Planning Electric Vehicle Charging Stations Based on User Charging Behavior
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Abstract—Electric vehicles (EVs) as a green alternative
of fossil-fuel vehicles (FFVs) have been promoted by many
governments all over the world. As a result, constructing an
efficient charging pile network has become a crucial task
for governments and manufacturers to increase EV adoption,
as well-planned charging sites can serve more EV users at
a lower cost and improve user satisfaction. Unfortunately,
most of existing planning approaches for EV charging stations
estimate charging demand and optimize locations based on
traffic patterns of FFVs, e.g., traffic flow and parking locations,
and the patterns of charging behavior are overlooked causing
an inefficient network layout for existing EV users.

In this paper, we propose and implement a novel algorithm
to estimate charging demand and to plan new charging stations.
The observations and analysis of the usage data of the charging
mobile app developed by the official EV public service platform
of Beijing and pile usage data of the charging pile network
(CPN) of Beijing are presented. Users’ charging-related search
behavior and navigation behavior and the pile usage pattern are
analyzed and modeled. A Bayesian-inference-based algorithm
is proposed to fuse the three models to estimate charging
demand. A flexible objective function is introduced to tune
the benefit between serving the existing EV users well and
attracting more FFV drivers. Finally, a reference system is
developed using Beijing as a target city, and providing extensive
experiments to demonstrate the performance of our system.

I. INTRODUCTION

Many governments are pushing hard to replace fossil-fuel
vehicles (FFVs) with cleaner electric vehicles (EVs) since
the wide use of EVs has the potential to reduce greenhouse
gases emissions significantly. In Norway, alternative fuel
vehicles accounted for 29% of all new car sales last year.
As the largest EV market, China has ambitious medium-term
goals for automotive efficiency and climate change. By the
end of September 2017, according to the official statistics,
there are 141,094 EVs running in Beijing (including private
and commercial vehicles, e.g., taxis and rental cars) and
14,612 public charging piles have been deployed in the
city [1]. With ever more EVs on the roads worldwide, how
to build efficient charging networks to support them is an
urgent issue.
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Figure 1. Beijing CPN Coverage

To plan new charging stations, we first need to under-
stand how charging demand is distributed. In the early
literature, such knowledge is obtained through questionnaire-
based surveys. Some studies use population data to estimate
charging demand which is assumed to be proportional to the
mobility between population centers. With the popularity of
geomagnetic vehicle detectors and on-board GPS devices,
follow-up work is mostly based on traffic data. A common
approach is to estimate the charging demand based on origin-
destination (OD) data. GPS track data allows researchers to
explore more sophisticated driving behavior patterns, such
as when and where the driver stops the car. As the EV
charging time is significantly longer than the refueling time
of the FFV, users usually tend to charge when parking.
Therefore, many studies estimate charging demand based
on the parking demand. As EV’s adoption increases, there
are studies using real-world EV operational data to explore
users’ charging behavior patterns. However, most of them
are relatively small scale or target only electric taxis.

The planning problem is usually formulated as an opti-
mization problem that tries to minimize the associate cost,
e.g., the travel distance to the stations, or maximize the
demand served. Most previous studies focus on improving
the coverage of the charging pile network (CPN) which
is indeed an important metric in the early construction of
the charging infrastructure. However, these method may
not provide good support to the decision makers when the
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Figure 2. echarge Service Illustration

coverage of CPN achieves a certain level while the adoption
rate of EV is still low. For example, by far the market share
of EVs in Beijing is about 2.4%, but the urban area of
the city is basically covered by the CPN. Figure 1 depicts
the cumulative distribution function of CPN coverage at
different service radii. It can be seen that the charging service
has covered 95% of the area within the Fifth Ring Road
with the service radius set to be 2km. So does the area
within the Sixth Ring Road with service radius set to be
3km. In such a case, it is very difficult to use traffic data to
capture the mobility of EVs because they only account for a
small fraction of the traffic. In a sense, the charging demand
estimated based on FFV traffic data reflects the potential
needs for future EV drivers. How to capture the needs of
existing EV drivers is an interesting and challenging issue.

To aide EV drivers, an official public EV services plat-
form, echarge, is built with the support of the Beijing
government [1]. A mobile phone app is developed by the
platform to provide search, navigation and payment services
for EV drivers. The platform also took the lead in drafting
a national standard to unify the charging and information
exchange protocol [2]. These two services have offered new
research opportunities to exploit pile usage data and user’s
app activity for improving the understanding of EV driver’s
charging behavior. In particular, the pile usage data contains
charging records on all public charging piles and user’s
search and navigation actions are recorded in the app activity
dataset. Figure 2 shows the standard-charging piles and the
mobile app. Such charging infrastructures are capable of
capturing the needs of EV drivers accurately on an urban
scale. However, until now our knowledge of the correlation
and divergence in these data, and how to integrate them to
conduct charging stations planning are still limited.

In this paper, we design and implement a novel demand
sensing and charging station planning algorithm, which
leverages the massive pile sensor and mobile application data
to estimate charging demand and optimize siting and sizing
for new charging stations. The proposed system contains

three major components: 1) Demand Estimation Server,
which filters and encodes the data from charging pile sensors
and mobile applications, then uses a Bayesian-based method
to fuse the models to obtain the charging demand estimation.
2) Planning Server, which takes decision maker’s input,
e.g., budget constraints and preference parameters, then uses
demand distributions estimated by the Demand Estimation
Server and external sources to provide charging station
planning suggestions. 3) GUI Frontend, which displays the
deployment suggestions and allows user to adjust parame-
ters. The main contributions of this paper are:

« To the best of our knowledge, we conduct the first work
to design and implement a charging demand estimation
and charging station planning algorithm based on pile
usage and user’s app activity data. The search, naviga-
tion and charging behavior are analyzed and modeled.
A Bayesian-based algorithm utilizes the multi-source
data to provide reliable estimation to reflect the real
needs of existing EV drivers.

o A preference parameter is introduced in the objective
function to reflect the tradeoff between improving the
convenience of current EV drivers and attracting more
FFV drivers. We use a flexible objective function to
unify different demand estimation results into the same
optimization framework.

o The performance of our system is evaluated based on
real-world pile usage and app activity datasets. The
evaluation results show that our multi-model fusion
estimation algorithm outperforms single model meth-
ods. The mean average percentage error of our method
is 45.36% and 55.13% lower than the two baselines
respectively. Our planning result can achieve better user
satisfaction under the same budget and outperforms the
stat-of-the-art methods by up to 16.57% and 36.49%,
respectively.

The rest of the paper is organized as follows. Section II
and Section III presents the related work and an overview.
Section IV describes the charging demand estimation algo-
rithm. Section V presents the planning method. Section VI
evaluates our system followed by the conclusion in Sec-
tion VIIL

II. RELATED WORK

The charging pile planning problem has received sig-
nificant attention with the growth of the EV market. The
planning process usually involves estimating charging de-
mand and determining the optimal location and station size.
Various demand estimation and optimization methods have
been proposed. The demand estimation methods that appear
in previous literature can generally be divided into two
categories: point-based and flow-based.

Point-based methods use point data, e.g., parking data, to
estimate charging demand. [3] utilized parking information
of personal trips and used a regression model containing



various variables, including population density and trip at-
tributes, to estimate parking demand. Another parking-based
method can be fount in [4]. [5] considered daytime activities
or trips, including work, shopping, university and tourism,
which is useful to serve daytime charging demand. These
methods assume that charging demand is proportional to
the parking demand. Another common approach is to use
Origin-Destination (OD) trips. As the EV charging time is
usually up to a few hours, EV drivers tend to charge at the
beginning or the end of the trip. [6]-[8] treated the origins
or destinations of trips as the potential locations of charging
demand.

Flow-based methods use traffic flow to estimate charging
demand. The idea is that when the share of EVs is high
enough, there may be more charging demand where the
traffic is heavy. [9] used OD trips to calculate traffic flow
which is then used to estimated the charging demand. [10]
assumed that the flow pattern of EVs follows that of FFV
traffic and used a homogeneous EV adoption rate to estimate
the charging demand. Whereas [11] considered heteroge-
neous EV adoption rate together with other factors such
as driver income, vehicle ownership and other residential
factors. [12] combined the parking-based approach with the
flow-refueling location model. The authors used average stay
duration of drivers to decide the number and location of
slow-charging stations.

The siting and sizing problem is usually formulated as
a optimization problem that minimizes the construction or
charging cost or maximizes social welfare. [13] analyzed a
large sample of GPS traces of privately-owned conventional
fuel vehicles in Rome and proposed a siting method using
the clustered trip destinations. The urban area of Rome was
divided into subareas based on clusters of trip destinations.
The centroids of the subareas were selected as the siting
position of charging piles. [14] extracted stop events from
the trajectory data of 11,880 taxis in Beijing for a month
and evaluated the public charging opportunities which are
assumed to exist in locations where many taxis choose to
stop for a long duration. The existing gas stations were
scored based on how well they are aligned with identified
charging opportunities. Then a non-overlapping set of gas
stations were selected to deploy charging piles based on
different criteria, e.g., the maximum number of parking
events, maximum daily parking time or average parking
time per vehicle. [15] considered the parking locations of
drivers in a day. The successive parking locations of drivers
were used to associate different sites. The siting problem
under a budget constraints is formulated as a mixed integer
programming (MIP) problem. [16] used personal-trip data to
extract parking information and a proportional relationship
of charging and parking demand is assumed. The zone park-
ing demand and trip-level parking duration were predicted
by ordinary least squares regression models. The best sites
for public charging stations were anticipated by solving

an MIP problem to minimize the total access cost under
a budget constraint. [17] used a genetic-algorithm-based
method to find sub-optimized locations to deploy charging
stations. The objective is to reduce the range anxiety of
drivers which is measured by the number of trips and miles
affected by a low battery. The GPS data of FFVs are used
in the work and a similar driving pattern between gasoline-
powered vehicle drivers and EVs drivers is assumed.

Most of these works either address the planning problem
in the early stage of CPN construction or assume that the
general traffic data can provide a good description of EV
mobility. However, these methods may not provide good
estimation when the charging service is basically covered
the city but the general traffic cannot reflect the mobility of
EV very well because the adoption rate of EV is still low.
To the best of our knowledge, none of the previous works
use charging pile usage data and mobile app usage data to
estimate charging demand and provide planning suggestions.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

In this section, we give an overview of the charging
station siting and sizing problem and outline our system
architecture.

A. Charging Demand Estimation

Recently a new charging and information exchange stan-
dard [2] has been established and adopted in the charging
infrastructure in Beijing. The real-time status of charging
piles are collected by on-pile sensors and uploaded to oper-
ators’ servers. A mobile phone app, which provides search,
navigation and on-line payment service, is developed by the
city’s public platform for EV services to promote EV usage.
These two developments provides a new opportunity to study
the charging behavior from both driver’s and infrastructure’s
aspects. However, how to use these new data sources to
estimate charging demand remains unexplored.

In this work, we study how to use charging events and
app data to estimate charging demand distribution. Given
a charging event observed on a charging pile, the possi-
ble locations where the corresponding charging demand is
generated are estimated. Compared to pile usage data, app
data are closer to charging demands. However, they may
be still different from the real demand distribution. Our
analysis shows that search and navigation behavior have
different spatial distribution characteristics, and thus need
to be treated differently. The charging demand estimation is
discussed in detail in Section IV.

B. Charging Station Siting and Sizing

The goal of charging station siting and sizing is to
maximize overall benefit which should (1) support existing
EV drivers, and (2) cover more hotspot regions to attract
more FFV drivers. Unfortunately, these two objectives may
conflict since EV and FFV drivers have different driving
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Figure 3. Traffic and App Usage Density

behaviors. To provide such evidence, in Figure 3a, we give
the traffic density within the Fifth Ring Road of Beijing
based on FFV trajectories, and in Figure 3b, the app usage
density in the same region.

The hotspots in Figure 3a are high traffic areas that
are regarded as good places to deploy charging stations
by previous work. The reason is that when the majority
of vehicles are electrified these areas may generate many
charging demands. The hotspots in Figure 3b are locations
where many EV drivers use the app to search for or start
navigation to charging piles, which reflects the charging
demand to a certain extent. It can be seen that the hotspots
in the two figures are overlapping, but not exactly matched.
Interestingly, we note that the hottest areas of app usage are
in the west, whereas the hottest areas of traffic are in the
east. This pattern generally matches the characteristics of
each district. Dongcheng (center east) and Haidian Districts
(east) are more developed areas where shopping malls and
CBDs are located. Many universities and IT companies exist
in the Haidian District (northwest). Districts in south and
southwest are relatively undeveloped areas that have less
traffic.

To reflect the trade-off between the two objectives, we
propose a flexible scoring function for decision makers to
adjust their preference. The formulation and discussion are
presented in Section V.

C. System Architecture

Our system consists of three components: 1) A demand
estimation server, 2) a planning server and 3) an user
interface. The system architecture is shown in Figure 4.

Demand Estimation Server. A data feeding mechanism
is established to collect real-time app callbacks from the
official platform and pile usage data from 36 charging
service operators. The app callbacks include information
of search and navigation events. When a new callback is
received, the target address is converted to longitude and
latitude by the geocoder. The origin and destination of
the event are stored in the App Activity Database. The
charging pile data follows the GBT32960.3 standard [2].
The received pile usage data is first filtered to remove
unwanted fields and error data due to device failure. The
cleaned occupancy status and charging event data are then

Demand Estimation Server GBT32960.3 Protocol

App External Traffic Flow,
Callbacks Parking Demand

Charging
Pile Sensors

Figure 4. System Architecture

stored in the Charging Pile Usage Database. The PostGIS
Database contains theOpenStreetMap [18] map data and
static information of the charging pile network. The three
databases together with external traffic data provide inputs
to the Charging Demand Estimation algorithm.

Planning Server. The map data and CPN static infor-
mation are used to construct a Location Model. In this
paper, we use a lattice partition to divide the region of
interest into uniform tiles. Other partition methods such as
Zip+4 should work as well. Then the estimated demand
distribution and spatial partition are fed to the Siting and
Sizing Optimization algorithm. The optimization algorithm
takes in user inputs, including a preference parameter and
construction constraints, then optimizes siting and sizing by
maximizing the objective function.

GUI Frontend. The deployment suggestion is presented
to the users via a GUI interface. The decision makers can
try out different parameters to find a satisfied deployment
scheme interactively.

IV. DEMAND ESTIMATION SERVER

In this section, we first present our observations and
analysis of the pile usage and app activity datasets, then
introduce our demand estimation algorithm.

A. Pile Usage and App Activity Datasets

We have established a real-time data feeding mechanism
to collect pile usage data from 36 different charging service
operators and app activity from the official public platform
for EV services of Beijing. The pile usage dataset contains
detailed pile status including occupancy, current and voltage.
In this work, we focus on the occupancy status and detect
charging events when the occupancy status is changed from
0 (idle) to 1 (in use). The app activity dataset contains call-
backs of activities of the app users. When an EV driver uses
the app to search for charging piles, the search keywords



Table I
PILE USAGE DATASET SPECIFICATION

Date time | The start date and time of the charging event.
Pile ID The unique ID of the pile.
Site ID The unique ID of the charging station.

Table IT
APP ACTIVITY DATASET SPECIFICATION

User ID The unique ID of the app user
Date time The date and time of the activity.
Action The activity type. {search, navigation}
Origin The longitude and latitude of the current location.
Destination The longitude and latitude of the target.

(address) and the current location of the driver are recorded.
The app also provides navigation service to charging piles.
When the navigation starts, the current location (start point)
and the destination (a known charging station) are recorded.
Note that the navigation action does not necessarily happen
after a search. An app user can click the icon of a charging
station on the map to set the navigation target. Note that
only the start and end points of the navigation are recorded.
The specification of the two datasets are shown in Table I
and Table II.

B. Search and Navigation Behavior Analysis

Compared to traffic data, the app activities are closely
related to charging behavior and thus can serve as a better
proxy of charging demand. However, an action involves
two coordinates, the origin and the destination. Which one
should we use?

A straightforward approach is to simply use the origin.
Howeyver, this method discards at least half of the informa-
tion and thus may produce a large estimate error. Figure 5
shows the origin-destination (OD) distance distribution of
the app activity dataset. The OD distance distribution of
navigation behavior (red bars) is concentrated at 3.89km
and 75% of the search destinations are within 7.70km from
the origins. While the OD distance distribution of search
behavior is more dispersed with 14.82km as median and
32.23km as upper quartile. Some search destinations are as
far as 105km away from the origins.

We further consider the meaning of the two behaviors
as shown in Figure 6. Navigation behavior has a strong
directivity because the destination is a specific charging
station (Figure 6a). If it is not for charging, the driver
is unlikely to use a charging app instead of a dedicated
software to plan the route. The meaning of search behavior
is more complicated. For example, as shown in Figure 6b, a
driver in Chaoyang District searches with keywords “Daxing
District Wild Animal Park” in the app. The straight-line
distance between the target location and the driver’s current
location is about 51.2km. This behavior is more likely to
mean that the driver wants to charge at the destination
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Figure 5. OD Distance of App Activity Data

rather than the current location. Another example is shown
in Figure 6¢. A location is searched which is just 0.7km
away from the driver. In this case, the driver may just want
to find a charging pile near the current location.

Based on the observations and analysis, we present the
search, navigation and pile usage modeling in the following
subsections.

C. Search Behavior Modeling

Let 33 = [y y;4T denote the ith observed search
event, y3° denote the origin coordinate and y;¢ denote the
destination coordinate. The coordinate of the correspond-
ing charging demand is represented by 6;, with likelihood
p(y10i,7:), v € {0,1}. We define a two-dimensional
distribution:

Fyilfi,vi) = U7 ()G (436, %) (1)

where U(-) is the uniform distribution in the given area W
and G(-|0;,0) is the two-dimensional Gaussian distribution
centered at §; with covariance matrix Y. Then the likelihood
function is assumed to have the following form

(i 10:, i) = F(ysl0ivi) F(yi0i, 1 —vi)  (2)

The parameter ; indicates the type of search behavior.
If 7, = 1, the the origin of the search follows a Gaussian
distribution centered at the 6, i.e., 7; = 1 means the origin
of search action is close to the charging demand. Whereas
7v; = 0 means the destination of the search is close to the
charging demand.

Search events are assumed independent from each other.
Given a series of IN° observed search events, the joint
distribution is

Ne
p(y°10,7) = Hp(l/fwi,%‘) 3)

D. Navigation Behavior Modeling

We consider a CPN with M charging stations. The
location of the station j € {1,---, M} is s; and m; is the
station size in terms of the number of piles. Let y;/° represent
the origin, yi’fd denote the destination of i’th navigation and



foioe]

| Navigation Destination [l
Il (A Charging Station) [
5
; . sidat:
e si
s "
DRI \
{ Demand is more likely &5 e
near the origin. l <
g R M epmoATy

B =

s 2

@
=
=
-
L A,
-
—
(a) Navigation
Figure 6.

the observation y = [y%°,y%?|T. The likelihood function
has the form as follows:

p(yp10:) = G(yi°|0s, S VM (yp|0x) O]
and H(y%?0;/) is defined as
mq exp (—[lyp? — 0i|))
52 mg exp (= lls; = bs)

where y2¢ € {s;j|j =1, , M} because the destination of
a navigation must be a known charging station. If y}¢ = 55,
then m; = m; is the corresponding station size.

Different from search behavior, navigation behavior is
more likely to result in charging events. Since it is unlikely
for a driver to use the app, which is designed to provide EV
service related information, to navigate to other places, the
origin of the navigation is more likely close to the charging
demand. Given a charging demand 6;, we assume the
probability of a charging station being selected is positively
correlated with the size of the site and negatively correlated
with the distance to 6; as shown in Equation (5).

Navigation events are regarded as independent samples as
well. Given a series of N™ observed navigation events, the
joint distribution is

H(yp'low) = ®)

o
p(y"10) = [ p(vi16:) (6)

E. Pile Usage Modeling

Let yi, denote the location of the i”th observed charging
event, since it must happen in a known charging station,
yh, € {sjlj = 1,---,M} where s; is the coordinate of
the charging station j. Given a charging demand 6;., the
likelihood function is

p(yin[0i) = H(yin|6i) %)

Both the charging event and destination component in Equa-
tion (4) are modeled by Equation (5). This is because they
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are essentially the same process. Pile usage data can be
seen as incomplete navigation data with origins missing.
However, in our datasets, pile usage data has better coverage
because drivers may find piles without using the app. To
avoid repeated counting, records that have matched navi-
gation events are removed from the pile usage dataset and
search events are discarded if the corresponding navigation
events occur immediately after the search, so that the three
kinds of data are mutual exclusive. The charging events are
seen as independent samples, given N? observed charging
events, thus the joint distribution is:

NP
py10) = [ p(yih10:) ()

F. Model Fusion and the Demand Estimation Algorithm

Considering the three datasets together there are N =
N?® + N™ 4+ NP observations. Let y; denote the location
of the ith observation, ¢ = 1,---, N and 6; denote the
corresponding charging demand coordinates, with likelihood
p(yi|0:,7v:). Each charging demand 6; is regarded as an
independent sample from a population distribution governed
by a hyper-parameter vector ¢; thus

N
p(0,716) = [ [ P8, 7il¢) ©)
=1

Note that ¢ is not known and thus has its own prior distribu-
tion, p(¢). The appropriate Bayesian posterior distribution
is of the vector (6,7, ¢). The joint prior distribution is

p(0,7,8) = p(0,7|9)p(4) (10)
and the joint posterior distribution is
p(0,7v. ¢ly) o pyld,y,d)p(0,7,¢) (11

with the simplification from (11) to (12) holding because the
data distribution, p(y|6,, ¢), depends only on § and ~. The



hyperparameters ¢ affects y only through (6,~). Then by
(10) and (12), the joint posterior distribution can be written
as:

(0,7, ¢ly) o< p(y|6,v)p(0,7v9)p(¢) 13)

Since y™ and yP are independent from -, and because
the three kinds of data are mutually exclusive, their joint
distribution can be given

p(yl0,v) = p(y°10,7)p(y"10,7)p(¥"10,7)  (14)

The charging demand 6y,---,0y are assumed to be
independent samples from a multivariate Gaussian Mixture
distribution:

K
0,7|¢) = H Kk Z we!
= e (15)

where K is the number of components of the mixture
distribution, Y, is the covariant matrix of the kth component
¢k = [:ukyzk’]Tv and ¢ = [K:?(Zsla'” 3¢K]T' K is deter-
mined based on Bayesian Information Criterion (BIC). The
hyperprior distribution is assumed be an uniform distribu-
tion.

Given observations of search, navigation and charging
events, by the joint posterior distribution (13), the joint
likelihood (14) and the population distribution (15), the
hyperparameter ¢ can be estimated via Markov Chain Monte
Carlo sampling. Once ¢ is obtained, the charging demand
distribution is given by (15).
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G. Summary

In this section, we presented the observations from the
pile usage and mobile application datasets, analyzed the
divergence and integration of the two kinds of data and
designed a Bayesian-inference-based algorithm to estimate
charging demand distribution. Algorithm 1 presents the
pseudo-code of our algorithm.

V. PLANNING SERVER

In this section we first describe the location model, then
formulate the optimization problem. After that a flexible
score function is introduced to reflect the preference of
decision makers.

A. Location Model

The charging station planning problem is usually formu-
lated as an optimization problem that tries to minimize the
associated cost, e.g., travel time or distance to charging
stations, or maximize the benefit score, e.g., demand served
or trips covered. In general, most studies are either point-
based models or flow-based models. Point-based models
consider spatial points to locate charging demand. Since it
usually takes more than an hour to charge an EV, the drivers
prefer to charge at the beginning or the end of their trips.
Therefore, origins and destinations are considered by many

Algorithm 1: Charging Demand Estimation

input : Search data y*, navigation data y", pile usage
data y?, MCMC sample number N,sc

output: Hyperparameter ¢, Charging Demand Samples

Scp

Yy Uyt Uy

Initialize L, L, 6, Y, O, qg;

for i =1 to Ny do

¢ < Sample from p(¢);

6, + Sample from p(#,~|¢) given in Eq. (15);

L + Use y, 0, v and ¢ to calculate likelihood
based on Eq. (13);

7 | if L > L then

A N AR W N -

8 L« L;
9 ¢« ¢;
10 end

11 end

12 6,7 + Sample from p(6,~|6);
13 Scp + 0;
14 return ¢ and Scp;

! % search % search
ot e -
© navigation = L 2 <> ® . | © navigation
@ park o 3 @ park
A site ° i ’ A site

Y \
S g —¥>
O

° g; ooo% 000 o 0
o' E%
@ - 8" ‘0@0000
o

N\ o0 i e :
ot o o <> QOQQQ e o ‘%%

,V,,’Efo o Aooe [0 200 S0 ~8° 0 & s @
(a) Beijing Capital International Air-
port

(b) Peking University

Figure 7. Granularity of Data

works. Parking zones are good locations to deploy charging
infrastructure. With the increasing of EV adoption, parking
demand can be easily turned into charging demand. Flow-
based models consider traffic flow and select locations that
can intercept the most flows as deployment locations. In this
work, we base our system on the pile usage and app activity
data that both are point observations. Therefore, our system
falls into the point-based category.

The spatial partition of the region of interest is dependent
on the spatial granularity of the collected data, as shown
in Figure 7. In the two examples, it can be seen that
app activities are concentrated at certain locations, such
as locations around charging stations and the airport drop-
off platform. Figure 8 shows the Stienen diagram of the
charging stations within the Fifth Ring Road of Beijing.
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Each charging station is represented by a circle of diameter
equal to its nearest neighbor distance. A gray solid circle
means the nearest neighbor of the site is within the region
of interest. Otherwise, the charging station is represented by
a hollow circle. We find that existing charging stations tend
to form small clusters and the spacing between the clusters
ranges from a few hundred of meters to a few kilometers.
Like many previous works, we divide the region of interest
into uniform tiles. The coverage ratio defined as the number
of tiles containing at least one charging station to the total
number of tiles is shown in Figure 9. The horizontal axis
is the number of tiles along the longitude and latitude. It
can be seen that when the number of tiles along longitude
and latitude is larger than 25, i.e., the spatial granularity
is smaller than a tile of size 1522 meters by 1534 meters,
more than half of the tiles are not equipped with a charging
station.

B. Siting and Sizing Optimization

Given a region of interest that is partitioned into tiles, we
formulate the charging station planning problem as a mixed
integer programming (MIP) problem. Let u € U denote a
tile where charging demands are generated and v € V denote
a tile where demands are satisfied (i.e., charging stations).
The objective is defined as follows:

DY fwllew) (16)

uelU veV

where f,, represent the number of demands that are gen-
erated at tile u and satisfied at tile v, ¢, is the driving
distance from u to v, and I(cy,) = max(0,1 — a - ¢yy) is a
Hinge loss function. The goal is to maximize the objective
function Equation (16) under the following constraints.
Budget Constraint. Let v' € V' denote a candidate tile to
deploy new piles, e, denote the monetary cost of deploying
a charging pile in tile v’ and e}, denote the site construction
cost. Then the charging station deployment cost at tile v’ is
eV, - my + €5, where m,, € ZT is the number of piles.
Assuming that the decision maker has an overall budget
constraint B to building new charging stations, then the total
cost of the construction cannot exceed the overall budget B,

as expressed in the Equation (17) below:

> e my +e <B. (17)
v eV’
The site construction cost e, is considered separately in-
stead of being shared by piles because it is more practical
to build a few charging stations with many charging piles
than lots of charging stations with a few (or even a single)
charging piles.

Spacing Constraint. In some cases, the decision maker
may want the charging stations to be sufficiently spaced
out. For example, in an early construction stage, a spaced
out layout can improve the coverage and publicity. If an
uneven spatial partition is adopted, e.g., Zip+4 area partition,
the spacing constraint is useful to avoid the final result
clustering where small tiles are too intensive. An indicator
Oyy 1s introduced to reflect the proximity status between a
candidate tile v’ and tile v (may be v’ itself):

1, if cyr <7 and my, X my >0

Oy = 18
{0, else (18)

where ¢, is the distance between the two tiles, m, € Zar
and m, € ZT are the numbers of piles of the two tiles,
respectively, and 7 is the minimum spacing specified by the
decision maker. Then the spacing constraint can written as:

D b <LV €V (19)
veV
Demand Constraints. Let d, denote the number of
considered demands generated at tile w, then d, has to
be equal to the total number of satisfied demands, i.e. the
“demand flow conservation”:

> fuw=du,VueU (20)
veV
The total capacity of stations of a tile v is limited. The
demands that can be served at tile v have to be less than the
piles within the tile. This is another demand constraint:

quvgmv;vvev 21

uelU
C. Preference Parameter

Previous studies mainly focus on improving the coverage
of CPN using traffic data. These techniques are very useful
in the early stage of CPN construction. However, when the
city is basically covered by the CPN but the adoption of EV
is still low, these techniques may not be able to provide a
ideal solution since the traffic data is not enough to reflect
the mobility of EVs due to the low adoption rate. On the
other hand, our charging demand estimation method can
better capture the needs of existing EV drivers, but cannot
fully reflect the mobility of the potential EV users, i.e., FFV
drivers. There is a tradeoff between attracting more FFV
drivers and improving the convenience of existing EV users.
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Figure 10. Charging Demand Estimation

To reflect this tradeoff, we introduce a preference parameter
£ and rewrite the objective function (16) as follows

Z Z[ﬂfm; + (1 - 5)f1;1,]l(0m;)

uelU veV

(22)

where f,, is the demand flow estimated based on pile usage
and app activity data, and f, is the demand flow estimated
based on traffic data. 5 € [0,1] reflects how much the
decision maker cares about the needs of current EV users. If
B =1, the charging stations planning is totally based on the
data of EV users’ activities. If 3 = 0, it means the decision
maker bases the planning on FFVs’ mobility. In this way,
the planning problem in different situations are unified in
the same framework and the decision makers can conduct
charging station planning flexibly.

VI. EVALUATION

In this section, we conduct extensive experiments to
evaluate the performance of our system. We first describe
the evaluation methodology. Then the results of a series
experiments are presented and discussed.

A. Methodology

We first evaluate the demand estimation algorithm. To the
best of our knowledge we are the first work that estimates
charging demand based on charging pile usage data and
app activities, therefore we proposed two benchmark models
to compare with our method. The baseline SBM (Search
Behavior Model) estimates the demand based on search data
and PUM (Pile Usage Model) only uses pile usage data. The
proposed method, FM (Fusion Model), is compared against
with SBM and PUM to show the effectiveness of multi-
model fusion.

Note that it is very difficult to accurately obtain the ground
truth of charging demand 6, unless the vehicle status and
the driver’s intention can be continuously measured. For
evaluation purpose, the origins of navigation events are used
as the ground truth because in general they are good proxy
of where the charging demand is generated, as discussed
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Figure 11. Evaluation of Deployment Scheme

in Section IV-B. Therefore, in the experiment of charging
demand estimation, navigation data are reserved for testing
and only search data and pile usage data are used by FM
and the baselines.

The estimate charging demand distributions given by FM
and baselines are compared with the ground truth distribu-
tion by tile. The models are tested with the Mean Average
Percent Error (MAPE) defined as

Z”T Tl

where [V; is the total number of tiles, 7T; is the total number
of charging demands of the tile i and 7} is the ground truth
of the total number of demands of the tile s.

Then we evaluate the deployment scheme given by our
system with two start-of-the-art methods. The flow-refueling
location model (FRLM) [19] locates p facilities as to in-
tercept as many as trips as possible. A trip is considered
captured if it is possible to travel from the origin to the
destination and back without running out of electricity.
FRLM requires the endurance mileage data to determine if a
trip is possible. The nominal mileage data of 1,631 EVs are
extracted from the vehicle register information on the official
platform (Figure 13a). The charging demands are estimated
based on traffic flow data. We use the taxi trajectory dataset
published by Microsoft [20], [21] to calculate traffic flow.
The dataset contains one-week trajectories of 10,375 taxis
with total mileage of 9 million kilometers. Another baseline
is a parking-based assignment method (PBAM) [16] that
estimates the charging demand based on parking demand
and tries to minimize the demand-weighted deviation for
charging. A dataset containing the information of most of the
parking zones in Beijing is used [22] to estimate the parking
demand. In the evaluation, we add site capacity constraints
to the models, since as most of previous studies the site
capacity is undefined or assumed to be unlimited in the two
original models.

In order to infer the ground truth, we introduce another
related dataset for evaluation purposes which contains de-

MAPE =
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Table III
PILE USAGE DATASET SPECIFICATION

User ID
Date time
Request Location

The unique ID of the user
The date and time of the request.
The request location.

ployment requests from EV drivers. A request contains an
user ID, the date, time and the coordinate of the location
where the user wishes a pile to be deployed. The specifica-
tion is shown in Table III.

B. Evaluation of Demand Estimation

We use the pile usage and search data from January 1st
2016 to August 31st 2017 to estimate charging demand.
The navigation origins in the same period of time are used
as ground truth. Note that the three datasets are filtered to
be mutual exclusive. FM fuses pile usage and search data
using the algorithm described in Section IV. Therefore, it
is marked by FM(S+P) (Search + Pile). SBM only uses
search data to estimate charging demand based on the
model described in Subsection IV-C. While PUM uses the
pile data and the method described in Subsection IV-E to
estimate charging demand. The MAPE of estimation results
are compared and shown in Figure 10.

Figure 10a gives the MAPE under different spatial parti-
tion granularity. In general, FM outperforms the other two
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methods and the MAPE of SBM and PUM are 45.36% and
55.13% higher than the MAPE of FM, respectively. This
is because pile usage data are gathered around charging
stations while search data are more diversely distributed in
the city (Figure 5). Relying only on one of the data sources
leads to a biased estimation. PUM and SBM are more
unstable because they only capture the charging demand
either near the charging stations or far away from charging
stations and a different partition may divide the estimated
and ground truth demand that are in the same tile under
the current partition into different tiles. FM is more stable
because it combines the both sides and the effect is offset.

Figure 10b plots the MAPE under value of ||X||. X is
introduced in Equation (1) to reflect the uncertainty in the
search origins. In the beginning, as the uncertain radius
increase, the MAPE of FM and SBM decreases because |||
gradually approaches the uncertainty in the search behavior.
However, with the further increase of ||X]|, the uncertainty
in the data is overestimated and the estimated distribution
becomes dispersed leading to the increase of MAPE. Since
PUM is not affected by X, its MAPE remains unchanged
during the experiment.

C. Evaluation of Deployment Scheme

The pile usage and app activity data from January 1st
2016 to August 31st 2017 are used in these experiments.
We leave out the data of the most recent three months,
i.e. from June 1st to August 31st 2017, as the test set.
The origins of navigation events in the test set are used as
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ground truth charging demands. The deployment scheme is
given by our system based on the the previous 17 months
data. FRLM gives deployment scheme based on the traffic
flow and EV mileage data. PBAM uses the parking data to
give deployment suggestions. The study area is selected as
the rectangle area from N39.75658 to N40.02197 and from
E116.202 to E116.5439.

Figure 1la gives the social welfare defined as Equa-
tion (22) with 8 = 1, i.e., we only consider the needs of
current EV users. The benefit score is normalized between
0 to 1. FM outperforms FRLM and PBAM up to 9.30% and
11.06% respectively. As the budget increases, the beneficial
score gradually converges to a highest value where the
budget is no longer the main constraint. When the budget
is very large, each method can build enough stations to
cover the needs. On the other hand, the beneficial score is
also affected by the tile size because the differences of the
demands within the same tile are not considered.

To show the impact of spatial granularity, Figure 11b gives
the beneficial score of the three methods under different
number of tiles along longitude and latitude. FM performs
better than the other two methods during the experiment.
As the tile size becomes smaller, the beneficial score of the
three methods are gradually reduced. This is because smaller
spatial granularity allows the finer structure of charging
demand distribution to be considered.

In the two experiments, FRLM performs slightly better
than PBAM. 1t is possibly because traffic flow data captures
more charging demand than parking data does. For example,
commercial EVs, such as electric taxis, are running for most
of the time and rarely stop. However, taxi drivers charge
their EV more frequently. Figure 13 shows the EV drivers’
charge interval distribution derived based on pile usage data.
It can be seen that almost half of the drivers recharge within
24 hours. Interestingly, except for the peak around 8 hours,
we find that other peaks all appear at integer multiples of
24 hours. That suggests that many drivers charge their EV
everyday or every few days. These drivers probably use EVs
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to commute since commuters’ routes are relatively fixed. The
drivers who charge their EVs more than once per day are
probably commercial EV drivers, e.g., taxi drivers or online-
hailed car drivers. The peak around 8 hours matches the
result from [23] which reports that the electric taxi drivers
in Shenzhen charge three times a day on average.

Figure 12 shows the charging demand distribution esti-
mated by FM, FRLM and PBAM. It can be seen that the
three distributions show different patterns. Several peaks are
observed in the west of the city in Figure 12a, whereas
the peaks are gathered in the east in Figure 12b, which
generally matches the pattern shown in Figure 3. All three
methods estimate that there are many charging demand in
the Chaoyang District. Both FM and PBAM estimate that
there are hotspots in Haidian District in the northwest and
the Fengtai District in the southwest.

Figure 15a shows the deployment scheme given by FM.
Each of the red squares represents a selected location to
deploy a new charging station. The deeper the color, the
larger the size of the station (more piles). The number of
tiles along longitude and latitude is set to 30. Four locations
between the Fourth Ring Road and the Fifth Ring Road are
selected to deploy large charging stations (two in the north
and two in the southwest). Figure 15b gives the result of
FRIM. Compared to the scheme given by FM, more sites
in the center of the city are selected to deploy new stations
and, unsurprisingly, many of them are near the main roads.
The scheme given by PBAM is shown in Figure 15c. There
are several locations selected by both FRLM and PBAM.
This is probably because the two methods are both related
to traffic conditions.

The deployment schemes are also evaluated in terms of
the driver satisfaction and the result is shown in Figure 14.
The percentage of requests that are satisfied is used as the
satisfaction score. A request in a tile is considered satisfied
if there is a new charging station deployed in the same tile.
It can be seen that under the same budget, our approach
can achieve higher customer satisfaction. When the budget



is low, FM outperforms FRLM and PBAM up to 16.57%
and 36.49%, respectively.

VII. CONCLUSION

Building efficient charging networks in urban area to
support the growing number of EVs is a very urgent and
important issue, especially after the initial construction stage.
This paper focuses on using users’ charging behavior data to
estimate charging demand distribution and provide charging
station planning suggestions. Specifically, the search behav-
ior of the charging mobile app users, the navigation behavior
of the app users and the charging pile usage behavior are
analyzed and modeled. A Bayesian-inference-based algo-
rithm is proposed to fuse the three models. We formulate
the charging station planning problem as a mixed integer
programming problem with a flexible objective function.

With the help of our method, decision makers can better
understand the real needs of the current EV drivers and
adjust the parameters of the objective function to reflect their
preference between improving the convenience of current
EV drivers and attracting more FFV drivers. As a result,
EV drivers will find it more convenient to find charging piles
because charging stations are built at where they are most
needed. The adoption rate of EV may be further improved
because of the improvement of the quality of the charging
service.
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