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Abstract—It is a challenging task to provide timely access to
global data from sensors in large-scale sensor network applica-
tions. Current data storage architectures for sensor networks
have to make trade-offs between timeliness and scalability.
PRIDE is a data abstraction layer for 2-tier sensor networks,
which enables timely access to global data from the sensor tier
to all participating nodes in the upper storage tier. The design
of PRIDE is heavily influenced by collaborative real-time ap-
plications such as search-and-rescue tasks for high-rise building
fires, in which multiple devices have to collect and manage data
streams from massive sensors in cooperation. PRIDE achieves
scalability, timeliness, and flexibility simultaneously for such
applications by combining a model-driven full replication scheme
and adaptive data quality control mechanism in the storage-tier.
We show the viability of the proposed solution by implementing
and evaluating it on a large-scale 2-tier sensor network testbed.
The experiment results show that the model-driven replication
provides the benefit of full replication in a scalable and controlled
manner.

I. I NTRODUCTION

Recent advances in sensor technology and wireless connec-
tivity have paved the way for next generation real-time appli-
cations that are highly data-driven, where data represent real-
world status. For many of these applications, data streams from
sensors are managed and processed by application-specific
devices such as PDAs, base stations, and micro servers. Fur-
ther, as sensors are deployed in increasing numbers, a single
device cannot handle all sensor streams due to their scale and
geographic distribution. Often, a group of such devices need to
collaborate to achieve a common goal. For instance, during a
search-and-rescue task for a building fire, while PDAs carried
by firefighters collect data from nearby sensors to check the
dynamic status of the building, a team of such firefighters have
to collaborate by sharing their locally collected real-time data
with peer firefighters since each individual firefighter has only
limited information from nearby sensors [1]. The building-
wide situation assessment requires fusioning data from all(or
most of) firefighters.

As this scenario shows, lots of future real-time applications
will interact with physical world via large numbers of un-
derlying sensors. The data from the sensors will be managed
by distributed devices in cooperation. These devices can be
either stationary (e.g., base stations) or mobile (e.g., PDAs
and smartphones). Sharing data, and allowing timely accessto
global data for each participating entity is mandatory for suc-
cessful collaboration in such distributed real-time applications.

Data replication [2] has been a key technique that enables each
participating entity to share data and obtain an understanding
of the global status without the need for a central server.
In particular, for distributed real-time applications, the data
replication is essential to avoid unpredictable communication
delays [3][4].

PRIDE (Predictive Replication In Distributed Embedded
systems) is a data abstraction layer for devices performing
collaborative real-time tasks. It is linked to an application(s)
at each device, and provides transparent and timely access
to global data from underlying sensors via a scalable and
robust replication mechanism. Each participating device can
transparently access the global data from all underlying sen-
sors without noticing whether it is from local sensors, or
from remote sensors, which are covered by peer devices.
Since global data from all underlying sensors are available
at each device, queries on global spatio-temporal data can be
efficiently answered using local data access methods, e.g.,B+
tree indexing, without further communication. Further, since
all participating devices share the same set of data, any of
them can be a primary device that manages a sensor. For
example, when entities (either sensor nodes or devices) are
mobile, any device that is close to a sensor node can be a
primary storage node of the sensor node. This flexibility via
decoupling the data source tier (sensors) from the storage tier
is very important if we consider the highly dynamic nature of
wireless sensor network applications.

Even with these advantages, the high overhead of repli-
cation limits its applicability [2]. Since potentially a vast
number of sensor streams are involved, it is not generally
possible to propagate every sensor measurement to all devices
in the system. Moreover, the data arrival rate can be high
and unpredictable. During critical situations, the data rates
can significantly increase and exceed system capacity. If no
corrective action is taken, queues will form and the laten-
cies of queries will increase without bound. In the context
of centralized systems, several intelligent resource allocation
schemes have been proposed to dynamically control the high
and unpredictable rate of sensor streams [5][6][7]. However,
no work has been done in the context of distributed and
replicated systems.

In this paper, we focus on providing a scalable and robust
replication mechanism. The contributions of this paper are:

1) a model-driven scalable replication mechanism, which
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significantly reduces the overall communication and
computation overheads,

2) a global snapshot management scheme for efficient
support of spatial queries on global data,

3) a control-theoretic quality-of-data management algo-
rithm for robustness against unpredictable workload
changes, and

4) the implementation and evaluation of the proposed ap-
proach on a real device with realistic workloads.

To make the replication scalable, PRIDE provides a model-
driven replication scheme, in which the models of sensor
streams are replicated to peer storage nodes, instead of data
themselves. Once a model for a sensor stream is replicated
from a primary storage node of the sensor to peer nodes, the
updates from the sensor are propagated to peer nodes only if
the prediction from the current model is not accurate enough.
Our evaluation in Section 5 shows that this model-driven
approach makes PRIDE highly scalable by significantly re-
ducing the communication/computation overheads. Moreover,
the Kalman filter-based modeling technique in PRIDE is light-
weight and highly adaptable because it dynamically adjustsits
model parameters at run-time without training.

Spatial queries on global data are efficiently supported by
taking snapshots from the models periodically. The snapshot is
an up-to-date reflection of the monitored situation. Given this
fresh snapshot, PRIDE supports a rich set of local data orga-
nization mechanisms such as B+ tree indexing to efficiently
process spatial queries.

In PRIDE, the robustness against unpredictable workloads
is achieved by dynamically adjusting the precision bounds at
each node to maintain a proper level of system load, CPU
utilization in particular. The coordination is made among the
nodes such that relatively under-loaded nodes synchronize
their precision bound with an relatively overloaded node.
Using this coordination, we ensure that the congestion at the
overloaded node is effectively resolved.

To show the viability of the proposed approach, we imple-
mented a prototype of PRIDE on a large-scale testbed com-
posed of Nokia N810 Internet tablets [8], a cluster computer,
and a realistic sensor stream generator. We chose Nokia N810
since it represents emerging ubiquitous computing platforms
such as PDAs, smartphones, and mobile computers, which
will be expected to interact with ubiquitous sensors in the
near future. Based on the prototype implementation, we in-
vestigated system performance attributes such as communica-
tion/computation loads, energy efficiency, and robustness. Our
evaluation results demonstrate that PRIDE takes advantage
of full replication in an efficient, highly robust and scalable
manner.

The rest of this paper is organized as follows. Section 2
presents the overview of PRIDE. Section 3 presents the details
of the model-driven replication. Section 4 discusses our pro-
totype implemention, and Section 5 presents our experimental
results. We present related work in Section 6 and conclusions
in Section 7.

II. OVERVIEW OF PRIDE

A. System Model
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Fig. 1. A collaborative application on a 2-tier sensor network.

PRIDE envisions 2-tier sensor network systems with a
sensor tier and a storage tier as shown in Figure 1. The
sensor tier consists of a large number of cheap and simple
sensors;S = {s1, s2, ..., sn}, wheresi is a sensor. Sensors
are assumed to be highly constrained in resources, and per-
form only primitive functions such as sensing and multi-hop
communication without local storage. Sensors stream data or
events to a nearest storage node. These sensors can be either
stationary or mobile; e.g., sensors attached to a firefighterare
mobile.

The storage tier consists of more powerful devices such as
PDAs, smartphones, and base stations;D = {d1, d2, ..., dm},
where di is a storage node. These devices are relatively
resource-rich compared with sensor nodes. However, these
devices also have limited resources in terms of processor
cycles, memory, power, and bandwidth. Each storage node
provides in-network storage for underlying sensors, and stores
data from sensors in its vicinity. Each node supports multiple
radios; an 802.11 radio to connect to a wireless mesh network
and a 802.15.4 to communicate with underlying sensors. Each
node in this tier can be either stationary (e.g., base stations),
or mobile (e.g., smartphones and PDAs).

The sensor tier and the storage tier have loose coupling;
the storage node, which a sensor belongs to, can be changed
dynamically without coordination between the two tiers. This
loose coupling is required in many sensor network applications
if we consider the highly dynamic nature of such systems. For
example, the mobility of sensors and storage nodes makes the
system design very complex and inflexible if two tiers are
tightly coupled; a complex group management and hand-off
procedure is required to handle the mobility of entities [9].

Applications at each storage node are linked to the PRIDE
layer. Applications issue queries to underlying PRIDE layer
either autonomously, or by simply forwarding queries from
external users. In the search-and-rescue task example, each
storage node serves as both an in-network data storage for
nearby sensors and a device to run autonomous real-time
applications for the mission; the applications collect data by
issuing queries and analyzing the situation to report results to
the firefighter. Afterwards, anoderefers to astorage nodeif
it is not explicitly stated.
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Fig. 2. The architecture of PRIDE (Gray boxes).

B. Usage Model

In PRIDE, all nodes in the storage tier are homogeneous
in terms of their roles; no asymmetrical function is placed
on a sub-group of the nodes. All or part of the nodes in the
storage tier form areplication groupR to share the data from
underlying sensors, whereR ⊂ D. Once a node joins the
replication group, updates from its local sensors are propagated
to peer nodes; conversely, the node can receive updates from
remote sensors via peer nodes. Any storage node, which is
receiving updates directly from a sensor, becomes a primary
node for the sensor, and it broadcasts the updates from the
sensor to peer nodes. However, it should be noted that, as will
be shown in Section 3, the PRIDE layer at each node performs
model-driven replication, instead of replicating sensor data, to
make the replication efficient and scalable.

PRIDE is characterized by the queries that it supports.
PRIDE supports both temporal queries on each individual
sensor stream and spatial queries on current global data. Tem-
poral queries on sensorsi’s historical data can be answered
using the model forsi. An example of temporal query is
“What is the value of sensorsi 5 minutes ago?”For spatial
queries, each storage node provides a snapshot on the entire
set of underlying sensors (both local and remote sensors.) The
snapshot is similar to aview in database systems. Using the
snapshot, PRIDE provides traditional data organization and
access methods for efficient spatial query processing. The
access methods can be applied to any attributes, e.g., sensor
value, sensor ID, and location; therefore,value-basedqueries
can be efficiently supported. Basic operations on the access
methods such as insertion, deletion, retrieval, and the iterating
cursors are supported. Special operations such asjoin cursors
for join operations are also supported by making indexes to
multiple attributes, e.g., temperature and location attributes.
This join operation is required to efficiently support complex
spatial queries such as“Return the current temperatures of
sensors located at room #4.”

III. PRIDE DATA ABSTRACTION LAYER

The architecture of PRIDE is shown in Figure 2. PRIDE
consists of three key components: (i)filter & prediction
engine, which is responsible for sensor stream filtering, model
update, and broadcasting of updates to peer nodes, (ii)query
processor, which handles queries on spatial and temporal data
by using a snapshot and temporal models, respectively, and

(iii) feedback controller, which determines proper precision
bounds of data for scalability and overload protection.

A. Filter & Prediction Engine

The goals of filter & prediction engine are to filter out
updates from local sensors using models, and to synchronize
models at each storage node. The premise of using models
is that the physical phenomena observed by sensors can be
captured by models and a large amount of sensor data can be
filtered out using the models. In PRIDE, when a sensor

Algorithm 1 : OnUpdateFromSensor.
Input : updatev from sensorsi

v̂=prediction from model forsi;1
if |v̂ − v| ≥ δ then2

broadcast to peer storage nodes;3
update data forsi in the snapshot;4
update modelmi for si;5
store to cache for later temporal query processing;6

else7
discardv (or store for logging);8

end9

Algorithm 2 : OnUpdateFromPeer.
Input : updatev from peerdx

update data forsx in the snapshot;1
update modelmx for sx;2

store to cache for later temporal query processing;3

streamsi is covered by PRIDE replication groupR, each
storage node inR maintains a modelmi for si. Therefore,
all storage nodes inR maintain a same set of synchronized
models,M = {m1, m2, ..., mn}, for all sensor streams in
underlying sensor tier. Each modelmi for sensorsi are
synchronized at run-time bysi’s current primary storage node
(note that si’s primary node can change during run-time
because of the network topology changes either at sensor tier
or storage tier).

Algorithms 1 and 2 show the basic framework for model
synchronization at a primary node and peer nodes, respec-
tively. In Algorithm 1, when an updatev is received from
sensorsi to its primary storage nodedj , the modelmi is
looked up, and a prediction is made usingmi. If the gap
between the predicted value from the model,v̂, and the sensor
updatev is less than the precision boundδ (line 2), then
the new data is discarded (or saved locally for logging.) This
implies that the current models (both at the primary node and
the peer nodes) are precise enough to predict the sensor output
with the given precision bound. However, if the gap is bigger
than the precision bound, this implies that the model cannot
capture the current behavior of the sensor output. In this case,
mi at the primary node is updated andv is broadcasted to
all peer nodes (line 3). In Algorithm 2, as a reaction to the
broadcast fromdj , each peer node receives a new updatev
and updates its own modelmi with v. The valuev is stored in
local caches at all nodes for later temporal query processing.
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As shown in the Algorithms, the communication among
nodes happens only when the model is not precise enough.

Models, Filtering, and Prediction So far, we have not
discussed a specific modeling technique in PRIDE. Several
distinctive requirements guide the choice of modeling tech-
nique in PRIDE. First, the computation and communication
costs for model maintenance should be low since PRIDE han-
dles a large number of sensors (and corresponding models for
each sensor) with collaboration of multiple nodes. The costof
model maintenance linearly increases to the number of sensors.
Second, the parameters of models should be obtained without
an extensive learning process, because many collaborativereal-
time applications, e.g., a search-and-rescue task in a building
fire, are short-term and deployed without previous monitoring
history. A statistical model that needs extensive historical
data for model training is less applicable even with their
highly efficient filtering and prediction performance. Finally,
the modeling should be general enough to be applied to a
broad range of applications. Ad-hoc modeling techniques for
a particular application cannot be generally used for other
applications. Since PRIDE is a data abstraction layer for wide
range of collaborative applications, the generality of modeling
is important. To this end, we choose to use Kalman filter
[10][6], which provides a systematic mechanism to estimate
past, current, and future state of a system from noisy measure-
ments. A short summary on Kalman filter follows.

Kalman Filter: The Kalman filter model assumes the true
state at timek is evolved from the state at(k − 1) according
to

xk = Fkxk−1 + wk; (1)

where

Fk is the state transition matrix relatingxk−1 to xk;

wk is the process noise, which followsN(0,Qk);

At time k an observationzk of the true statexk is made
according to

zk = Hkxk + vk (2)

where

Hk is the observation model;

vk is the measurement noise, which followsN(0,Rk);

The Kalman filter is a recursive minimum mean-square error
estimator. This means that only the estimated state from the
previous time step and the current measurement are needed
to compute the estimate for the current and future state.
In contrast to batch estimation techniques, no history of
observations is required. In what follows, the notationx̂n|m

represents the estimate ofx at time n given observations up
to, and including timem. The state of a filter is defined by

two variables:

x̂k|k : the estimate of the state at time k given

observations up to time k.

Pk|k :the error covariance matrix (a measure of the

estimated accuracy of the state estimate).

Kalman filter has two distinct phases:Predict and Update.
The predict phase uses the state estimate from the previous
timestepk − 1 to produce an estimate of the state at the next
timestepk. In the update phase, measurement information at
the current timestepk is used to refine this prediction to arrive
at a new more accurate state estimate, again for the current
timestepk. When a new measurementzk is available from
a sensor, the true state of the sensor is estimates using the
previous prediction̂xk|k−1, and the weighted prediction error.
The weight is called Kalman gainKk, and it is updated on
each prediction/update cycle. The true state of the sensor is
estimated as follows,

x̂k|k = x̂k|k−1 + Kk(zk − Hkx̂k|k−1). (3)

Pk|k = (I − KkHk)Pk|k−1. (4)

The Kalman gainKk is updated as follows,

Kk|k = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk). (5)

At each prediction step, the next state of the sensor is predicted
by,

x̂k|k−1 = Fkx̂k−1|k−1. (6)

Example: For instance, a temperature sensor can be described
by the linear state space,xk =

[

x dx
dt

]T
, wherex is the

temperature anddx
dt

is the derivative of the temperature with
respect to time. As a new (noisy) measurementzk arrives from
the sensor1, the true state and model parameters are estimated
by Equations 3 - 5. The future state of the sensor at(k +1)th
time step after∆t can be predicted using the Equation 6,
where the state transition matrix is

F =

[

1 ∆t
0 1

]

. (7)

It should be noted that the parameters for Kalman filter, e.g.,
K andP, do not have to be accurate in the beginning; they
can be estimated at run-time and their accuracy improves
gradually by having more sensor measurements. We do not
need massive past data for modeling at deployment time. In
addition, theupdatecycle of Kalman filter (Equations 3 - 5)
is performed at all storage nodes when a new measurement is
broadcasted as shown in Algorithm 1 (line 5) and Algorithm 2
(line2). No further communication is required to synchronize
the parameters of the models. Finally, as will be shown in
Section 5, theprediction/updatecycle of Kalman filter incurs
insignificant overhead to the system.

1Note that the temperature component ofzk is directly acquired from the
sensor, anddx

dt
can be indirectly calculated as the ratio of the temperature

change to the elapsed time between the previous measurementand the current
one.
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B. Query Processor

The query processor of PRIDE supports both temporal
queries and spatial queries with planned extension to support
spatio-temporal queries.

Temporal Queries: Historical data for each sensor stream
can be processed in any storage node by exploiting data at the
local cache and linear smoother [10]. Unlike the estimationof
current and future states using one Kalman filter, the optimized
estimation of historical data (sometimes calledsmoothing)
requires two Kalman filters, a forward filter̂x and a backward
filter x̂b. Smoothing is a non-real-time data processing scheme
that uses all measurements between 0 andT to estimate the
state of a system at a certain timet, where0 ≤ t ≤ T (see
Figure 3.) The smoothed estimatex̂(t|T ) can be obtained as
a linear combination of the two filters as follows.

x̂(t|T ) = Ax̂(t) + A′x̂(t)b, (8)

whereA andA′ are weighting matrices. For detailed discus-
sion on smoothing techniques using Kalman filters, the reader
is referred to [10].

Forward filter

Backward filter

t T0

observations
: locally cachedx̂

x̂b

Fig. 3. Smoothing for temporal query processing.

Spatial Queries: Each storage node maintains a snapshot
for all underlying local and remote sensors to handle queries
on global spatial data. Each element (or data object) of
the snapshot is an up-to-date value from the corresponding
sensor. The snapshot is dynamically updated either by new
measurements from sensors or by models2. The Algorithm 1
(line 4) and Algorithm 2 (line 1) show the snapshot updates
when a new observation is pushed from a local sensor and a
peer node, respectively. As explained in the previous section,
there is no communication among storage nodes when models
well represent the current observations from sensors. When
there is no update from peer nodes, the freshness of values in
the snapshot deteriorate over time. To maintain the freshness
of the snapshot even when there is no updates from peer
nodes, each value in the snapshot is periodically updated by
its local model. Each storage node can estimate the current
state of sensorsi using Equation 6 without communication to
the primary storage node ofsi. For example, a temperature
after 30 seconds can be predicted by setting∆t of transition
matrix in Equation 7 to 30 seconds.

The period of update of data objecti for sensorsi is
determined, such that the precision boundδ is observed.
Intuitively, when a sensor value changes rapidly, the data
object should be updated more frequently to make the data
object in the snapshot valid. In the example of Section 3.1.1,

2Note that the data structures for the snapshot such as indexes are also
updated when each value of the snapshot is updated.

the period can be dynamically estimated as follows:

p[i] = δ/
dx

dt
. (9)

The2× δ/ dx
dt

is theabsolute validity interval (avi)before the
data object in the snapshot violates the precision bound, which
is ±δ. The update period should be as short as the half of the
avi to make the data object fresh [11].

Since each storage node has an up-to-date snapshot, spatial
queries on global data from sensors can be efficiently han-
dled using local data access methods (e.g., B+ tree) without
incurring further communication delays.

C. Adaptive Data Quality Control
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Fig. 4. Varying data precision.

Figure 4 shows how the value of one data object in the
snapshot changes over time when we apply different precision
bounds. As the precision bound is getting bigger, the gap be-
tween the real state of the sensor (dashed lines) and the current
value at the snapshot (solid lines) increases. In the solid lines,
the discontinued points are where the model prediction and the
real measurement from the sensor are bigger than the precision
bound, and subsequent communication is made among storage
nodes for model synchronization. For applications and users,
maintaining the smaller precision bound implies having a
more accurate view on the monitored situation. However,
the overhead also increases as we have the smaller precision
bound.

Given the unpredictable data arrival rates and resource
constraints, compromising the data quality for system sur-
vivability is unavoidable in many situations. In PRIDE, we
consider processor cycles as the primary limited resource,and
the resource allocation is performed to maintain the desired
CPU utilization. The utilization control is used to enforce
appropriate schedulable utilization bounds of applications can
be guaranteed despite significant uncertainties in system work-
loads [12][5]. In utilization control, it is assumed that any
cycles that are recovered as a result of control in PRIDE layer
are used sensibly by the scheduler in the application layer to
relieve the congestion, or to save power [12][5]. It can also
enhance system survivability by providing overload protection
against workload fluctuation.

Specification: At each node, the system specification
〈U, δmax〉 consists of a utilization specificationU and
the precision specificationδmax. The desired utilization
U ∈ [0..1] gives the required CPU utilization not to overload
the system while satisfying the target system performance
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such as latency, and energy consumption. The precision
specificationδmax denotes the maximum tolerable precision
bound. Note there is no lower bound on the precision as in
general users require a precision bound as short as possible
(if the system is not overloaded.)

Local Feedback Control to Guarantee the System Spec-
ification: Using feedback control has shown to be very effec-
tive for a large class of computing systems that exhibit unpre-
dictable workloads and model inaccuracies [13]. Therefore, to
guarantee the system specification without a priori knowledge
of the workload or accurate system model we apply feedback
control.

−+ Controller Storage
node

U u(k)e(k) δ(k)

Fig. 5. The feedback control loop.

The overall feedback control loop at each storage node is
shown in Figure 5. LetT is the sampling period. The utilization
u(k) is measured at each sampling instant0T, 1T, 2T,...and the
difference between the target utilization andu(k) is fed into
the controller. Using the difference, the controller computes a
local precision boundδ(k) such thatu(k) converges toU .

The first step for local controller design is modeling the
target system (storage node) by relatingδ(k) to u(k). We
model the the relationship betwenδ(k) and u(k) by using
profiling and statistical methods [13]. Sinceδ(k) has higher
impact onu(k) as the size of the replication group increases,
we need different models for different sizes of the group.
We change the number of members of the replication group
exponentially from 2 to 64 and have tuned a set of first order
modelsGn(z), wheren ∈ {2, 4, 8, 16, 32, 64}. Gn(z) is the z-
transform transfer function of the first-order models, in which
n is the size of the replication group. After the modeling,
we design a controller for the model. We have found that a
proportional integral (PI) controller [13] is sufficient interms
of providing a zero steady-state error, i.e., a zero difference
betweenu(k) and the target utilization bound. Further, a gain
scheduling technique [13] have been used to apply different
controller gains for different size of replication groups.For
instance, the gain forG32(z) is applied if the size of a
replication group is bigger than24 and less than or equal to48.
Due to space limitation we do not provide a full description
of the design and tuning methods.

Coordination among Replication Group Members: If
each node independently sets its own precision bound, the net
precision bound of data becomes unpredictable. For example,
at nodedj , the precision bounds for local sensor streams are
determined bydj itself while the precision bounds for remote
sensor streams are determined by their own primary storage
nodes.

PRIDE takes a conservative approach in coordinating stor-
age nodes in the group. As Algorithm 3 shows, the global
precision bound for thekth period is determined by taking
the maximum from the precision bounds of all nodes in the

Algorithm 3 : PrecisionBoundControl
Input : myid: my storage id number
/* Get local δ. */1
measureu(k) from monitor;2
calculateδmyid(k) from local controller;3
foreach peer noded in R −

˘

dmyid

¯

do4
/* Exchange localδs. */5
/* Use piggyback to save communication cost. */6
sendδmyid(k) to d;7
receiveδi(k) from d;8

end9
/* Get the final globalδ. */10
δglobal(k) = max(δi(k)), wherei ∈ R;11

replication group. The global precision bound atkth sampling
period, is the common precision bound for all storage nodes
in the replication group for the period. We choose the greatest
value among all precision bounds from each local control
loop since a node that has the greatest precision bound is
the most overloaded node in periodk. By setting the global
precision bound to the most overloaded node’s, we can ensure
that congestion at the most overloaded node is reduced.

One of the most important properties of a feedback control
system is stability. However, the stability analysis of dis-
tributed feedback control loops is possible only in limitedset-
tings [14]. Hence, we show the stability of PRIDE’s feedback
control mechanism in an empirical manner in Section V.

IV. I MPLEMENTATION

PRIDE: PRIDE is an extension of Berkeley DB [15],
which is a popular open-source embedded database. Unlike
traditional database systems, Berkeley DB is embeddable to
an application; Berkeley DB is linked to an application (or
application infrastructure) and provides robust storage features
such as diverse access methods, ACID transactions, recovery,
locking, and multi-threading for concurrency. PRIDE exploits
these features of Berkeley DB and extends them by providing
model-driven replication, snapshot management, and dynamic
data precision control. Snapshots of PRIDE are database
files of Berkeley DB on which the diverse data management
functionalities of Berkeley DB can be applied.

Testbed: We have implemented a prototype of PRIDE on
a multi-tier sensor network testbed. In the testbed, the storage
tier employs one Nokia N810 Internet tablet and a Centurion
cluster machine. The N810 device is equipped with 400MHz
TI OMAP processor, 128MB RAM, 256MB flash memory,
802.11b Wi-Fi radio, and runs the Linux 2.4.19 kernel. The
Centurion cluster enables a large-scale evaluation. The cluster
is equipped with 64 computing nodes, in which each node
has two 1.5 GHz AMD Opteron processors, 2GB RAM. Each
node of the Centurion cluster emulates one storage node.
However, the real measurements of CPU utilization, energy
consumption, and the query latency are performed in the
N810 device. The N810 device and the Centurion cluster is
connected via wireless Ethernet.

In the sensor tier, sensor streams can be generated by
NIST CFAST (The Consolidated Model of Fire and Smoke
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Transport) fire simulator [16]. Using CFAST simulator, a
wide-range of fire scenarios can be simulated in detail by
configuring the input parameters, which include the geome-
try of the compartments and the connections between these
compartments, the initial fire source and burning objects
in the compartments, flow vents, and floor/wall materials.
Traces are generated from the CFAST simulator in off-line
for repeatability and scalability of experiments. For large scale
experiments, additional sensor streams can be made by time-
shifting the original traces. These traces are replayed andsent
to storage nodes by another node of the Centurion cluster.

V. EVALUATION

In this section, we evaluate the performance of PRIDE in
our testbed. For evaluation, a fire in a 10-story building with
100 compartments is modeled using the CFAST simulator, in
which temperatures at 1024 locations are measured for 30
minutes with 1 second intervals. The PDAs carried by 32
firefighters are emulated by storage nodes in the testbed (one
N810 device and 31 Centurion cluster nodes). On every0.5
second period3, a new query is automatically issued by an
application at each storage node. The queries randomly access
512 sensor values in the snapshot4.

A. Performance of Model-Driven Replication

First, we show the performance of the model-driven repli-
cation scheme in PRIDE. We compare the performance of
PRIDE with three baseline algorithms.

• Full (Full replication): All updates from sensor streams
are fully replicated to peer storage nodes in the replication
group.

• Approx-Caching (Approximate caching): This is a
value-driven approach, in which a storage node broad-
casts updates from sensors only if the difference between
current data and last broadcasted data is larger than a
threshold (δ). This approach is similar to the algorithm
in [7].

• PRIDE/NU (No dynamic snapshot update):This is
the PRIDE approach, but the snapshot at each node is
not dynamically updated by models. This approach is
included to reveal the overhead of dynamic snapshot
update using models in PRIDE.

The data quality controller in PRIDE and PRIDE/NU is turned
off during the evaluation to assess the efficiency of the model-
driven replication alone. The data precision boundδ is 1◦C for
both PRIDE and Approx-Caching. All evaluation results are
based on at least 5 runs and the averages with 95% confidence
intervals are taken5.

3Real-time queries for firefighters can be invoked on a per-second basis
[17].

4The applications can use raw data returned from the queries for further
analysis and decision making. However, further processingin the application
layer is not modeled in the evaluation.

5The confidence interval bars are shown in the graphs.

1) Scalability: Figure 6 shows the scalability of PRIDE and
baselines when we change the number of storage nodes from 2
to 16. Each storage node receives data streams from 100 sen-
sors. Hence, the number of underlying sensors increases from
200 to 1,600 accordingly. In Figure 6-(a), as the system size
increases, the number of messages increases in all approaches.
However, the slope is much flatter in PRIDE than baseline
approaches since PRIDE filters out most of the incoming data
from sensors as long as its models can predict the value within
the precision bound. For instance, PRIDE filters out93% of
the original data when 16 storage nodes are deployed while
Approx-Caching filters out only80%. This gap increases as the
system scales up. The high filtering rates of PRIDE implies
that it can be highly robust and scalable in low-bandwidth
networking environments.

The amount of communication is highly related to the
CPU load since each message incurs overhead to handle it.
Figure 6-(b) shows the CPU utilization in the same experiment.
The CPU loads increase proportionally to the amount of
communication in all approaches. Maintaining a proper level
of CPU load is particularly important for real-time applications
to guarantee the deadlines of real-time tasks. Once CPU load
rises above a certain scheduling bound, the lengths of schedul-
ing queues in the system increase limitlessly. In Figure 6-(c),
the query latency increases without limit as CPU gets saturated
in the Full approach. The relatively flat slope of PRIDE implies
that the scale of PRIDE can be much higher than the baseline
approaches before the system gets overloaded.

In PRIDE, CPU load is not only related to the number of
exchanged messages, but also to the number of underlying
sensors since PRIDE updates data objects in the snapshot
periodically using models of each sensor. In Figure 6-(b), the
gap between PRIDE and PRIDE/NU quantifies the cost of the
dynamic snapshot update using models. PRIDE incurs less
than 10% CPU overhead than PRIDE/NU when 16 storage
nodes are involved. This implies that the CPU overhead to
maintain models in PRIDE is insignificant.

Finally, note that we can reduce the number of commu-
nication messages (and subsequent resource consumption)
dramatically by concatenating several individual messages.
For example, the CPU loads decreased more than70% in
all approaches when messages for 1 second period were con-
catenated and bulk-transfered in one message. However, this
benefit applies to all approaches and the relative performance
remains the same. Further, this gain is acquired at the cost of
additional delays in the message propagation. PRIDE supports
this bulk-transfer option for applications having loose timing
constraints.

2) Energy Consumption:Since PRIDE targets (potentially
mobile) low-end devices such as PDAs, and micro severs,
energy is a critical resource for long lifetime. In this section,
we compare the energy consumption of PRIDE to the baseline
approaches. In the evaluation, 16 storage nodes are deployed
for 30 minutes, where each storage node handles 100 sensor
streams. The power measurements are performed in the N810
device by monitoring the remaining battery power. The full
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Fig. 6. Scalability of PRIDE.

capacity of the battery is 1,500mAh.
Figure 7-(a) shows the energy consumption after 30 min-

utes, and Figure 7-(b) shows the changes in the remaining
battery power over 30 minutes. The result shows that PRIDE
consumes the smallest energy in the experiment; PRIDE com-
sumes 27% and 43% less engergy than the Approx-Caching
and the Full approach, respectively. This result is expected
since the overhead in computation and communication has
net effect on the energy consumption. Note that PRIDE
consumes insignificantly small additional energy comparedto
PRIDE/NU, which does not perform the dynamic snapshot
update. The additional energy consumption is less than1.5%.
This result again demonstrates that the benefit of using models
for replication outperforms the cost of maintaining the models
and snapshot.
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Fig. 7. Energy consumption.

B. Adaptability

We next evaluate the adaptability of PRIDE against unpre-
dictable workloads. For the evaluation, 32 storage nodes are
deployed and the data quality controller at each node is turned
on for the experiment. The performance goal is given by the
specification< 0.6, 10◦C >, which means the CPU utilization
bound is60% and the maximum precision boundδ is 10◦C.
In the experiment, the sampling intervals of controllers are set
to 20 seconds. We compare the performance when the data
quality controllers are turned on and off.

1) Average Performance:We evaluate the adaptability of
PRIDE by changing the workload. The workloads are varied
by changing the number of sensor streams for each storage
nodes from 60 to 140. For PRIDE without controllers, the
precision bound is set to3◦C.

In Figure 8, the average performance is shown. Figure
8-(a) shows that PRIDE with controller achieves the target
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Fig. 8. Varying workload.

CPU load closely in all workloads. In contrast, the CPU load
fluctuates dramatically between under-utilization and over-
utilization when no control is applied; the load changes
between 0.28 and 1. Violating the goal in CPU load implies
that the latency of application tasks and queries in PRIDE
can be increased significantly. Figure 8-(b) shows the changes
in δ to achieve the target CPU load. In PRIDE, the precision
boundδ increases linearly as the workload increases. However,
PRIDE still satisfies the maximum precision bound, which is
10◦C.
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Fig. 9. Transient behavior.

2) Transient Performance:The average performance is
not enough to show the performance of dynamic systems.
Transient performance such as settling time should be small
enough to satisfy the requirements of applications. In this
experiment, the workload is increased by changing the number
of underlying sensors and the transient behavior is observed.
For example, we can consider a situation in which a firefighter
moves to a location where sensors are densely deployed. The
number of sensors at one of the storage nodes (the N810
device) is increased from 80 to 140 for 30 sampling periods.

Figure 9 shows that the CPU load and the precision bound
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δ. The increase of workload starts at the30th sampling period.
We can see that the CPU load increases suddenly at the30th

sampling period. However, the CPU load stabilizes within 2
sampling periods. When the workload decreases to the original
level at the60th sampling period, it takes 1 sampling period
to stabilize.

VI. RELATED WORKS

Many data-centric approaches have been proposed to ef-
ficiently store and query data from sensors. It ranges from
centralized approaches [18][19] to fully distributed storages
[20][21]. However, both approaches manifest their own prob-
lems. For centralized approaches, the scale of the system is
limited and their resource consumption can be unbalanced due
to funnelling effect [22]. Conversely, the fully distributed ap-
proaches cannot provide timeliness in data accesses and query
processing. TSAR [23] is a 2-tier data storage architecturethat
lies between the two extremes, in which the limitations of the
both approaches are overcomed by employing local archiving
at the sensors and distributed indexing at the resource-rich
proxies. However, TSAR still incurs communication delays at
query processing time, which can be unacceptable for real-
time applications such as aforementioned search-and-rescue
tasks for a building fire. Moreover, the distributed indexing
scheme in TSAR tightly couples the sensor tier and the upper
proxy tier, limiting the flexibility of the system. In contrast,
the model-driven replication mechanism in PRIDE provides
timeliness, scalability, and flexibility simultaneously.

Recently, reducing the communication cost using filters and
models have been an active research issue. In particular, the
model-driven approaches are highly related to PRIDE. BBQ
[24] exploits time-varying multivariate Gaussian and Kalman
filter, and PRESTO [25] uses ARIMA prediction models
to minimize the resource consumption. Jain and et.al. [6]
introduced dual Kalman filters. PRIDE exploits the best results
of these previous approaches. However, those approaches are
different from PRIDE since they focus on the modeling and
filtering in a centralized system. In contrast, PRIDE uses
models to reduce the communication cost in distributed and
replicated environments.

VII. C ONCLUSIONS

This paper introduced the design, implemention, and ex-
perimental evaluation of a new data abstraction layer for 2-
tier sensor network applications. PRIDE achieves the scala-
bility, timeliness, and flexibility simultaneously by integrating
model-driven full replication and adaptive data quality control
in the storage tier. The model-driven replication in PRIDE
provides the benefit of full replication in a highly scalable
and controlled manner. In particular, the modeling technique
in PRIDE has insignificant overhead and does not need a
vast amount of past data for model training. We implemented
PRIDE in a large-scale 2-tier sensor network testbed. Our
experimental evaluation of PRIDE with realistic workloads
demonstrates the benefit and feasibility of model-driven full
replication scheme in large-scale 2-tier sensor networks.

In the future, we plan to provide a generalized modeling
framework that is applicable to a wide range of applications.
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