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Abstract—It is a challenging task to provide timely access to Data replication [2] has been a key technique that enablds ea
global data from sensors in large-scale sensor network apis-  participating entity to share data and obtain an understgnd
tions. Current data storage architectures for sensor netwiks of the global status without the need for a central server.
have to make trade-offs between timeliness and scalability . L . L
PRIDE is a data abstraction layer for 2-tier sensor networks In partl_cula_r, for d's_t”bUted r_eal-tlme gppllcatlons,etlu_la_lta
which enables timely access to global data from the sensoreti  replication is essential to avoid unpredictable commutioca
to all participating nodes in the upper storage tier. The deign  delays [3][4].
of PRIDE is heavily influenced by collaborative real-time ap PRIDE (Predictive Replication In Distributed Embedded
plications such as search-and-rescue tasks for high-riseubding systems) is a data abstraction layer for devices performing
fires, in which multiple devices have to collect and manage da . : L .
streams from massive sensors in cooperation. PRIDE achieve collaboratlve_ real-time tasl_<s. It is linked to an ap_phoa’(s)
scalability, timeliness, and flexibility simultaneously 6r such at each device, and provides transparent and timely access
applications by combining a model-driven full replication scheme to global data from underlying sensors via a scalable and
and adaptive data quality control mechanism in the storagetier.  robust replication mechanism. Each participating deviae c
We show the viability of the proposed solution by implemening 5 nsharently access the global data from all underlying se

and evaluating it on a large-scale 2-tier sensor network téked. ithout notici hether it is f | |
The experiment results show that the model-driven replicabn Sors without noticing whether 1t 1S from local sensors, or

provides the benefit of full replication in a scalable and cotrolled frpm remote sensors, which are (_:overed by peer deyices.
manner. Since global data from all underlying sensors are available

at each device, queries on global spatio-temporal data ean b
efficiently answered using local data access methods,Rtg.,
Recent advances in sensor technology and wireless conrtese indexing, without further communication. Furthencs
tivity have paved the way for next generation real-time applall participating devices share the same set of data, any of
cations that are highly data-driven, where data represatt r them can be a primary device that manages a sensor. For
world status. For many of these applications, data streeons f example, when entities (either sensor nodes or devices) are
sensors are managed and processed by application-spenifibile, any device that is close to a sensor node can be a
devices such as PDAs, base stations, and micro servers. fpuimary storage node of the sensor node. This flexibility via
ther, as sensors are deployed in increasing numbers, & simgcoupling the data source tier (sensors) from the stoiage t
device cannot handle all sensor streams due to their scdle anvery important if we consider the highly dynamic nature of
geographic distribution. Often, a group of such devicesiriee wireless sensor network applications.
collaborate to achieve a common goal. For instance, during é&Even with these advantages, the high overhead of repli-
search-and-rescue task for a building fire, while PDAs edrrication limits its applicability [2]. Since potentially a st
by firefighters collect data from nearby sensors to check thamber of sensor streams are involved, it is not generally
dynamic status of the building, a team of such firefighterehapossible to propagate every sensor measurement to alledevic
to collaborate by sharing their locally collected realdimiata in the system. Moreover, the data arrival rate can be high
with peer firefighters since each individual firefighter halyonand unpredictable. During critical situations, the dattesa
limited information from nearby sensors [1]. The buildingean significantly increase and exceed system capacity. If no
wide situation assessment requires fusioning data frorfoall corrective action is taken, queues will form and the laten-
most of) firefighters. cies of queries will increase without bound. In the context
As this scenario shows, lots of future real-time appliaagio of centralized systems, several intelligent resourcecation
will interact with physical world via large numbers of un-schemes have been proposed to dynamically control the high
derlying sensors. The data from the sensors will be managetl unpredictable rate of sensor streams [5][6][7]. Howeve
by distributed devices in cooperation. These devices can e work has been done in the context of distributed and
either stationary (e.g., base stations) or mobile (e.gAd$Dreplicated systems.
and smartphones). Sharing data, and allowing timely adoess In this paper, we focus on providing a scalable and robust
global data for each participating entity is mandatory fac-s replication mechanism. The contributions of this paper are
cessful collaboration in such distributed real-time agatdions. 1) a model-driven scalable replication mechanism, which
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To make the replication scalable, PRIDE provides a model- ;‘ I /
driven replication scheme, in which the models of sensor | ;
streams are replicated to peer storage nodes, instead af dat ' " move
themselves. Once a model for a sensor stream is replicated

from a primary storage node of the sensor to peer nodes, the
updates from the sensor are propagated to peer nodes only if o ) )
the prediction from the current model is not accurate enough PRIDE envisions 2-tier sensor network systems with a
Our evaluation in Section 5 shows that this model-drive}£nsor tierand astorage tieras shown in Figure 1. The
approach makes PRIDE highly scalable by significantly ré€nsor tier consists of a large numb_er of cheap and simple
ducing the communication/computation overheads. Moneov&@nSors;S = {s1, s2,...,s»}, Wheres; is a sensor. Sensors
the Kalman filter-based modeling technique in PRIDE is ligh@f® assumed to be highly constrained in resources, and per-

weight and highly adaptable because it dynamically adjists form only primitive functions such as sensing and multi-hop
model parameters at run-time without training. communication without local storage. Sensors stream data o

Spatial queries on global data are efficiently supported Gyents to a nearest .storage node. These SENsors can be either
taking snapshots from the models periodically. The snal;dshoS ationary or mobile; e.g., sensors attached to a firefigirter
an up-to-date reflection of the monitored situation. Gives t m(_)rbhlle. . . ¢ cul devi h
fresh snapshot, PRIDE supports a rich set of local data or% © storage tier consists of more powerful devices such as

nization mechanisms such as B+ tree indexing to eﬁicienWhAS’ smgrtpho?es, and bdase _?Eatloﬁs&: {.dl’dQ’ ""dml}’t. |
process spatial queries, ere d; is a storage node. These devices are relatively

h b . dictabl K allrqesource—rich compared with sensor nodes. However, these
In PRIDE, the robustness against unpredictable workloags, jces also have limited resources in terms of processor

is achieved by dynamically adjusting the precision bourtds a/des, memory, power, and bandwidth. Each storage node
ea_L(_:h r_10d§ to m_auntaln a proper_levc_el Of system load, CPpo'OVideS in-network storage for underlying sensors, aarest
utilization in particular. _The coordination is made amohg t data from sensors in its vicinity. Each node supports mieltip
nodes such that relatively under-loaded nodes synchronizgie. an 802,11 radio to connect to a wireless mesh network

their prhe_C|S|on d'f.’ou'f‘d with an relatr:velyh overloaded nOd‘%‘nd a 802.15.4 to communicate with underlying sensors. Each
Using this coordination, we ensure that the congestion@t ;e i this tier can be either stationary (e.g., base sistio

overloaded node is effectively resolved. or mobile (e.g., smartphones and PDAs).

To show the viability of the proposed approach, we imple- The sensor tier and the storage tier have loose coupling;
mented a prototype of PRIDE on a large-scale testbed cofe storage node, which a sensor belongs to, can be changed
posed of Nokia N810 Internet tablets [8], a cluster computefynamically without coordination between the two tiersisTh
and a realistic sensor stream generator. We chose Nokia N&Jése coupling is required in many sensor network appbesti
since it represents emerging ubiquitous computing platéor if we consider the highly dynamic nature of such systems. For
such as PDAs, smartphones, and mobile computers, whigkample, the mobility of sensors and storage nodes makes the
will be expected to interact with ubiquitous sensors in thﬁ/stem design very complex and inflexible if two tiers are
near future. Based on the prOtOtype implementation, we |ﬂght|y Coup|ed; a Comp|ex group management and hand-off
vestigated system performance attributes such as comerunigrocedure is required to handle the mobility of entities [9]
tion/computation loads, energy efficiency, and robustr®ss  Applications at each storage node are linked to the PRIDE
evaluation results demonstrate that PRIDE takes advantggjger. Applications issue queries to underlying PRIDE taye
of full replication in an efﬁCient, hlghly robust and scdeb either autonomous|y, or by S|mp|y forwarding queries from
manner. external users. In the search-and-rescue task example, eac

The rest of this paper is organized as follows. Section 2orage node serves as both an in-network data storage for
presents the overview of PRIDE. Section 3 presents thelsletaiearby sensors and a device to run autonomous real-time
of the model-driven replication. Section 4 discusses owr prapplications for the mission; the applications collectaday
totype implemention, and Section 5 presents our experimherissuing queries and analyzing the situation to report tegal
results. We present related work in Section 6 and conclgsiahe firefighter. Afterwards, aoderefers to astorage nodef
in Section 7. it is not explicitly stated.

Fig. 1. A collaborative application on a 2-tier sensor nekwvo
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A. Filter & Prediction Engine

= updates —

%% g;g. The goals of filter & prediction engine are to filter out
85 T80 updates from local sensors using models, and to synchronize
- “Pdas - models at each storage node. The premise of using models

is that the physical phenomena observed by sensors can be
captured by models and a large amount of sensor data can be
filtered out using the models. In PRIDE, when a sensor

sensor stréams sensol streams
Fig. 2. The architecture of PRIDE (Gray boxes).

B. Usage Model Algorithm 1: OnUpdateFromSensor.

In PRIDE, all nodes in the storage tier are homogeneoUSinput: updatev from sensors;
in terms of their roles; no asymmetrical function is placed @=prediction from model fors;;
on a sub-group of the nodes. All or part of the nodes in t i ‘”l;oﬂdfa‘;tt?fgeer storage nodes;
storage tier form aeplication groupR to share the data from 4 update data fos; in the snapshot;
underlying sensors, wherB C D. Once a node joins the 5 update modetn; for s;; _
replication group, updates from its local sensors are [aeal S elsesmre to cache for later temporal query processing;
to peer nodes; conversely, the node can receive updates from discardw (or store for logging);
remote sensors via peer nodes. Any storage node, which9ignd
receiving updates directly from a sensor, becomes a primary
node for the sensor, and it broadcasts the updates from the
sensor to peer nodes. However, it should be noted that, &s wil i
be shown in Section 3, the PRIDE layer at each node perforpfd90rithm 2: OnUpdateFromPeer.
model-driven replication, instead of replicating sensatadito ~_ 'nPut: updatev from peerd. _

L. .. 1 update data fos, in the snapshot;

make the replication efficient and scalable. 2 update modehn, for sy

PRIDE is characterized by the queries that it Supports. store to cache for later temporal query processing;
PRIDE supports both temporal queries on each individuat

sensor stream and spatial queries on current global data. Te

poral queries on sensag’s historical data can be answerecf€@Mms; is covered by PRIDE replication groug, each
using the model fors;. An example of temporal query isStorage node iR maintains a modein; for s;. Therefore,

“What is the value of sensor; 5 minutes ago?"For spatial all storage nodes iR maintain a same set of synchronized

queries, each storage node provides a snapshot on the efpgels, M = {mi,ms, ... m,}, for all sensor streams in
set of underlying sensors (both local and remote sensone,) Hnderlying sensor tier. Each modet; for sensors; are
snapshot is similar to siew in database systems. Using théynchronized at run-time by;’s current primary storage node
snapshot, PRIDE provides traditional data organization af'0t¢ thats:’s primary node can change during run-time
access methods for efficient spatial query processing. Thgcause of _the network topology changes either at sensor tie
access methods can be applied to any attributes, e.g.,rseRgtorage tier). _

value, sensor ID, and location; therefovejue-basedjueries ~ Algorithms 1 and 2 show the basic framework for model
can be efficiently supported. Basic operations on the accé¥gchronization at a primary node and peer nodes, respec-
methods such as insertion, deletion, retrieval, and thatitey tvely. In Algorithm 1, when an update is received from
cursors are supported. Special operations sughiasursors SENSOrs; 1o its primary storage nodd;, the modelm; is

for join operations are also supported by making indexes '@°ked up, and a prediction is made using. If the gap
multiple attributes, e.g., temperature and location kaitss. Petween the predicted value from the modgland the sensor

This join operation is required to efficiently support compl UPdatew is less than the precision bourid (line 2), then
spatial queries such d@Return the current temperatures of the new data is discarded (or saved locally for logging.sThi
sensors located at room #4” implies that the current models (both at the primary node and

the peer nodes) are precise enough to predict the sensaitoutp
with the given precision bound. However, if the gap is bigger
than the precision bound, this implies that the model cannot
The architecture of PRIDE is shown in Figure 2. PRIDEapture the current behavior of the sensor output. In thége,ca
consists of three key components: fijter & prediction m; at the primary node is updated amdis broadcasted to
engine which is responsible for sensor stream filtering, modall peer nodes (line 3). In Algorithm 2, as a reaction to the
update, and broadcasting of updates to peer nodegju@y broadcast fromdi;, each peer node receives a new update
processoywhich handles queries on spatial and temporal dadad updates its own model; with v. The valuev is stored in
by using a snapshot and temporal models, respectively, dadal caches at all nodes for later temporal query procgssin

IIl. PRIDE DATA ABSTRACTIONLAYER



As shown in the Algorithms, the communication amongvo variables:

nodes happens only when the model is not precise enough. . . . )
P y P 9 Xp|k : the estimate of the state at time k given

Models, Filtering, and Prediction So far, we have not observations up to time k.
discussed a specific modeling technique in PRIDE. Several Py, :the error covariance matrix (a measure of the
distinctive requirements guide the choice of modeling tech estimated accuracy of the state estimate)

nigue in PRIDE. First, the computation and communication

costs for model maintenance should be low since PRIDE hdf@!man filter has two distinct phaseBredict and Update
dles a large number of sensors (and corresponding models F§€ Predict phase uses the state estimate from the previous
each sensor) with collaboration of multiple nodes. The obst timestepk — 1 to produce an estimate of the state at the next
model maintenance linearly increases to the number of sens§mestepk. In the update phase, measurement information at
Second, the parameters of models should be obtained withBlg current timestep is used to refine this prediction to arrive
an extensive learning process, because many collaboretile 8t @ new more accurate state estimate,.again_ for the current
time applications, e.g., a search-and-rescue task in dibgil timestepk. When a new measuremesi is available from
fire, are short-term and deployed without previous mornitpri & Sensor, the_ true state of the sensor is estimates using the
history. A statistical model that needs extensive hisricPrevious predictior ., and the weighted prediction error.
data for model training is less applicable even with theirh® weight is called Kalman gaiK;, and it is updated on
highly efficient filtering and prediction performance. Figa ea(?h prediction/update cycle. The true state of the serssor i
the modeling should be general enough to be applied tofgtimated as follows,
broad range of appli_cations. Ad-hoc modeling techniques fo Xk = Xpjh—1 + Ki(ze — HeXpp—1)- (3)
a particular application cannot be generally used for other P — (T—K.H, P 4
applications. Since PRIDE is a data abstraction layer folewi e = R HE) Py ()
range of collaborative applications, the generality of glody The Kalman gairK;, is updated as follows,
is important. To this end, we choose to use Kalman filter T T
[10][6], which provides a systematic mechanism to estimate Kk = Prje—1 Hy (HePrjp—1Hi +Ry). ®)
past, current, and future state of a system from noisy measut each prediction step, the next state of the sensor is gtestli
ments. A short summary on Kalman filter follows. by,
Kalman Filter: The Kalman filter model assumes the true R R
state at timek is evolved from the state 4k — 1) according Kilk—1 = FrXp—1]r—1- ©)
to Example: For instance, a temperature sensor can be described
by the linear state space,, = [z ‘fl—ﬂT, where z is the

X = FeXp-1 + wi; 1) temperature and? is the derivative of the temperature with
respect to time. As a new (noisy) measurenmgnarrives from
the sensdr, the true state and model parameters are estimated
by Equations 3 - 5. The future state of the sensqiat 1)th
time step afterAt can be predicted using the Equation 6,

where

F is the state transition matrix relating, 1 to x;

wy, is the process noise, which follows(0, Qx); where the state transition matrix is
At time k an observationz;, of the true statex; is made F = F At} . )
according to 0 1
It should be noted that the parameters for Kalman filter, e.g.
zr = Hpxy + vi (2) K andP, do not have to be accurate in the beginning; they
can be estimated at run-time and their accuracy improves
where gradually by having more sensor measurements. We do not
_ ) need massive past data for modeling at deployment time. In
H;, is the observation model; addition, theupdatecycle of Kalman filter (Equations 3 - 5)
v}, iS the measurement noise, which followg0, Ry); is performed at all storage nodes when a new measurement is

broadcasted as shown in Algorithm 1 (line 5) and Algorithm 2
The Kalman filter is a recursive minimum mean-square err@iine2). No further communication is required to syncheeni
estimator. This means that only the estimated state from ti@ parameters of the models. Finally, as will be shown in
previous time step and the current measurement are neegedtion 5, theprediction/updatecycle of Kalman filter incurs
to compute the estimate for the current and future staiasignificant overhead to the system.
In contrast to batch estimation techniques, no history of

observations is required. In what follows. the notatm INote that the temperature componentzgfis directly acquired from the
’ ™ sensor, andf% can be indirectly calculated as the ratio of the temperature

represepts th(? eSt!mate fat timen gNen. ob;ervatlpns up change to the elapsed time between the previous measurantetite current
to, and including timem. The state of a filter is defined byone.



B. Query Processor the period can be dynamically estimated as follows:

The query processor of PRIDE supports both temporal pli] =6 dx )
gueries and spatial queries with planned extension to stippo dt’

spatio-temporal queries. The2 x §/ 4 is theabsolute validity interval (avipefore the
data object in the snapshot violates the precision bounithvh
Temporal Queries: Historical data for each sensor streank +4. The update period should be as short as the half of the
can be processed in any storage node by exploiting data at#eto make the data object fresh [11].
local cache and linear smoother [10]. Unlike the estimatibn  Since each storage node has an up-to-date snapshot, spatial
current and future states using one Kalman filter, the op#hi queries on global data from sensors can be efficiently han-

estimation of historical data (sometimes callethoothing dled using local data access methods (e.g., B+ tree) without
requires two Kalman filters, a forward filtérand a backward incurring further communication delays.

filter x,. Smoothing is a non-real-time data processing scheme _ .
that uses all measurements between 0 &ni estimate the C- Adaptive Data Quality Control
state of a system at a certain timewhere0 < ¢ < T (see 400

Figure 3.) The smoothed estimat¢t|T') can be obtained as 300[\/"’\\_._

a linear combination of the two filters as follows.
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db o—© Tt oo O° ? Figure 4 shows how the value of one data object in the
N . . « .
X ——> Forward filter O : locally cached snapshot changes over time when we apply different precisio

observations

Fig. 3. Smoothing for temporal query processing. bounds. As the precision bound is getting bigger, the gap be-

tween the real state of the sensor (dashed lines) and thenturr

Spatial Queries: Each storage node maintains a snapshwlue at the snapshot (solid lines) increases. In the sioles |
for all underlying local and remote sensors to handle geerithe discontinued points are where the model prediction aed t
on global spatial data. Each element (or data object) gsgal measurement from the sensor are bigger than the mnecisi
the snapshot is an up-to-date value from the correspondff@und, and subsequent communication is made among storage
sensor. The snapshot is dynamically updated either by né@des for model synchronization. For applications andsjser
measurements from sensors or by motlefhe Algorithm 1 maintaining the smaller precision bound implies having a
(line 4) and Algorithm 2 (line 1) show the snapshot updaté8ore accurate view on the monitored situation. However,
when a new observation is pushed from a local sensor anéhg overhead also increases as we have the smaller precision
peer node, respectively. As explained in the previous mecti bound.
there is no communication among storage nodes when model&iven the unpredictable data arrival rates and resource
well represent the current observations from sensors. WHeistraints, compromising the data quality for system sur-
there is no update from peer nodes, the freshness of value¥iability is unavoidable in many situations. In PRIDE, we
the snapshot deteriorate over time. To maintain the freshné0nsider processor cycles as the primary limited resouare,
of the snapshot even when there is no updates from péee resource allocation is performed to maintain the desire
nodes, each value in the snapshot is periodically updated ®§U utilization. The utilization control is used to enforce
its local model. Each storage node can estimate the curr@fpropriate schedulable utilization bounds of applicatioan
state of sensos; using Equation 6 without communication toPe guaranteed despite significant uncertainties in systerk-w
the primary storage node af. For example, a temperatureloads [12][5]. In utilization control, it is assumed thatyan
after 30 seconds can be predicted by settigof transition Cycles that are recovered as a result of control in PRIDErlaye
matrix in Equation 7 to 30 seconds. are used sensibly by the scheduler in the application layer t

The period of update of data objeétfor sensors; is relieve the congestion, or to save power [12][S]. It can also
determined, such that the precision boufids observed. €nhance system survivability by providing overload progec
Intuitively, when a sensor value changes rapidly, the da@g@ainst workload fluctuation. o
object should be updated more frequently to make the data>Pecification: At each node, the system specification

object in the snapshot valid. In the example of Section 3.1 dmaz) consists of a utilization specificatiod/ and
the precision specification,,,,.. The desired utilization

2Note that the data structures for the snapshot such as mdmeealso U € [0..1] giveslthe re_qUi'jed CPU utilization not to overload
updated when each value of the snapshot is updated. the system while satisfying the target system performance



such as latency, and energy consumption. The precisiollgorithm 3: PrecisionBoundControl
specificationd,, ., denotes the maximum tolerable precisioN nput: myid: my storage id number
bound. Note there is no lower bound on the precision as in/* Get |00?}L§-f*/ "
: s easureu rom monitor;
general users require a precision bound as short as poss@;l@lculateémyid(k) from local controller:
(if the system is not overloaded.) 4 foreach peer noded in R — {dnyiq} do
5 /* Exchange localjs. */
Local Feedback Control to Guarantee the System Spec- 5 ge;’jg p'gg(y,f)af(';f save communication cost. */
ification: Using feedback control has shown to be very effeg receivggil(‘z) from d:
tive for a large class of computing systems that exhibit anpro end
. . . % 1 *
dictable workloads and model inaccuracies [13]. Therefiare 10 /* Get the final globald. */ R
e L. . s 1 dgi0bai (k) = max(d;(k)), wherei € R;
guarantee the system specification without a priori knogde
of the workload or accurate system model we apply feedback

control.

replication group. The global precision boundk#th sampling

l o) period, is the common precision bound for all storage nodes
H,@eﬂ‘l Controllet-2(K),| Storage in the replication group for the period. We choose the getate
node i
value among all precision bounds from each local control
Fig. 5. The feedback control loop. loop since a node that has the greatest precision bound is

The overall feedback control loop at each storage nodelf® most overloaded node in periéd By setting the global
shown in Figure 5. LeT is the sampling period. The utilization Précision bound to the most overloaded node’s, we can ensure
u(k) is measured at each sampling ins@fit 1T, 2T,..and the that congestion at the most overloaded node is reduced.
difference between the target utilization antk) is fed into ~ One of the most important properties of a feedback control
the controller. Using the difference, the controller coiggua  SYSteém is stability. However, the stability analysis of-dis
local precision bound (k) such thatu(k) converges td/. t_rlbuted feedback control loops is possible only in limitest-

The first step for local controller design is modeling th&ngs [14]. Hence, we show the stability of PRIDE's feedback
target system (storage node) by relatifigk) to u(k). We control mechanism in an empirical manner in Section V.
model the the relationship betwe¥{k) and u(k) by using
profiling and statistical methods [13]. Siné€k) has higher
impact onu(k) as the size of the replication group increases, PRIDE: PRIDE is an extension of Berkeley DB [15],
we need different models for different sizes of the groupvhich is a popular open-source embedded database. Unlike
We change the number of members of the replication grotraditional database systems, Berkeley DB is embeddable to
exponentially from 2 to 64 and have tuned a set of first ordan application; Berkeley DB is linked to an application (or
modelsG,,(z), wheren € {2,4,8,16,32,64}. G,,(z) is the z- application infrastructure) and provides robust storageures
transform transfer function of the first-order models, iniebh such as diverse access methods, ACID transactions, rgcover
n is the size of the replication group. After the modelingocking, and multi-threading for concurrency. PRIDE exfslo
we design a controller for the model. We have found thatthese features of Berkeley DB and extends them by providing
proportional integral (P1) controller [13] is sufficient terms model-driven replication, snapshot management, and dynam
of providing a zero steady-state error, i.e., a zero diffeee data precision control. Snapshots of PRIDE are database
betweenu(k) and the target utilization bound. Further, a gaifiles of Berkeley DB on which the diverse data management
scheduling technique [13] have been used to apply differdtnctionalities of Berkeley DB can be applied.
controller gains for different size of replication groug=or Testbed: We have implemented a prototype of PRIDE on
instance, the gain foiG3,(z) is applied if the size of a a multi-tier sensor network testbed. In the testbed, theagto
replication group is bigger thatt and less than or equal #8. tier employs one Nokia N810 Internet tablet and a Centurion
Due to space limitation we do not provide a full descriptiogluster machine. The N810 device is equipped with 400MHz
of the design and tuning methods. TI OMAP processor, 128MB RAM, 256MB flash memory,

Coordination among Replication Group Members: If 802.11b Wi-Fi radio, and runs the Linux 2.4.19 kernel. The
each node independently sets its own precision bound, the @enturion cluster enables a large-scale evaluation. Tistenl
precision bound of data becomes unpredictable. For examg$e equipped with 64 computing nodes, in which each node
at noded;, the precision bounds for local sensor streams anas two 1.5 GHz AMD Opteron processors, 2GB RAM. Each
determined byl; itself while the precision bounds for remotenode of the Centurion cluster emulates one storage node.
sensor streams are determined by their own primary storddgewever, the real measurements of CPU utilization, energy
nodes. consumption, and the query latency are performed in the

PRIDE takes a conservative approach in coordinating sttd810 device. The N810 device and the Centurion cluster is
age nodes in the group. As Algorithm 3 shows, the globabnnected via wireless Ethernet.
precision bound for théth period is determined by taking In the sensor tier, sensor streams can be generated by
the maximum from the precision bounds of all nodes in tHeIST CFAST (The Consolidated Model of Fire and Smoke

IV. IMPLEMENTATION



Transport) fire simulator [16]. Using CFAST simulator, a 1) Scalability: Figure 6 shows the scalability of PRIDE and
wide-range of fire scenarios can be simulated in detail paselines when we change the number of storage nodes from 2
configuring the input parameters, which include the geome 16. Each storage node receives data streams from 100 sen-
try of the compartments and the connections between theses. Hence, the number of underlying sensors increases fro
compartments, the initial fire source and burning objec®)0 to 1,600 accordingly. In Figure 6-(a), as the system size
in the compartments, flow vents, and floor/wall materialincreases, the number of messages increases in all appsach
Traces are generated from the CFAST simulator in off-lindowever, the slope is much flatter in PRIDE than baseline
for repeatability and scalability of experiments. For lasgale approaches since PRIDE filters out most of the incoming data
experiments, additional sensor streams can be made by tifiem sensors as long as its models can predict the valuenwithi
shifting the original traces. These traces are replayedsantl the precision bound. For instance, PRIDE filters 68% of
to storage nodes by another node of the Centurion cluster.the original data when 16 storage nodes are deployed while
Approx-Caching filters out onl$0%. This gap increases as the
V. EVALUATION system scales up. The high filtering rates of PRIDE implies
that it can be highly robust and scalable in low-bandwidth
In this section, we evaluate the performance of PRIDE imetworking environments.
our testbed. For evaluation, a fire in a 10-story buildinghwit The amount of communication is highly related to the
100 compartments is modeled using the CFAST simulator, @PU load since each message incurs overhead to handle it.
which temperatures at 1024 locations are measured for Bigure 6-(b) shows the CPU utilization in the same experimen
minutes with 1 second intervals. The PDAs carried by 3Phe CPU loads increase proportionally to the amount of
firefighters are emulated by storage nodes in the testbed (@oenmunication in all approaches. Maintaining a properlleve
N810 device and 31 Centurion cluster nodes). On ewesy of CPU load is particularly important for real-time applicas
second perio a new query is automatically issued by amo guarantee the deadlines of real-time tasks. Once CPU load
application at each storage node. The queries randomlgsicagses above a certain scheduling bound, the lengths of sthed

512 sensor values in the snapghot ing queues in the system increase limitlessly. In Figure)6-(
the query latency increases without limit as CPU gets stdra
A. Performance of Model-Driven Replication in the Full approach. The relatively flat slope of PRIDE inegli

that the scale of PRIDE can be much higher than the baseline
First, we show the performance of the model-driven replﬁpproaches before the System gets overloaded.
cation scheme in PRIDE. We compare the performance ofjn PRIDE, CPU load is not only related to the number of
PRIDE with three baseline algorithms. exchanged messages, but also to the number of underlying
« Full (Full replication): All updates from sensor streamssensors since PRIDE updates data objects in the snapshot
are fully replicated to peer storage nodes in the replicatiperiodically using models of each sensor. In Figure 6-8, t
group. gap between PRIDE and PRIDE/NU quantifies the cost of the
« Approx-Caching (Approximate caching): This is a dynamic snapshot update using models. PRIDE incurs less
value-driven approach, in which a storage node broaghan 10% CPU overhead than PRIDE/NU when 16 storage
casts updates from sensors only if the difference betwegddes are involved. This implies that the CPU overhead to
current data and last broadcasted data is larger thamnaintain models in PRIDE is insignificant.
threshold §). This approach is similar to the algorithm Finally, note that we can reduce the number of commu-
in [7]. nication messages (and subsequent resource consumption)
« PRIDE/NU (No dynamic snapshot update):This is dramatically by concatenating several individual message
the PRIDE approach, but the snapshot at each noderisr example, the CPU loads decreased more trh in
not dynamically updated by models. This approach {§| approaches when messages for 1 second period were con-
included to reveal the overhead of dynamic snapsh@itenated and bulk-transfered in one message. Howevsr, thi
update using models in PRIDE. benefit applies to all approaches and the relative perfocman
The data quality controller in PRIDE and PRIDE/NU is turnefémains the same. Further, this gain is acquired at the ¢ost o
off during the evaluation to assess the efficiency of the rhod@dditional delays in the message propagation. PRIDE stgpor
driven replication alone. The data precision bodrsl1°C for this bulk-transfer option for applications having loosaitig
both PRIDE and Approx-Caching. All evaluation results areonstraints.
based on at least 5 runs and the averages with 95% confidenc® Energy ConsumptionSince PRIDE targets (potentially
intervals are taken mobile) low-end devices such as PDAs, and micro severs,
energy is a critical resource for long lifetime. In this sewt
3Real-time queries for firefighters can be invoked on a pesrsasis We compare the energy consumption of PRIDE to the baseline
[17]. approaches. In the evaluation, 16 storage nodes are deploye
“The applications can use raw data returned from the quesietufther ¢ 30 minutes, where each storage node handles 100 sensor
analysis and decision making. However, further processirthe application .
layer is not modeled in the evaluation. streams. The power measurements are performed in the N810
5The confidence interval bars are shown in the graphs. device by monitoring the remaining battery power. The full
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Figure 7-(a) shows the energy consumption after 30 min- , .
utes, and Figure 7-(b) shows the changes in the remainineq F——F——7F-—+——
battery power over 30 minutes. The result shows that PRIDE;z "
consumes the smallest energy in the experiment; PRIDE con os
sumes 27% and 43% less engergy than the Approx-Cachir °? .
and the Full approach, respectively. This result is exgecte .
since the overhead in computation and communication ha. Numberof sensorspersiorage node
net effect on the energy consumption. Note that PRIDE (&) CPU utilization (b) deltad®)
consumes insignificantly small additional energy compaoed Fig. 8. Varying workload.
PRIDE/NU, which does not perform the dynamic snapshot

update. The additional energy consumption is less tha¥t.  -p|y |5ad closely in all workloads. In contrast, the CPU load

This re;ultlagain demonstrates that the bgnefit_of using r';'Odfﬁjctuates dramatically between under-utilization androve
for replication outperforms the cost of maintaining the reled utilization when no control is applied; the load changes

and snapshot. between 0.28 and 1. Violating the goal in CPU load implies
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T T o e that the latency of application tasks and queries in PRIDE
e I g can be increased significantly. Figure 8-(b) shows the obgng
: in § to achieve the target CPU load. In PRIDE, the precision
£ bounds increases linearly as the workload increases. However,
i : PRIDE still satisfies the maximum precision bound, which is
o 10°C.
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B. Adaptability g+ ; _
We next evaluate the adaptability of PRIDE against unpre- oo Y .
dictable workloads. For the evaluation, 32 storage nodes ar i o1
deployed and the data quality controller at each node istirn % O P

on for the experiment. The performance goal is given by the
specification< 0.6,10°C >, which means the CPU utilization
bound is60% and the maximum precision bourdis 10°C. 2) Transient Performance:The average performance is
In the experiment, the sampling intervals of controllers st not enough to show the performance of dynamic systems.
to 20 seconds. We compare the performance when the datansient performance such as settling time should be small
quality controllers are turned on and off. enough to satisfy the requirements of applications. In this
1) Average PerformanceWe evaluate the adaptability of experiment, the workload is increased by changing the numbe
PRIDE by changing the workload. The workloads are varieaf underlying sensors and the transient behavior is obderve
by changing the number of sensor streams for each stordge example, we can consider a situation in which a firefighter
nodes from 60 to 140. For PRIDE without controllers, thenoves to a location where sensors are densely deployed. The
precision bound is set t8°C. number of sensors at one of the storage nodes (the N810
In Figure 8, the average performance is shown. Figudevice) is increased from 80 to 140 for 30 sampling periods.
8-(a) shows that PRIDE with controller achieves the targetFigure 9 shows that the CPU load and the precision bound

Fig. 9. Transient behavior.



8. The increase of workload starts at th@&" sampling period.  In the future, we plan to provide a generalized modeling
We can see that the CPU load increases suddenly &i0ftie framework that is applicable to a wide range of applications
sampl!ng perllod. However, the CPU load stabilizes W|th!n_2 ACKNOWLEDGMENT
sampling periods. When the workload decreases to the afigin __ . )
level at the60'" sampling period, it takes 1 sampling period | S Work was supported, in part, by KOSEF WCU Project
to stabilize. R33-2008-000-10110-0 and US National Science Foundation
grant CNS-0614886, CNS-0614870, and CNS-0626616.
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