detects non-conforming soundlets using
distance based outlier detection technique [S] which is described in
Section 7.2.

3.3.2 Private Soundlets

Private soundlets are user specific and are not shared. The user
has to access his private space using proper authentications. Un-
like public soundlets, the private ones are not limited by the tag and
sanity constraints, i.e. a user can upload any sound he likes into his



private space and attach whatever tag he wants to describe it. How-
ever, the list of content and container tags has to be the same (in
number of tags and the spelling of tags) in order for two soundlets
to be treated as belonging to the same class.

We keep provision for private space in our design in order to
complement the public space which is limited by the choices of
tags and has a high degree of sanity requirement. The private space
is more flexible, tailored to the specific needs of a user, and if prop-
erly used, an infinite number of possible sounds can be stored and
recognized by our system making it highly extensible.

4. AUDITEUR SYSTEM OVERVIEW

The design of Auditeur is two-tiered: the phone contains the
mechanism for sound capture, sound processing, and sound recog-
nition, while the cloud provides the logic for building classifiers
and tuning the parameters for the sound processing modules on the
phones.

4.1 In-Phone Processing

4.1.1 Tagging and Uploading Soundlets

Auditeur provides an API to record, add tags, and upload soundlets

to the cloud. The API provides an interface for the default sound
capture device, however the developer may choose a different one
(such as a Bluetooth microphone) or an already recorded sound
clip. After the sound is captured, the tagging process automatically
generates the phone contexts, and the user can review and change it
prior to uploading. The sound clip is then uploaded to the cloud. At
this stage, the upload of the public soundlet could fail if it violates
the tag or sanity constraints.

Uploading soundlets to the cloud is energy consuming. How-
ever, this is done only once and is used to create classification plans
for several apps. An alternative to uploading the sound clips is to
extract the features locally and then upload the acoustic features
only. But we do not follow this approach to keep our design simple
and extensible. By uploading only the features we lose the opportu-
nity to explore the possibility of considering new acoustic features
and creating more sophisticated classification plans.
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Figure 1: Recording, tagging, and uploading soundlets to the
cloud.
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Figure 2: Downloading configuration, wiring components, and
sound event detection.

4.1.2 Acoustic Event Detection

The cloud generates an app tailored acoustic event detection
plan that directs the phone on which components should be instan-
tiated on the phone and how they should be wired together to form
an acoustic processing pipeline. The plan could contain more than
one pipeline configuration, corresponding to different contexts or
energy-requirements. The phone reads the plan from an XML file,
instantiates and initializes the processing units with the specified
parameters, and wires them together to form a pipeline. Once the
pipeline is ready, an API call starts reading audio samples from the
microphone, and pushes data down the pipeline. The app is issued
a callback once the desired sound event is detected. A change in
context, such as moving from indoors to outdoors, or putting the
phone inside the pocket, automatically loads a different pipeline
configuration by default, however, the developer can override this
behavior.

4.2 In-Cloud Processing

An energy-aware acoustic event detection plan is generated in
the cloud upon receiving a request from the phone. A request con-
tains: sounds the app is looking for, other unwanted sounds that
might occur in the environment, contextual information, and en-
ergy constraints. The tags and contexts are then used to create a
comprehensive training set using a subset of the currently available
soundlets in the desired space. To meet the energy constraint, the
dimensionality of the training set is reduced by selecting a subset of
features, considering the energy consumptions of different acoustic
processing units. Finally, a number of classifiers are trained, and
the one showing the highest accuracy during cross-validation tests
while meeting the energy criteria is chosen. The sound processing
pipeline, feature set, the classifiers, and their parameters altogether
form the contents of a downloadable configuration file.

Since communication to the cloud and training classifiers on-
the-fly is costly, the cloud packs a set of pipeline configurations,
corresponding to different contexts and energy requirements, into
one classification plan.

Look for:
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Figure 3: Request for a classifier, training the classifier, and
generating configuration file for download.

4.3 API Example

Figure 4 shows a code snippet which demonstrates the usage
of Auditeur API for recording, tagging, and uploading soundlets to
the cloud, and obtaining and using a classification plan from the
cloud. Lines 2 — 3 create a SoundletRecorder to record a 16s
audio and obtain a Soundlet. Lines 4 — 5 create the content and
container tags, and lines 6 — 7 set the tags and make the soundlet
private. Lines 8 — 10 grab the SoundletManager, and upload
the soundlet to the cloud. Lines 12 — 13 create the lookfor and
within tags. Line 14 creates a SoundletDetector and registers
the application as a listener. Line 15 obtains a classification plan
and initializes the detector, and line 17 starts the continuous sound
event detection process.



soundlet.setTags (content, container);
soundlet.setSharing (false) ;
SoundletManager manager = new SoundletManager (

9 getSystemService ("SoundletService"));
10 manager.uploadSoundlet (soundlet);
11 //Get a classifier and register for a match event.
12 String[] lookfor = {"voice", "Alice"};
13 String[] within = {"voice", "printer", "phone"};
14 SoundletDetector detector = new SoundletDetector (this);
15 detector.setPipeline (manager.getConfig(

16 lookfor, within, container));

17 detector.start (SoundletDetector.CONTINUOUS) ;

1 //Record and upload a soundlet.

2 SoundletRecorder recorder = new SoundletRecorder();
3 Soundlet soundlet = recorder.recordSoundlet (16);

4 String[] content = {"voice", "female", "Alice"};

5 String[] container = {"office"};

6

7

8

Figure 4: An example code snippet to create, tag, upload, get
classification plan, and detect soundlets.

5. KEY FEATURES OF AUDITEUR
5.1 People in the Loop

The person who contributes a soundlet knows it the best. Au-
diteur provides an API to let people record their own sounds, and
tag them appropriately. An alternate approach, such as automated
tagging, might help the user with some suggestions, but is not suffi-
cient since a whole bunch of different sounds is often indistinguish-
able. For example, aerosol spray, steam, waterfall, and white noise
sound almost the same. The tagging process in Auditeur is guided
by the concept of the content and container tags, which keeps the
background explicit from the sound of interest. The sound recogni-
tion process is guided by the lookfor and within tags, which specify
the sound of interest as well as other possible sounds in the envi-
ronment — the best way to identify these is to engage the end-user.

5.2 Personalization as well as Generalization

Auditeur has provision for both personalization and general-
ization in sound recognition. This is achieved by the two logical
spaces: public and private spaces, which are used to store soundlets
and create classifiers. The public space contains soundlets that are
shared by everyone, and hence this collection is enormous, and the
classifiers created using these soundlets have more generalization
ability in sound recognition tasks. The public space is for develop-
ers who want to build and test an app quickly, and for apps that
do not require personalization. The private space, on the other
hand, ensures privacy, and the classifiers created using the private
soundlets are tailored to meet the end-user’s need.

5.3 Cloud-Directed On-Device Processing

Sound recognition on the phone is not a one-size-fits-all prob-
lem. Every problem is unique and involves different sets of tasks
along the pipeline. This is why, in Auditeur, we keep provision
for dynamically creating a chain of tasks for a specific problem.
An algorithm running on the cloud decides which set of tasks are
appropriate for a given problem, and creates a configuration file de-
scribing the tasks and parameters required to solve it. The phone
downloads the configuration file, constructs the chain of tasks, and
executes them locally. Communication with the cloud is not con-
tinuous, rather the phone is required to connect to the cloud only
once to get the execution plan.

5.4 Designed for Efficiency

Mobile phones are limited by their processing capability and
battery life. A novel feature of Auditeur is that, it provides the

smartphone with an API to obtain energy-aware classification plans
from the cloud. For this to work, we profile the energy consumption
of all the tasks that are involved in the sound recognition process
on the phone. The cloud uses this profile to formulate a dynamic
programming problem that selects the set of acoustic features re-
quired to recognize desired soundlets, under a given energy con-
straint. That means, a smartphone having 30% remaining battery
life can use a classifier which is aware of its current condition and
is different from the one being used since the battery was full.

5.5 Context Awareness

Auditeur considers the contexts in which the sound is recorded
and is matched. Keeping contextual information such as the loca-
tion, body position, and environmental noise level makes the sound
matching adaptive to change. This is where we exploit the mobility
of the device to make our solution elegant when compared to stan-
dard sound matching algorithms. Contexts increase the adaptability
of our system in different ways. For example, the physical location
of the device greatly eliminates a large number of unlikely sounds
from consideration during the sound matching process. Body posi-
tion of the phone is used to normalize the received signal strength,
and the environmental noise level guides the noise reduction pro-
cess. We describe a set of experiments to demonstrate the benefits
of using contextual information.

6. IN-PHONE COMPONENTS

The implementation of in-phone processing is modular and lay-
ered as shown in Figure 5. At the bottom, we have three services
that are running in the background. The Sound Engine service is the
one that performs the actual sound recognition task, while the other
two manage contexts and communications to the cloud. These ser-
vices, along with some internal APIs, support the public API layer,
which interacts with the applications.
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Figure 5: In-phone processing components.

6.1 The Sound Engine

The soundEngine is a singleton, persistent service that is re-
sponsible for instantiating and initializing the acoustic processing
units, forming a processing pipeline that detects sound events, and



providing registration and notification services to the running ap-
plications.

6.1.1 Acoustic Processing Pipeline

Acoustic processing in Auditeur is divided into a five stage
pipeline: (1) preprocessing, (2) frame level feature extraction, (3)
frame level classification (frame admission), (4) window level fea-
ture extraction, and (5) window level classification. Each stage in-
volves multiple tasks, and each task is performed at an acoustic
processing unit (APU).

Pre- Frame Frame Window Window
Processing Features Admission Features Classify

Figure 6: The acoustic processing pipeline in Auditeur.

Figure 6 shows the high level structure of the pipeline. The pro-
cess starts with a preprocessing stage which captures audio from
microphone, converts the byte stream into a stream of fixed sized
frames, and applies filtering, windowing, and noise compensation
as needed by the application. Each frame then passes through a
frame level feature extraction stage. We have implemented a to-
tal of 25 time and frequency domain features, but not all of them
might be used in single sound recognition task. These frames are
then classified using a frame level classifier which acts as an ad-
mission controller, and decides whether or not to process a frame
any further. If a frame is admitted to the window level feature ex-
traction stage, a fixed number of consecutive frames are gathered
to form a window, and up to 12 statistics are computed per feature
per window, resulting in a maximum of 121-element feature vector.
This number is less than 25 x 12 since not all statistical functions
are applicable to all features. Each window is then classified by a
window level classifier.

Table 1 shows the list of APUs that are implemented on the
phone. We have implemented 5 preprocessors, 25 feature extrac-
tors, 12 statistical units, and 7 classifiers. We have put more em-
phasis on the frequency domain features as they are more robust
to noise. We have implemented the classifiers that are commonly
known to solve sound recognition problems, and implemented only
their classification logic inside the phone as their training happens
in the cloud.

APU List

Preprocessor  Sampling, Framing, Filters, Windowing, Noise Compensation.

Features FFT, ZCR, RMS, 13-MFCCs, Low Energy (Weak) Frame Rate
Spectral {Entropy, Energy, Flux, Rolloff, Centroid},
Bandwidth, Phase Deviation, Pitch.

Statistics Mean, Stddev, Geometric Mean, Harmonic Mean, Range,
Moment, Zscore, Skewness, Kurtosis, Median, Mode, Quartile.

Classifiers Naive Bayes, Decision Tree, GMM, MLP, SVM, kNN, HMM.

Table 1: Acoustic processing units in Auditeur.

6.1.2 Forming the Pipeline

The acoustic processing units (APUs) are the building blocks
of the acoustic processing pipeline. APUs are dynamically instan-
tiated and wired at runtime to form the pipeline. Each APU keeps
a list of its immediate successor APUs, and implements two meth-
ods: process and forward. The process method performs its
intended work, and the forward method pushes its output to its
children. Instantiation of the APUs and the wiring process is guided
by an XML-complaint configuration file that is obtained from the
cloud. The configuration file is essentially the description of a di-

rected acyclic graph where the nodes are the APUs and the directed
edges denote the wiring among them.

<?xml version="1.0" encoding="utf-8"?>
<nodes>
<node id="1" label="frame" />
<node 1id="2" label="rms" />
<node 1d="3" label="fft" />
<node id="4" label="zcr" />
<node id="5" label="entropy" />
<node id="6" label="flux" />
<node id="7" label="DT" parents="2" >
<params> ... </params> </node>
<node 1d="8" label="admitter" window="32" />
<node 1id="9" label="stat.mean" window="32" />
<node id="10" label="stat.mean" window="32" />
<node id="11" label="aggregator" parents="3" />
<node id="12" label="GMM" >

<params> ... </params> </node>
<node id="13" label="HMM" >
<params> ... </params> </node>
</nodes>
<edges>

<edge source="1" target="2" />
</edges>

Figure 7: Example of an XML file, describing the APUs and
wiring to create the processing pipeline.
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I
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Classifier GMM Context
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Figure 8: An instance of a dynamically wired pipeline corre-
sponding to the XML file in Figure 7.

Example: Figure 8 shows an example of dynamically created
pipeline based on the configuration file in Figure 7. This is sim-
ilar to the sound processing as in [17], except that we show only
a subset of features due to space limitation. In this example, 2
frame level features (RMS and spectral entropy) are used to admit
frames using a decision tree classifier, and 2 window level features
(spectral flux and zero crossing rate) are used to classify the win-
dow using a GMM. Finally, a HMM smoothens the classification
results.

6.1.3 Registration and Notification

The sound engine internally maintains a register which keeps
records of applications, desired sound events, and notification logic.
Whenever an event, registered by a running application is detected,



it broadcasts a notification according to the notification logic. Cur-
rently we support three types of notification: continuous (always
notify), counter-valued (up to a number of events), and timed (up
to a time duration after the registration or the first event).

6.2 Phone Context Generation

Auditeur provides three types of contextual information: loca-
tion, position, and noise level. The location context refers to the
GPS coordinates and whether the location is indoors or outdoors.
While uploading a soundlet, we store the GPS coordinate if it is
available. The availability means — we are getting a location fix
and also the app has permission to use GPS. However, the current
version of Auditeur only uses indoors or outdoors information. Yet
we kept the GPS coordinates to investigate more fine grained loca-
tion aware sound matching which we leave as a future work.

We adopt a simplified version of [34] to detect indoors or out-
doors using only the accelerometer and cellular signals. The po-
sition context refers to the position of the phone with respect to
human body which could be either direct (i.e. the sound source is
close to the microphone), in pocket, or at a distance. This is similar
to the phone contexts used in [17], and is estimated by the same
principle. The noise level refers to the environmental noise level in
dB scale.

Auditeur provides APIs to specify an action to be taken when-
ever there is a change in context. For example, when a person
comes home from outside, the context engine would detect the
change, and take actions that the developer programmed for, which
is by default — loading a different pipeline configuration from the
classification plan that is appropriate for home environment.

Auditeur provides APIs to enable and disable context checking,
and to control the frequency of monitoring the change in each con-
text. As context checking is costly, the developer of the app should
choose an appropriate duty cycle to check and balance its benefit
over cost.

6.3 Communication to the Cloud

Applications communicate to the cloud via the communica-
tion service, which submits new soundlets to the cloud through a
Web HTTP interface. We implement a basic web application us-
ing JAVA and the Spring 3 Framework for this purpose. For host-
ing, we use the Amazon web services infrastructure by running our
application in a Tomcat 7 web container on an Amazon EC2 in-
stance. Soundlets, along with their tags and contexts, are serialized
in JSON format and are submitted to the Web. Afterwards, the data
is committed to the database as described in Section 7.3.

When an app requests a classification plan, the communica-
tion service issues a GET request to the web interface on its be-
half with search parameters such as the tags, contexts, and energy
constraints. In response, the cloud creates the classification plan,
serializes it as a JSON object, and sends it to the phone.

6.4 Public and Internal API

Four components constitute the public API layer. The Soundlet
Recorder records audio from the microphone, converts it to a
Soundlet, and stores them locally. The SoundletContext uses the
ContextManager to get the current context, and the TagHelper to
get a list of matching tags from the cloud. The SoundletManager,
with the help of CommunicationManager, manages the commu-
nication between the phone and the cloud to upload soundlets and
to download classification plans. The SoundletDetector regis-
ters the running application as a listener for desired sound events,
initializes the SoundEngine, and notifies the application at desired
sound events.

7. IN-CLOUD COMPONENTS

The primary job of the cloud service is to generate an energy-
aware acoustic event detection plan which we describe in detail.
Other services such as tag suggestion, storage and caching are de-
scribed briefly.

7.1 Energy Aware Classification Plan

Given a set of tags and phone context, a service in the cloud
creates an energy aware acoustic event detection plan.

7.1.1 Training Set Generation

The cloud creates a training set by choosing a subset of the
soundlets in the cloud. First, it selects the soundlets having all of
the container tags — indicating that the training is environment spe-
cific. It then filters out soundlets that do not contain any of the
lookfor or within tags assuming that those are not present in the
acoustic environment. Among the remaining soundlets, the ones
having all of the content tags are marked as positive examples, and
the rest are marked as negative examples. Finally, all 121 acous-
tic features are extracted to form an extended training set, which is
then reduced by a feature selection algorithm.

7.1.2  Feature Selection Algorithm

Unlike feature selection [9] in the machine learning literature,
where the criterion is to minimize the number of features, Audi-
teur’s goal is to minimize the total energy consumption of feature
extraction on the phone, while maximizing their ability to retain
enough information for an accurate classification. A brute force
approach that enumerates all 2'2! subsets is not feasible; hence we
take a dynamic programming approach to this problem. A formal
description of the problem and its solution are described next.

Given a training set 7" of size n X m, where n is the number
of samples and m is the dimension of the feature space, the target
class labels C of size n x 1, the energy cost of computing each
feature on the phone E = {e1, ez, ...em}, and an energy budget
B, the goal is to select a subset of features that uses no more than
B units of energy while maximizing their ability to retain enough
information for an accurate classification.

Since we are selecting a subset of the features, we need a metric
to measure the goodness of a feature. A feature is relevant if it is
correlated to the target class, and is non-redundant if it is not highly
correlated to other features. In Auditeur, we take an information
theoretic approach in measuring the correlation, which is based on
the concept of entropy. The entropy of a feature X is defined as

H(X) =~ Pla:)log(P(x:)), (1)
i
and the entropy of X, after observing Y is defined as

H(XY)=- ZP(%) ZP(CCi|yj)10g(P($i|yj))7 2

where P(xz;) and P(x;|y;) are the prior and posterior probabilities
of X, respectively. The difference between Equation (1) and (2) de-
notes the information gain [26], indicating how much is the added
value of taking feature X, given that Y is already selected. In
our algorithm, we use the normalized information gain, which is
called the symmetrical uncertainty [24], to limit its value in the
range [0, 1].

H(X) - H(X]Y)

HX) 1 HY) |’ ®)

SU(X|Y) =2

We now formulate a recurrence relation which is solved using



Processing Unit Parameter Choices
Sampling rate (KHz) 8,22.05,44.1
Framing length (ms) 32,64
Window Size length (sec) 1,3,5

Feature Extraction  discretization (level) 8, 16

Table 2: Choices of parameters for APUs.

dynamic programming technique. Let f;(b) be the optimal subset
of features within an energy bound of b, considering the first j fea-
tures, for (0 < j < m). Based on the decision on X, there can be
two cases:

£ (b) = fi—1(b) if X is not taken
T fioi(b—e;) U{X;}  otherwise

This is because, if X is taken, the bound b is reduced by e;,
the amount of energy required to compute X;. The decision on
X depends on the symmetrical uncertainties. X is taken only
if SU(X;|C, fi—1(b—e€;)) < SU(X;|C, f;j—1(b)), and not taken
otherwise. The recurrence is solvable for f,,(B) by beginning with
the knowledge of fo(b) = ¢ forall b > 0.

There are two implementation issues that require further expla-
nation. First, our algorithm assumes that energy is integer valued;
The definition of entropy also requires nominal values. To handle
this, we quantize both of them to fit into our algorithm. Second,
the energy budget B is for feature extraction only. It is derived
by subtracting the energy cost of other APUs and services, e.g.,
pipeline overhead and context generation service, that run on the
phone from the total budget for acoustic processing.

7.1.3 APU and Parameter Selection

The energy consumption and the classification accuracy depend
on the choices of parameters for other APUs as well. Table 2 de-
scribes the choices of parameters considered in Auditeur for the
sampling rate, frame size, window size, and number discretization
levels for feature quantization. The higher the sampling rate the
more energy it consumes, but provides better classification results.
Frame size, window size, and discretization levels are problem de-
pendent, and have effect on accuracy. The choice of classifier is
also problem dependent, and their parameters are computed by an-
alyzing the training set using standard practices. Considering all 36
combinations of these units and 7 classifiers, the cloud generates
252 different execution plans (all within the total energy budget),
and selects the one that results in the highest accuracy in 10-fold
cross validation test.

7.2 Tag Matching Service

The tag matching service is used in two scenarios: (1) admis-
sion control of a public soundlet, and (2) finding matching tags for
an untagged soundlet. Both of these are done using a distance based
outlier detection technique [5], i.e., extracting the feature vector
of the soundlet, computing similarity scores of the feature vector
against a subset of the existing soundlets, and returning the top k
tags in the order of decreasing similarity. For admission control,
one or more of the user given tags must be in the list of & tags, and
for tag-suggestions, the list of k tags is sent to the phone.

The collection of soundlets against which the similarity is mea-
sured is selected using the phone contexts. For example, location
(indoors or outdoors) and position contexts are used to eliminate
any unlikely soundlets from considerations. If GPS coordinates are
available, soundlets that are recorded within the vicinity of the un-
tagged soundlet are always considered for a similarity match.

7.3 Storage and Caching

The cloud stores thousands of tagged soundlets and their acous-
tic features, therefore fast search and retrieval of items are paramount.
We choose to use MongoDB which is a NOSQL database over a
relational database for many reasons. First, the number of features
for an instance can vary considerably depending on the process-
ing configuration used at the time therefore a schema would be too
rigid for our purposes. Secondly, NOSQL databases are optimized
for write once, read many times situations and tend to scale linearly
using replicas in the cloud infrastructure. For efficient queries into
the training set, we create an index on the tag and context attribute
set.

When a classification plan is requested from a client, the local
cache of prepared classifiers is first searched. If a classifier for the
particular tag combination and context are not found, a new classi-
fier is generated from the set of matching instances in the training
set and committed to the cache. If a new sound instance is added
with the same tag combination as existing classifiers, the cache en-
try is marked dirty allowing an updated classifier to be created.
Our default strategy uses on-demand creation of classifiers since
many queries are very specific, however we also allow the cloud to
preemptively create new classifiers on a daily basis from popular
search queries.

8. EVALUATION

We describe four types of evaluations. First, we measure CPU
and memory footprints, and energy consumptions of different pro-
cessing units of Auditeur (Section 8.2). Second, we perform an
empirical study on different categories of sounds to demonstrate
the efficacy of our energy-aware feature selection algorithm (Sec-
tion 8.3). Third, we implement seven apps, each in three ways:
in-phone, in-cloud, and using Auditeur, and compare their energy
consumption (Section 8.4.1), accuracy (Section 8.4.2) and context
awareness (Section 8.4.3). Fourth, we perform a usability study of
Auditeur API (Section 8.5).

8.1 Experimental Setup

We collect data from two sources. The first one is our own
collection, obtained from a total of 35 participants from two dif-
ferent regions (Virginia and Beijing), collected over nine months,
resulting in a database of about 5000 tagged soundlets with con-
textual information. The group of participants is comprised of un-
dergraduate and graduate students, researchers, professionals, and
their family members. Their ages are in the range of 10 — 60, and
they have diversities in speaking-style, life-style and ethnicity. The
smartphones we have used during the data collection are Galaxy
Nexus phones running Android 4.0 OS, each having a 1.2 GHz
TI OMAP4460 dual core processor, 1 GB RAM, 32 GB internal
storage, and 28 GB USB storage.

The other source of data is mainly websites including find-
sounds.com and grsites.com, yielding another 2000 tagged soundlets.
The web crawled data is used only in the empirical evaluation, not
in case studies. We use only those sound clips whose file format,
number of channels, bit resolution, and sampling rates are the same
as our phone recordings. We do not mix up web crawled data
with data from phones in most cases. For example, sounds that are
tagged ‘monkey’ are all from the web, we do not have any phone
recorded monkey sounds. For some rare sounds in the empirical
study, we re-recorded some of the web-audios with a smartphone.
For example, we play the ‘siren’ sounds loudly on a laptop and then
record that on a smartphone.



CPU Memory

Auditeur (silence) 6% 6.5 MB
Auditeur (active)  16% (42%) 11.8 MB (22 MB)

Table 3: CPU and memory footprints.
8.2 System Measurements

8.2.1 CPU and Memory Footprint

We measure the CPU and memory footprints of Auditeur when
used in an app with a simple GUIL. The GUI is used to select differ-
ent sound recognition tasks that are run during the experiment. We
use two utility apps (Norton and OS Monitor) to measure the CPU
and memory usages. Table 3 shows the average (and the maximum
in brackets) CPU and memory usages of the apps. The CPU usage
is only 6% during silence when the system is duty cycling, 16% on
average, and could reach up to 42% in the worst case if all of the
processing units are used in an app (which is unlikely). The mem-
ory usage is about 6.5 MB during silence, but reaches 11.8 MB
for an average app, as heap space is allocated for the dynamically
instantiated units. However, this is not so high when compared to
services such as Maps (62.7 MB), Music (54.9 MB), and Calendar
(18.9 MB) on Android. The total size of the binary is only 596 KB.

8.2.2 Energy Measurements

‘We measure the energy consumption of each acoustic process-
ing unit on the phone with a high precision power monitor [2].
Prior to the experiment, we kill all background services and run-
ning apps, disable wireless connectivity, and set the screen bright-
ness to its minimum. We use two minute long audio files recorded
at 44.1 KHz, and measure the total energy consumption.

Figure 9 shows the average energy consumption to process a 32
ms frame for each unit. We observe that, the most expensive units
are the frequency domain feature extractors. However, all of these
components (marked with an asterisk (¥)) use the same FFT which
is computed only once per frame to save energy. Despite this, the
extraction of frame level features, together with the computation of
window level statistics, account for 98.48% of the total energy con-
sumption of the processing pipeline. This signifies why Auditeur
emphasizes carefully choosing the features to increase the lifetime
of the device. The sum of individual energy consumptions how-
ever is not an accurate estimate of the actual energy consumption;
but from our experience with Auditeur we have seen that, this is a
conservative estimate, and the phone lasts longer than the estimated
lifetime in practice.

8.3 Empirical Evaluation

We analyze the trade-off between the accuracy and energy sav-
ings, compare the feature selection algorithm with a greedy heuris-
tic, illustrate the energy efficiency, and measure the processing de-
lay.

We use our empirical dataset in these experiments, which is
segmented into 10 categories of sounds as described in Table 4.
In this study, we are showing intra-category sound recognition ac-
curacy within each dataset. Note that, these are very demanding
datasets with many similar sounds in different categories within
the same dataset to stress the accuracy metric, and even for hu-
mans these are hard to distinguish. However, later in our case stud-
ies (Section 8.4), we consider real-world scenarios where we have
sounds from different classes.

8.3.1 Lifetime and Accuracy Trade-off

Auditeur’s feature selection algorithm trades off less informa-

ID Dataset Count Subcategories

D1 Alert 334
D2 Animal 145
D3 Household 453

alarm, bell, horn, siren, whistle.

cat, cow, dog, horse, monkey, tiger.

air conditioner, doorbell, doorslam, fan,
spray, vacuum, water tap, and more.
drum, guitar, piano, violin, flute.
country, folk, indian, jazz, rap, rhymes,
rock, spiritual, and more.

asthma whizz, chew, clap, cough, cry,
foot-steps, laughter, whistle, yell.

D4 Instruments 309
D5 Music 1253

D6  Non-speech 783

D7  Office 653 deskbell, keyboard typing, mouse clicks,
phone, printer, sharpener, stapler.

D8 Speech 1725 female, male, child, speaker ID.

D9 Tools 439 broom, chain saw, drill, grinder, hammer,

lawnmower.

D10 Vehicles 815 airplane, ambulance, bus, car, subway.

Table 4: Description of the empirical dataset.

tive features for a longer lifetime of the device. The goal of this ex-
periment is to quantify how much accuracy Auditeur compromises
to achieve this.

Figure 10 shows the classification accuracy of Auditeur for
different datasets. For each dataset, the first bar corresponds to
the highest achievable accuracy considering no energy bound, and
the other three bars correspond to minimum lifetime requirements
of 300, 400, and 500 mins, respectively. The number on top of
each bar denotes the number of selected features. We see that,
for an unbounded energy, Auditeur would use all 221 features and
achieve the highest average 10-fold cross validation accuracy of
65.4% — 97.2%. The accuracy is below 70% for some datasets,
such as D7, D3, and D9, which contain varieties of similar sounds.
However, in an actual app, not all of these might be used or they
might be representing the same class; hence the accuracy will be
higher in practice as evident from Section 8.4.2. The tighter the en-
ergy bound becomes, i.e. the larger the minimum lifetime require-
ment is, Auditeur selects less number of features to maintain the
lifetime goal. For a 500 min (8.3 hours) lifetime, Auditeur chooses
only 18 features on average to keep the system running, sacrificing
about 8.17% accuracy. However, for a moderate lifetime of 400
mins (6.67 hours), the difference in accuracy is < 2%.

8.3.2  Evaluating Feature Selection Algorithm

We compare Auditeur’s energy-aware feature selection algo-
rithm with Weka’s [10] symmetrical uncertainly attribute evalua-
tor. Since Weka does not consider energy, we choose the first few
highest ranked attributes as long as the sum of their energy costs
remains within the bound. Figure 11 compares the average accu-
racy of a classifier for different minimum lifetime bounds, when
the classifier uses these two feature selection methods. When the
energy bound is lower, i.e. the minimum lifetime is as high as
500 — 600 mins, less number of features are chosen by both of the
algorithms. But Auditeur selects the subset that is optimal within
the bound, whereas the greedy algorithm performs poorly. The
gap between these two however gets closer as the bound becomes
loose since both algorithms then select enough number of features
to classify the sounds properly. Therefore, applications that require
long term (8 — 10 hours) continuous sound recognition, Auditeur
would provide 8% — 14.9% higher accuracy than the greedy algo-
rithm.

8.3.3  Illustration of Energy Efficiency

We illustrate the energy efficiency of Auditeur with a simple ex-
ample scenario. In this scenario, we run the same workload on two
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Figure 9: Feature extraction accounts for 98.48% of the total energy consumption of the processing pipeline.
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Figure 10: Auditeur increases the lifetime by 33.4% — 66.7%, sacrificing 2% — 8.17% accuracy.
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Figure 11: Auditeur achieves 8% — 14.9% higher accuracy than
WEKA for long running apps.

identical Android phones for about 9 hours. Both of the phones run
Auditeur, but one assumes an infinite energy bound, and the other
one changes its classification plan after two hours to last longer.
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Figure 12: Auditeur’s remaining battery is 18.12% higher than
the unbounded one after 9 hours.

Figure 12 plots their remaining battery life at each hour mark.
We see that, the phone with unbounded energy drains battery at the
rate of 7.89% per hour, and after 9 hours, it’s remaining charge
is only 29%. The other one (denoted by Auditeur) initially drains
battery at the rate of 6.67% per hour, but this rate is reduced to
4.81% after reducing the energy bound by 15% at hour 2. After
9 hours, Auditeur’s remaining battery is 47.12%, which is 18.12%

higher than the unbounded one. That means, Auditeur would last
for 31 hours, whereas the unbounded one will die after 19 hours.

8.3.4 Processing Delay

We measure the processing delay, i.e., the average duration of
a 1s long frame inside the pipeline. To obtain this, we capture
60s audio, and process it with 300 different pipeline configurations,
each having a different minimum lifetime bound. The total time to
process the frames is normalized to compute the processing delay
of a frame.

o
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Figure 13: Processing delay for 1s frames is always < 1s.

Figure 13 shows processing delays of 1s long frames for dif-
ferent lifetime bounds, ranging approximately 5 — 8 hours. We ob-
serve that, the delay is higher (0.98s) at the beginning, and drops
below 0.7s as the bound crosses the 8-hour mark. This is because,
at tighter bounds, Auditeur extracts a small number of features to
meet its lifetime goal, which results in shorter processing delays.
However, overall the delay is always < 1s for a 1s frame.

8.4 Case Studies

We implement and evaluate seven apps with Auditeur and com-
pare their energy efficiency, accuracy, and context awareness against
two baselines: the in-phone and the in-cloud implementations of
the apps. The features and parameters for the baselines are taken
from corresponding existing works. Both baselines extract features
on the phone, but the in-cloud version sends them to the cloud in



real-time to get the classification results, while the in-phone ver-
sion does everything on the device. The definitions of in-phone
and in-cloud implementations thus consider any hybrid approach
(such as — partitioning or offloading computation to the cloud at
runtime [7]) as an in-cloud implementation. For communication,
WiFi is used indoors and 3G outdoors. Auditeur however down-
loads all of its classifier configurations, corresponding to different
location and position contexts, at the beginning and does not use
wireless connectivity afterwards.

Five Android phones and a tablet are used at the same time dur-
ing these experiments. Two phones run the baselines, one runs Au-
diteur, one runs Auditeur with only location context enabled, and
one runs Auditeur with only position context enabled. The tablet
is used for recording the ground truth and bookkeeping purposes.
Each phone stores the timestamp, detected events, and the battery
level.

App Detected Events

male, female, music.

person identification.

heart beats.

music genre recognition.

car, bus, subway, trolley.

door, blender, pots, stove, microwave, tap.
talk, cough, steps, bathroom door, fan.

Sound Sense

Speaker Sense
Musical Heart
Music Match

Vehicle Sense
Kitchen Sense
Sleep Monitor

Table 5: Apps in case studies.

Table 5 shows the list of apps that we study. We replicate
the first three apps from existing literature [17, 16, 23], and add
four more to demonstrate Auditeur’s performance in different real-
world scenarios. Ground truths for Speaker Sense and Sound Sense
are obtained from six volunteers, by logging who is talking and
what music is played with a tablet. These experiments are done
in ten 15 — 120 minutes long sessions at indoors and outdoors.
Musical Heart uses the dataset of [23] which is read from files.
Music Match is trained on 200 English songs of different genre,
and then the tablet randomly chooses and plays them at regular in-
tervals, while the phones listen and classify them. Vehicle Sense
and Kitchen Sense are trained on samples collected from mem-
bers of two two-person families, and are tested on them separately
in 3 — 5 hours long experiments. Two volunteers participate in
the Sleep Monitor experiment separately for two consecutive days
where each session lasts for about 6 — 8 hours. We record the entire
sleep duration with a tablet, and perform a post-facto analysis, with
visualization and manual classification, to identify the events.

8.4.1 Power Consumption

We compare the power consumptions of Auditeur with in-phone
and in-cloud implementations. The power consumption is obtained
from the total energy consumption, which we calculate using the
values that are logged periodically into the phone, i.e. the remain-
ing battery life, voltage, running time, and the battery capacity.

Figure 14 shows that, power consumptions of in-cloud imple-
mentations are 3.3 — 6.8 times higher than the other two, as they
continuously send and receive data over the Internet. Especially,
for outdoor experiments where 3G is used (Vehicle, Sound, and
Speaker), the mean is 4093 mW. Power consumption of in-phone
version is comparatively closer to Auditeur. For long running ex-
periments (Sound, Speaker, Vehicle, Kitchen, and Sleep), in-phone
ones consume 19.56% more power than Auditeur, as unlike Audi-
teur, they do not have energy bounds. For short duration experi-
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Figure 14: On average, Auditeur is 11.04% and 441.42% less
power hungry than in-phone and in-cloud versions.

ments (Heart and Music), in-phone versions are slightly more en-
ergy efficient than Auditeur. However, this is not a problem for Au-
diteur because of two reasons: (1) when sufficient energy is avail-
able, Auditeur uses slightly more power to achieve a higher detec-
tion accuracy, and (2) even in such cases, developers can specify a
tighter energy bound to achieve a lower power consumption. Over-
all, the power consumption of Auditeur is on average 11.04% less
than the in-phone version.

An Auditeur-powered app’s lifetime can be further extended by
duty cycling. However, this has to be done by the app developers
by explicitly specifying the cycling interval for their app using the
API (see line 17 of the code snippet in Figure 4). Since none of
the baseline apps in this experiment implement duty cycling, for
a fair comparison of energy consumption, we do not perform duty
cycling in Auditeur as well.

8.4.2 Detection Accuracy

The accuracy of event detection is the percentage of events that
are detected and classified correctly. All three implementations use
the same silence vs. non-silence detection method whose accuracy
is almost perfect (98.72%). Hence, we consider the classification
of non-silent, fixed length time windows as the overall accuracy.
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Figure 15: On average, Auditeur is 10.71% and 13.86% more
accurate than in-phone and in-cloud versions.

Figure 15 shows the accuracy of event detection for three dif-
ferent implementations of the seven apps. Auditeur shows higher
accuracies than in-phone and in-cloud versions in 6 out of seven
apps. This is because of Auditeur’s adaptiveness to changing con-
texts, and the limitations of the other two. Both in-phone and in-
cloud versions use offline-trained classifiers, which are trained on
all soundlets disregarding their contexts. For example, the accu-
racy of voice related apps, e.g., the Sound and Speaker, depends
on the location (indoors vs. outdoors) due to the presence of rever-
beration. Auditeur being aware of such contextual information are
capable of handling them separately, which the other two cannot.
Furthermore, the in-cloud versions lose 14.3% — 26% accuracy in
outdoor scenarios (Vehicle, Sound and Speaker), due to long com-
munication delays in a 3G network. The accuracy of Auditeur in
case of Heart app however is similar to the other two versions. This



is because, the Heart app, which is one of our previous works [23],
uses a highly sophisticated algorithm for heart rate detection and
has a very high accuracy. It is hard to beat such an algorithm using
Auditeur especially when the accuracy is close to 100%. Overall,
Auditeur shows 10.71% — 13.86% higher accuracy than the other
two versions.

8.4.3 Context Awareness

Auditeur uses different pipeline configurations for different lo-
cation (indoors vs outdoors) and body position (direct, pocket, or
distant) contexts to boost its accuracy. In this experiment, we mea-
sure their individual effects on accuracy.
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Figure 16: Position context is in general more effective than
location context.

Figure 16 compares Auditeur with two other versions of it: (1)
only location, or (2) only position context enabled. A combination
of the two always results in a higher accuracy, but their individ-
ual contribution varies with apps. Location context is ineffective in
Heart, Vehicle, Kitchen, and Sleep, since these are performed en-
tirely indoors or outdoors. For other apps, location alone improves
accuracy over baselines (of Figure 15) by 4.08% —7.93%. Position
contexts are more effective than location contexts in environments
where the phone may be in any of the three position contexts, such
as in Sound, Speaker, Music, Kitchen (pocket and table), and Sleep
(table and under pillow), contributing 6.45% more accuracy over
the location only version.

8.5 User Study

We perform a user study to evaluate the usability of Auditeur
API i.e. how easy or hard it is to learn and use the API. Another
motivation is to observe what application ideas burgeon when such
an API is made available to the public.

A total of 15 undergraduate students from 3 universities partic-
ipated in this study. We recruited them by posting an online adver-
tisement and their participation was voluntary. Their experience-
levels in Java and Android programming are 0 — 5 years (avg. 16.6
months), and 0 — 12 months (avg. 4.73 months), respectively. We
provided them with a documentation explaining the API and an ex-
ample code snippet. Each of the participants was asked to read the
documentation to learn the API, think of an app scenario, code it,
and then comment on their overall experience.

Since developing a fully functioning application involves other
non-sound recognition tasks, such as, programming the GUI and
handling events, which are not part of our study, we ask the partic-
ipants to code only the portion of the app that is Auditeur-specific,
while the rest of the app has already been coded for them. This
is done to remove any biases that originate from sources unrelated
to learning or coding with the Auditeur API. Figure 17 shows the
learning time and coding time as they have reported in their an-
swers. About 75% of the participants take less than 15 mins to
learn the API, and about 60% of them program the core logic in
just 10 mins using only 15 — 20 lines of Java code. The worst case

learning time is as high as 30 mins, while the highest of the coding
times is about an hour. This indicates that, Auditeur is very easy to
learn and code.
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Figure 17: Learning and coding time.

It is interesting to observe how our participants have come up
with a number of fascinating app ideas and have been able to realize
them with Auditeur. Table 6 describes some of the ideas that we
find more interesting than others.

App Short Description

Snore Detect snoring and vibrate the phone until he stops.

Honk Detect car honks on road and alert inattentive user.
Asthma  Detect asthmatic wheezing sound and alert the caregiver.
Subway Detect the arrival of a train in subway.

Dog Detect pet dog barking while the user is away from home.

Table 6: Interesting app ideas found in our study.

We also ask our participants to comment on the Auditeur API.
Some of those comments turn out to be helpful and are actually
incorporated in the system. For example, the participant who im-
plemented the Dog app, asked if we could provide an API to get the
last few seconds of audio, so that she knew what caused her dog to
bark (e.g. an intruder came). Another participant asked if we could
provide a confidence of a match instead of just the detected event.
These comments have led us to expose some internal API to ob-
tain last few minutes of audio and the probability distribution of
the detected events from the application layer.

9. DISCUSSION

Auditeur is capable of detecting sound events that are recog-
nizable from short-term time and frequency domain features. Rec-
ognizing sounds that depend heavily on temporal variations, such
as recognizing long spoken sentences, are not suitable for it. Espe-
cially, speech recognition is a complex, well-studied problem hav-
ing several well-known services, and hence we leave it out of the
scope of Auditeur.

To make sure that people do not upload soundlets with wrong
labels, Auditeur performs sanity checks and discards the sound if
there is a lack of similarity. This was not an issue in our exper-
iments since the data were uploaded by our trusted users and we
only had to deal with unintentional human errors. However, this
could be a big issue when the system is open to the public. A more
sophisticated sanity checking mechanism will be required at that
moment. This is a limitation of our current implementation and we
leave it as future work.

Lack of sufficient training examples, specially for private spaces,
is another issue. To cope with this, we suggest developers to uti-
lize sounds from public spaces as long as the private space is small,
while keep adding new soundlets to the private space. Auditeur
provides an API to retrieve last few minutes of audio; developers
should use this facility and upload new soundlets via user-feedback.



The features and classifiers used in Auditeur are shown to rec-
ognize varieties of sounds, but yet no such list is ever exhaustive.
However, Auditeur is an extensible system where addition of a new
feature extractor or a new classifier unit is easy since APUs have
a generic structure and are dynamically wired. Hence, such exten-
sions do not require any change to the framework.

The energy consumption and lifetime depend on the phone model

and battery capacity. The relative energy costs of the process-
ing units are, however, implementation dependent, and remain the
same. This is, therefore, a scaling problem, and the lifetime bound
for such cases should be considered as power levels instead of an
absolute value. We leave it as a future work to remotely profile en-
ergy consumption of the device to provide device tailored lifetime
values.

Scalability of the services running on the cloud is not addressed
in this paper which is by itself a well-formed problem. Our cur-
rent implementation is a proof of concept which runs on an Ama-
zon EC2 instance. However in future we plan to move our server
to Google App Engine which provides automatic scaling of apps
without requiring us to manage the machines by ourselves.

10. RELATED WORK

Acoustic sensing on smartphones has been used in several works.

Examples of voice and music sensing applications are, speaker iden-
tification [16], speech recognition [31], emotion and stress detec-

tion [18, 28], conversation and human behavior inference [20, 21],

music recognition, search and discovery [32, 3]. There are some

limited number of applications that consider other types of sounds.

MusicalHeart [23] uses a special-purpose microphone to count heart
beats, [14] counts coughs, Nericel [22] detects horns, Ear-phone [29]
monitors noise pollution, SurroundSense [4] and CSP [6] infer log-

ical location. All these systems detect only one specific type of
sound. SoundSense [17] distinguishes voice from music and noise,

and cluster other sounds. But unlike Auditeur, none of these sys-

tems aim at solving the general purpose acoustic event detection

problem.

There are several web services available for smartphone devel-
opers. Hawaii [1] provides social mobile sharing (SMASH) ser-
vice for rapid prototyping of social computing apps, service to
predict user’s destination using current route, key-value storage
for app-wide state information, text translation service, providing
relay point in the cloud for apps’ communication, optical char-
acter recognition service (OCR), and English speech-to-text ser-
vices. But Hawaii does not have an acoustic event detection ser-
vice. Google provides services such as: web search, Google maps,
app store (Google play), video streaming (YouTube), Google cloud
drive, and email service (Gmail). Other providers give access to
data sources such as weather, financial data, airline information,
and parcel location tracking. Unlike Auditeur, none of these pro-
vide a sound recognition service and API to the developers.

Feature selection is a problem studied by many; [9] provides a
survey. WEKA [10] implements several of these attribute selection
methods. But our problem is different as our selection criterion
is to minimize energy consumption, not to minimize the number
of features. Like Auditeur, symmetrical uncertainty has been used
in [33] as a goodness measure, but their approach is greedy whereas
we apply dynamic programming principle.

There are several works that deal with resource aware sen-
sor data classification on smartphones. Kobe [7] is tool to gen-
erate energy and latency aware classifiers, but unlike Auditeur, it
requires uninterrupted mobile-cloud communication for adaptive
code-offloading (so is required for MAUI [8] and Odessa [27]),
it is not sensitive to user context, and their set of features is pre-

determined and fixed by the developer. Orchestrator [13] enables
multiple applications to effectively share resources (e.g. sensors)
whose availability changes dynamically. The optimum plan se-
lection problem in Orchestrator is similar to the acoustic feature
selection problem in Auditeur. However, unlike Auditeur, their se-
lection algorithm is not scalable as they enumerate an exponential
number of plans while Auditeur uses a polynomial time dynamic
programming algorithm to eliminate the need for enumeration of
exponential number of subsets of features and thus limits the total
number of plans to consider. [30] proposes a heuristic algorithm to
select a subset of sensors and their tolerance levels so that they can
infer multiple contexts in an energy efficient manner. Their solu-
tion is efficient, but is not optimum, whereas feature selection in
Auditeur is both optimum and efficient.

Some works are technically similar to Auditeur, but solve dif-
ferent problems. TagSense [25] senses people, activity and context
in a picture, and creates tags on-the-fly, whereas Auditeur involves
people in the sound tagging process, but provides automated tag
suggestions. Sphinx [31] uses generic processing units which are
similar to the APUs in Auditeur, but they have a simpler pipeline,
highly tuned to solve speech recognition problem. Pickle [15] cre-
ates privacy preserving classifiers on the cloud whereas we preserve
privacy by providing the user with private spaces, and classifiers in
Auditeur are trained for energy efficiency.

11. CONCLUSION

This paper presents the design, implementation, and evalua-
tion of Auditeur which is a general-purpose, energy-efficient, and
context-aware acoustic event detection platform for smartphones.
This is a useful platform and would save months of development
time for developers who want to build apps that act upon acous-
tic events. Aside from its ability to recognize a wide variety of
sounds, the platform is shown to be energy efficient and accurate.
We provide empirical evidence that Auditeur’s energy-aware algo-
rithm is capable of increasing the device-lifetime by 33.4%, sac-
rificing less than 2% of the maximum achievable accuracy. Seven
apps have been implemented with the Auditeur API to demonstrate
its versatility and to show that apps developed with Auditeur are
11.04% — 441.42% less power hungry, and 10.71% — 13.86%
more accurate in detecting acoustic events compared to state-of-
the-art techniques. A user study on 15 undergrads shows that even
novice programmers can implement the core logic of interesting
apps with Auditeur in less than 30 minutes, using only 15 — 20
lines of Java code.
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