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Abstract— Driven by the confluence between the need to collect
data about people’s physical, physiological, psychological, cogni-
tive, and behavioral processes in spaces ranging from personal to
urban and the recent availability of the technologies that enable
this data collection, wireless sensor networks for healthcare have
emerged in the recent years. In this review we present some
representative applications in the healthcare domain and describe
the challenges they introduce to wireless sensor networks due
to the required level of trustworthiness and the need to ensure
the privacy and security of medical data. These challenges are
exacerbated by the resource scarcity that is inherent with wireless
sensor network platforms. We outline prototype systems spanning
application domains from physiological and activity monitoring
to large-scale physiological and behavioral studies and emphasize
ongoing research challenges.

I. INTRODUCTION

Driven by technology advances in low-power networked
systems and medical sensors, we have witnessed in recent
years the emergence of wireless sensor networks (WSNs) in
healthcare. These WSNs carry the promise of drastically im-
proving and expanding the quality of care across a wide va-
riety of settings and for different segments of the population.
For example, early system prototypes have demonstrated the
potential of WSNs to enable early detection of clinical deteri-
oration through real-time patient monitoring in hospitals [13],
[42], enhance first responders’ capability to provide emergency
care in large disasters through automatic electronic triage [23],
[49], improve the life quality of the elderly through smart en-
vironments [71], and enable large scale field studies of human
behavior and chronic diseases [44], [57].

At the same time, meeting the potential of WSNs in health-
care requires addressing a multitude of technical challenges.
These challenges reach above and beyond the resource limita-
tions that all WSNs face in terms of limited network capacity,
processing and memory constraints, as well as scarce energy
reserves. Specifically, unlike applications in other domains,
healthcare applications impose stringent requirements on sys-
tem reliability, quality of service, and particularly privacy and
security. In this review paper we expand on these challenges
and provide examples of initial attempts to confront them.

These examples include: (1) network systems for vital sign
monitoring that show that it is possible to achieve highly reli-
able data delivery over multi-hop wireless networks deployed
in clinical environments [13], [42]. (2) Systems that overcome
energy and bandwidth limitations by intelligent pre-processing

of measurements collected by high data rate medical applica-
tions such as motion analysis for Parkinson’s disease [48]. (3)
An analysis of privacy and security challenges and potential
solutions in assisted living environments [71], and (4) tech-
nologies for dealing with the large scale and inherent data
quality challenges associated with in-field studies [44], [57].

The remainder of the paper is structured as follows. The
next section reviews background material in medical sensing
and wireless sensor networks, while Section III describes sev-
eral promising healthcare applications for wireless sensor net-
works. We highlight the key technical challenges that wireless
sensor networks face in the healthcare domains in Section IV
and describe representative research projects that address dif-
ferent aspects of these challenges in Section V. We conclude
with an outline of the remaining challenges and future direc-
tions for wireless sensor networks in healthcare.

II. BACKGROUND

A. Medical Sensing

There is a long history of using sensors in medicine and
public health [2], [73]. Embedded in a variety of medical
instruments for use at hospitals, clinics, and homes, sensors
provide patients and their healthcare providers insight into
physiological and physical health states that are critical to the
detection, diagnosis, treatment, and management of ailments.
Much of modern medicine would simply not be possible nor
be cost effective without sensors such as thermometers, blood
pressure monitors, glucose monitors, EKG, PPG, EEG, and
various forms of imaging sensors. The ability to measure phys-
iological state is also essential for interventional devices such
as pacemakers and insulin pumps.

Medical sensors combine transducers for detecting elec-
trical, thermal, optical, chemical, genetic, and other signals
with physiological origin with signal processing algorithms to
estimate features indicative of a person’s health status. Sen-
sors beyond those that directly measure health state have also
found use in the practice of medicine. For example, location
and proximity sensing technologies [38] are being used for
improving the delivery of patient care and workflow efficiency
in hospitals [21], tracking the spread of diseases by public
health agencies [27], and monitoring people’s health-related
behaviors (e.g., activity levels) and exposure to negative envi-
ronmental factors, such as pollution [57].



There are three distinct dimensions along which advances
in medical sensing technologies are taking place. We elaborate
on each of the three in the paragraphs that follow.

Sensing Modality: Advances in technologies such as MEMS,
imaging, and microfluidic and nanofluidic lab-on-chip are
leading to new forms of chemical, biological, and genomic
sensing and analyses available outside the confines of a
laboratory at the point-of-care. By enabling new inexpensive
diagnostic capabilities, these sensing technologies promise
to revolutionize healthcare both in terms of resolving public
health crisis due to infectious diseases [78] and also enabling
early detection and personalized treatments.

Size and Cost: Most medical sensors have traditionally been
too costly and complex to be used outside of clinical envi-
ronments. However, recent advances in microelectronics and
computing have made many forms of medical sensing more
widely accessible to individuals at their homes, work places,
and other living spaces.

o The first to emerge [2] were portable medical sensors
for home use (e.g., blood pressure and blood glucose
monitors). By enabling frequent measurements of critical
physiological data without requiring visits to the doctor,
these instruments revolutionized the management of dis-
eases such as hypertension and diabetes.

o Next, ambulatory medical sensors, whose small form fac-
tor allowed them to be worn or carried by a person,
emerged [2]. Such sensors enable individuals to contin-
uously measure physiological parameters while engaged
routine life activities. Examples include wearable heart
rate and physical activity monitors and Holter monitors.
These devices target fitness enthusiasts, health conscious
individuals and observe cardiac or neural events that may
not manifest during a short visit to the doctor.

o More recently embedded medical sensors built into as-
sistive and prosthetic devices for geriatrics [77] and or-
thotics [17] have emerged.

« Finally, we are seeing the emergence of implantable med-
ical sensors for continuously measuring internal health
status and physiological signals. In some cases the pur-
pose is to continuously monitor health parameters that
are not externally available, such as intraoccular pressure
in glaucoma patients [19]. The goal in other cases is
to use the measurements as triggers for physiological
interventions that prevent impending adverse events (e.g.,
epileptic seizures [61]) and for physical assistance (e.g.,
brain-controlled motor prosthetics [46]). Given their im-
plantable nature, these devices face severe size constraints
and need to communicate and receive power wirelessly.

Connectivity: Driven by advances in information technology,
medical sensors have become increasingly interconnected with
other devices. Early medical sensors were largely isolated with
integrated user interfaces for displaying their measurements.
Subsequently, sensors became capable of interfacing to ex-
ternal devices via wired interfaces such as RS 232, USB,
and Ethernet. More recently, medical sensors have incorpo-
rated wireless connections, both short-range, such as Blue-
tooth, Zigbee, and near-field radios to communicate wirelessly

to nearby computers, PDAs, or smartphones, and long-range,
such as WiFi or cellular communications, to communicate di-
rectly with cloud computing services. Besides the convenience
of tetherless operation, such wireless connections permit sen-
sor measurements to be sent to caregivers while patients go
through their daily work life away from home, thus heralding
an age of ubiquitous real-time medical sensing. We note that
with portable and ambulatory sensors, the wired or wireless
connectivity to cloud computing resources is intermittent (e.g.,
connectivity may be available only when the sensor is in cel-
lular coverage area or docked to the user’s home computer).
Therefore such sensors can also record measurements in non-
volatile memory for uploading at a later time when they can
be shared with healthcare personnel and further analyzed.

B. Wireless Sensor Platforms

Recent years have witnessed the emergence of various em-
bedded computing platforms that integrate processing, storage,
wireless networking, and sensors. These embedded computing
platforms offer the ability to sense physical phenomena at
temporal and spatial fidelities that were previously impractical.
Embedded computing platforms used for healthcare applica-
tions range from smartphones to specialized wireless sensing
platforms, known as motes, that have much more stringent
resource constraints in terms of available computing power,
memory, network bandwidth, and available energy.

Existing motes typically use 8 or 16-bit microcontrollers
with tens of KBs of RAM, hundreds of KBs of ROM for pro-
gram storage and external storage in the form of Flash mem-
ory. These devices operate at a few milliwatts while running at
about 10 MHz [60]. Most of the circuits can be powered off, so
the standby power can be about one microwatt. If such a device
is active for 1% of the time, its average power consumption is
just a few microwatts enabling long term operation with two
AA batteries. Motes are usually equipped with low-power ra-
dios such as those compliant with the IEEE 802.15.4 standard
for wireless sensor networks [32]. Such radios usually transmit
at rates between 10-250 Kbps, consume about 20-60 milli-
watts, and their communication range is typically measured in
tens of meters [6], [70]. Finally, motes include multiple analog
and digital interfaces that enable them to connect to a wide
variety of commodity sensors.

These hardware innovations are paralleled by advances in
embedded operating systems [20], [29], component-based pro-
gramming languages [24], and networking protocols [9], [25].

In contrast to resource-constrained motes, smartphones pro-
vide more powerful microprocessors, larger data storage, and
higher network bandwidth through cellular and IEEE 802.11
wireless interfaces at the expense of higher energy consump-
tion. Their complementary characteristics make smartphones
and motes complementary platforms suitable for different cat-
egories of healthcare applications, which we discuss in the
section that follows.

III. HEALTHCARE APPLICATIONS

Wirelessly networked sensors enable dense spatio-temporal
sampling of physical, physiological, psychological, cognitive,



and behavioral processes in spaces ranging from personal
to buildings to even larger scale ones. Such dense sampling
across spaces of different scales is resulting in sensory
information based healthcare applications which, unlike those
described in Section II-A, fuse and aggregate information
collected from multiple distributed sensors. Moreover, the
sophistication of sensing has increased tremendously with the
advances in cheap and miniature, but high quality sensors
for home and personal use, the development of sophisticated
machine learning algorithms that enable complex conditions
such as stress, depression, and addiction to be inferred from
sensory information, and finally the emergence of pervasive
Internet connectivity facilitating timely dissemination of
sensor information to caregivers.

In what follows, we introduce a list of healthcare applica-
tions enabled by these technologies.
Monitoring in Mass-Casualty Disasters: While triage proto-
cols for emergency medical services already exist [30], [69],
their effectiveness can quickly degrade with increasing number
of victims. Moreover, there is a need to improve the assessment
of the first responders’ health status during such mass-casualty
disasters. The increased portability, scalability, and rapidly de-
ployable nature of wireless sensing systems can be used to
automatically report the triage levels of numerous victims and
continuously track the health status of first responders at the
disaster scene more effectively.
Vital Sign Monitoring in Hospitals: Wireless sensing tech-
nology helps address various drawbacks associated with wired
sensors that are commonly used in hospitals and emergency
rooms to monitor patients [42]. The all too familiar jumble
of wires attached to a patient is not only uncomfortable for
patients leading to restricted mobility and more anxiety, but is
also hard to manage for the staff. Quite common are deliberate
disconnections of sensors by tired patients and failures to re-
attach sensors properly as patients are moved around in a
hospital and handed-off across different units. Wireless sensing
hardware that are less noticeable and have persistent network
connectivity to back-end medical record systems help reduce
the tangles of wires and patient anxiety, while also reducing
the occurrence of errors.
At-home and Mobile Aging: As people age, they experi-
ence a variety of cognitive, physical, and social changes that
challenge their health, independence and quality of life [75].
Diseases such as diabetes, asthma, chronic obstructive pul-
monary disease, congestive heart failure, and memory decline
are challenging to monitor and treat. These diseases can benefit
from patients taking an active role in the monitoring pro-
cess. Wirelessly networked sensors embedded in people’s liv-
ing spaces or carried on the person can collect information
about personal physical, physiological, and behavioral states
and patterns in real-time and everywhere. Such data can also
be correlated with social and environmental context. From
such “living records”, useful inferences about health and well-
being can be drawn. This can be used for self-awareness and
individual analysis to assist in making behavior changes, and
to share with caregivers for early detection and intervention.
At the same time such procedures are effective and economic
ways of monitoring age-related illnesses.

Assistance with Motor and Sensory Decline: Another ap-
plication of wireless networked sensing is to provide active
assistance and guidance to patients coping with declining sen-
sory and motor capabilities. We are seeing the emergence of
new types of intelligent assistive devices that make use of
information about the patient’s physiological and physical state
from sensors built in the device, worn or even implanted on
the user’s person, and embedded in the surroundings. These
intelligent assistive devices can not only tailor their response
to individual users and their current context, but also provide
the user and their caregivers crucial feedback for longer-term
training. Traditional assistive devices such as canes, crutches,
walkers, and wheel chairs can fuse information from built-in
and external sensors to provide the users with continual per-
sonalized feedback and guidance towards the correct usage of
the devices. Such devices can also adapt the physical character-
istics of the device with respect to the context and a prescribed
training or rehabilitation regimen [77]. Furthermore, wireless
networked sensing enables new types of assistive devices such
as way-finding [16] and walking navigation [8] for the visually
impaired.

Large-scale In-field Medical and Behavioral Studies:
Body-worn sensors together with sensor-equipped Internet-
connected smartphones have begun to revolutionize medical
and public health research studies by enabling behavioral and
physiological data to be continually collected from a large
number of distributed subjects as they lead their day to day
lives. With their ability to provide insight into subject states
that cannot be replicated in controlled clinical and laboratory
settings and that cannot be measured from computer-assisted
retrospective self-report methods, such sensing systems are
becoming critical to medical, psychological, and behavioral
research. Indeed, a major goal of the Exposure Biology
program under NIH’s Genes and Environment Initiative
(GEI) is to develop such field deployable sensing tools
to quantify exposures to environment (e.g., psychosocial
stress, addiction, toxicants, diet, physical activity) objectively,
automatically, and for days at a time in the participants’
natural environments. Researchers, both within the GEI
program (e.g. [34], [44], [57]) and elsewhere (e.g. [26], [54],
[62]), have also recognized the utility of such sensing in
making measurements for longitudinal studies ranging from
the scale of individuals to large populations.

As the four examples above show, the applications enabled
by wireless networked sensing technologies are distributed
across multiple dimensions. One dimension is the spatial and
temporal scope of distributed sensing. The spatial scope can
range from sensory observations of health status made when
an individual is confined to a building (e.g., home, hospital) or
a well-defined region (e.g., disaster site) to observations made
as an individual moves around during the course of daily life.
The temporal scope can range from observations made for the
duration of an illness or an event to long term observations
made for managing a long term disease or for public health
purposes. Different spatial and temporal scopes place different
constraints on the availability of energy and communications
infrastructure, and different requirements on ergonomics.

A second dimension is that of the group size, which can



range from an individual patient at home, to groups of patients
at a hospital and victims at disaster sites, and all the way to
large dispersed population of subjects in a medical study or
an epidemic.

The last critical dimension is the type of wireless network-
ing and sensing technologies that are used: on-body sensors
with long range radios, body-area networks of short-range on-
body sensors with a long-range gateway, sensors implanted in-
body with wireless communication and power delivery, wire-
less sensors embedded in assistive devices carried by individu-
als, wireless sensors embedded in the environment, and sensors
embedded in the ubiquitous mobile smartphones. Clearly, there
is a rich diversity of wireless sensing technology with comple-
mentary characteristics and catering to different applications.
Typically, more than one type of sensing technology gets used
for a single application.

IV. TECHNICAL CHALLENGES

In the paragraphs that follow we describe some of the core
challenges in designing wireless sensor networks for health-
care applications. While not exhaustive, the challenges in this
list span a wide range of topics, from core computer systems
themes such as scalability, reliability, and efficiency, to large
scale data mining and data association problems, and even
legal issues.

A. Trustworthiness

Healthcare applications impose strict requirements on end-
to-end system reliability and data delivery. For example, pulse
oximetry applications, which measure the levels of oxygen in
a person’s blood, must deliver at least one measurement every
30 seconds [36]. Furthermore, end-users require measurements
that are accurate enough to be used in medical research. Using
the same pulse oximetry example, measurements must devi-
ate at most 4% from the actual oxygen concentrations in the
blood [36]. Finally, applications that combine measurements
with actuation, such as control of infusion pumps and patient
controlled analgesia (PCA) devices, impose constraints on the
end-to-end delivery latency. We term the combination of data
delivery and quality properties the trustworthiness of the sys-
tem and claim that medical sensing applications require high
levels of trustworthiness.

A number of factors complicate the systems’ ability to pro-
vide the trustworthiness that applications require. First, medi-
cal facilities, where some of these systems will be deployed,
can be very harsh environments for radio frequency (RF) com-
munications. This harshness is the result of structural factors
such as the presence of metal doors and dividers as well as
deliberate effort to provide radiation shielding, for example
in operating rooms that use fluoroscopy for orthopedic pro-
cedures. In fact, Ko et al. recently found that packet losses
for radios following the IEEE 802.15.4 standard is higher
in hospitals than other indoor environments [41]. Moreover,
devices that use 802.15.4 radios are susceptible to interference
from WiFi networks, Bluetooth devices, and cordless phones
all of which are heavily used in many hospitals.

The impact of obstacles and interference is exacerbated by
the fact that most wireless sensor network systems use low-
power radios to achieve long system lifetimes (i.e., maxi-
mizing the battery re-charging cycle). The other implication
of using low-power radios is that the network throughput of
these devices is limited. For example, the theoretical maximum
throughput of IEEE 802.15.4 radios is 250 Kbps and much
lower in practice due to constraints posed by MAC protocols
and multi-hop communications. Considering that applications
such as motion and activity monitoring capture hundreds of
samples per second, these throughput limits mean that a net-
work can support a small number of devices or that only a
subset of the measurements can be delivered in real-time.

In some cases the quality of the data collected from wireless
sensing systems can be compromised not by sensor faults
and malfunctions, but by user actions. This is true even for
smartphone based sensing systems for which many of the
above mentioned RF challenges are less severe. Considering
that wireless sensing systems for healthcare will be used by
the elderly and medical staff with little training, loss in quality
due to operator misuse is a big concern. Moreover, because
wireless sensing enables continuous collection of physiologi-
cal data under conditions not originally envisioned by the sen-
sors’ developers, the collected measurements may be polluted
by a variety of artifacts. For example, motion artifacts can
impact the quality of heart rate and respiration measurements.
Therefore, estimating the quality of measurements collected
under uncertain conditions is a major challenge that WSNs
for healthcare must address. In turn, this challenge means that
WSNs need to employ techniques for automated data valida-
tion and cleansing and interfaces to facilitate and verify their
correct installation. Last but not least, WSNs in healthcare
should provide metadata that inform data consumers of the
quality of the data delivered.

B. Privacy and Security

Wireless sensor networks in healthcare are used to deter-
mine the activities of daily living (ADL) and provide data for
longitudinal studies. It is then easy to see that such WSNs
also pose opportunities to violate privacy. Furthermore, the
importance of securing such systems will continue to rise as
their adoption rate increases.

The first privacy challenge encountered is the vague spec-
ification of privacy. The Heath Insurance Portability and Ac-
countability Act (HIPPA) by the U.S. government is one at-
tempt to define this term [1]. One issue is that HIPPA as
well as other laws define privacy using human language (e.g.,
English), thus, creating a semantic nightmare. Nevertheless,
privacy specification languages have been developed to specify
privacy policies for a system in a formal way. Once the privacy
specifications are specified, healthcare systems must enforce
this privacy and also be able to express users’ requests for
data access and the system’s policies. These requests should
be evaluated against the predefined policies in order to decide
if they should be granted or denied. This framework gives rise
to many new research challenges, some unique to WSNs, as
we describe in the paragraphs that follow.



« Since context can affect privacy, policy languages must
be able to express different types of context from the
environment such as time, space, physiological parameter
sensing, environmental sensing, and stream based noisy
data. Moreover, most of the context must be collected
and evaluated in real-time. Since context is so central it
must also be obtained in a secure and accurate manner.

o There is a need to represent different types of data owners
and request subjects in the system as well as external
users and their rights when different domains such as
assisted living facilities, hospitals, and pharmacies inter-
act. One of the more difficult privacy problems occurs
when interacting systems have their own privacy policies.
Consequently, inconsistencies in such policies may arise
across different systems. For this reason, on-line con-
sistency checking and notification along with resolution
schemes are required.

o There is a need to represent high-level aggregating re-
quests such as querying the average, maximum, or mini-
mum reading of specified sensing data. This privacy ca-
pability must be supported by anonymizing aggregation
functions. This need arises for applications related to lon-
gitudinal studies and social networking.

o There is a need to support not only adherence to privacy
for data queries (e.g., data pull requests), but also the
security for push configuration requests to set system
parameters (e.g., for private use or configuring specific
medical actuators).

e Because WSNs monitor and control a large variety of
physical parameters in different contexts, it is necessary
to tolerate a high degree of dynamics and possibly even
allow temporary privacy violations in order to meet func-
tional, safety or performance requirements. For example,
an individual wearing an EKG might experience heart ar-
rhythmia and the real-time reporting of this problem takes
precedence over some existing privacy requirements. In
other words to send an emergency alert quickly it may be
necessary to skip multiple privacy protections. Whenever
such violations occur, core healthcare staff members must
be notified of such incidents.

In addition to policy and database query privacy violations,
WSNs are susceptible to new side channel privacy attacks that
gain information by observing the radio transmissions of sen-
sors to deduce private activities, even when the transmissions
are encrypted. This physical layer attack needs only the time
of transmission and the fingerprint of each message, where a
fingerprint is a set of features of a RF waveform that are unique
to a particular transmitter. Thus, this is called the Fingerprint
and Timing-based Snooping (FATS) attack [66].

To execute a FATS attack, an adversary eavesdrops on the
sensors’ radio to collect the timestamps and fingerprints of all
radio transmissions. The adversary then uses the fingerprints
to associate each message with a unique transmitter, and uses
multiple phases of inference to deduce the location and type of
each sensor. Once this is known, various private user activities
and health conditions can be inferred.

For example, Srinivasan et al. introduce this unique physical
layer privacy attack and propose solutions with respect to a

smart home scenario [66]. Three layers of inference are used
in their work. First, sensors in the same room are clustered
based on the similarity of their transmission patterns. Then
the overall transmission pattern of each room is passed to a
classifier, which automatically identifies the type of room (e.g.,
bathroom or kitchen). Once the type of room is identified, the
transmission pattern of each sensor is passed to another clas-
sifier, which automatically identifies the type of sensor (e.g., a
motion sensor or a refrigerator door). From this information,
the adversary easily identifies several activities of the home’s
residents such as cooking, showering, and toileting, all with
consistently high accuracy. From such information it is then
possible to infer the residents’ health conditions.

Fortunately, many solutions with different tradeoffs are pos-
sible for this type of physical layer attack. Such solutions in-
clude (i) attenuating the signal outside of the home to increase
the packet loss ratio of the eavesdropper, (ii) periodically trans-
mitting radio messages whether or not the device has data to
be sent, (iii) randomly delaying radio messages to hide the
time that the corresponding events occurred, (iv) hiding the
fingerprint of the transmitter, and (v) transmitting fake data to
emulate a real event.

Unfortunately, an adversary can combine information avail-
able from many (external) sources with physical layer infor-
mation to make inferences even more accurate and invasive.
New solutions that are cost-effective, address physical layer
data, protect against inferences based on collections of related
data, and still permit the original functionality of the system
to operate effectively are needed.

A related fundamental problem, yet unsolved in WSNs is
dealing with security attacks. Security attacks are especially
problematic to low-power WSN platforms because of several
reasons including the strict resource constraints of the devices,
minimal accessibility to the sensors and actuators, and the
unreliable nature of low-power wireless communications. The
security problem is further exacerbated by the observation that
transient and permanent random failures are common in WSNs
and such failures are vulnerabilities that can be exploited by
attackers. For example, with these vulnerabilities it is possible
for an attacker to falsify context, modify access rights, create
denial of service, and, in general disrupt the operation of the
system. This could result in a patient being denied treatment,
or worse, receiving the wrong treatment.

Having in mind such unique challenges, new lightweight
security solutions that can operate in these open and resource-
limited systems are required. Solutions that exploit the con-
siderable amount of redundancy found in many WSN systems
are being pursued. This redundancy creates great potential for
designing WSN systems that continuously provide their target
services despite the existence of failures or attacks. In other
words, to meet realistic system requirements that derive from
long lived and unattended operation, WSNs must be able to
continue to operate satisfactorily and effectively recover from
security attacks. WSNs must also be flexible enough to adapt
to attacks not anticipated during design or deployment time.
Work such as the one proposed by Wood et al. provides an
example of how such problems are addressed, by proposing to
design a self-healing system with the presence and detection of



Fig. 1. The SHIMMER wearable sensor platform. SHIMMER incorporates a
TI MSP430 processor, a CC2420 IEEE 802.15.4 radio, a triaxial accelerom-
eter, and a re-chargeable Li-polymer battery. The platform also includes a
MicroSD slot supporting up to 2 GBytes of Flash memory.

attacks, rather than trying to build a completely secure system
[76].

C. Resource Scarcity

In order to enable small device sizes with reasonable battery
lifetimes, typical wireless sensor nodes make use of low-power
components with modest resources. Figure 1 shows a typical
wearable sensor node for medical applications, the SHIM-
MER platform [33]. The SHIMMER comprises an embedded
microcontroller (TT MSP430; 8 MHz clock speed; 10 KB
RAM; 48 KB ROM) and a low-power radio (Chipcon CC2420;
IEEE 802.15.4; 2.4 GHz; 250 Kbps PHY data rate). The to-
tal device power budget is approximately 60 milliwatts when
active, with a sleep power drain of a few microwatts. This de-
sign permits small, re-chargeable batteries to maintain device
lifetimes of hours or days, depending on the application’s duty
cycles.

The extremely limited computation, communication, and
energy resources of wireless sensor nodes lead to a number
of challenges for system design. Software must be designed
carefully with these resource constraints in mind. The scant
memory necessitates the use of lean, event-driven concurrency
models, and precludes conventional OS designs. Computa-
tional horsepower and radio bandwidth are both limited, re-
quiring that sensor nodes trade off computation and communi-
cation overheads, for example, by performing a modest amount
of on-board processing to reduce data transmission require-
ments. Finally, application code must be extremely careful
with the node’s limited energy budget, limiting radio com-
munication and data processing to extend the battery lifetime.
While smartphone-based systems typically enjoy more pro-
cessing power and wireless bandwidth, the fact that they are
less flexible compared to customizable mote platforms, limits
their capability to aggressively conserve energy. This leads to
shorter re-charge cycles and can limit the types of applications
that smartphones can support.

Another consideration for low-power sensing platforms is
the fluctuation in the resource load experienced by sensor
nodes. Depending on the patient’s condition, the sensor data
being collected, and the quality of the radio link, sensor nodes

may experience a wide variation in communication and pro-
cessing load over time. As an example, if sensor nodes perform
multihop routing, a given node may be required to forward
packets for one or more other nodes along with transmitting
its own data. The network topology can change over time,
due to node mobility and environmental fluctuations in the
RF medium, inducing unpredictable patterns of energy con-
sumption for which the application must be prepared.

V. SYSTEMS

Next, we present several wireless sensing system prototypes
developed and deployed to evaluate the efficacy of WSNs in
some of the healthcare applications described in Section III.
While wireless healthcare systems using various wireless tech-
nologies exist, this work focuses on systems based on low-
power wireless platforms for physiological and motion moni-
toring studies, and smartphone based large-scale studies.

A. Physiological Monitoring

In physiological monitoring applications, low-power sensors
measure and report a person’s vital signs (e.g., pulse oxime-
try, respiration rate, temperature). These applications can be
developed and deployed in different contexts ranging from
disaster response, to in-hospital patient monitoring, and long-
term remote monitoring for the elderly.

While triage protocols for disaster response already exist
(e.g., [30], [69]), multiple studies have found that they can be
ineffectual in terms of accuracy and the time to transport as
the number of victims increases in multi casualty incidents [5],
[64]. Furthermore, studies in hospitals report that patients are
left under-monitored [15] and emergency departments today
operate at or over capacity [4]. Finally, anecdotal evidence
suggest that this lack of patient monitoring can lead to fatali-
ties [14], [53], [67].

Therefore, systems that automate patient monitoring
have the potential to increase the quality of care both in
disaster scenes and clinical environments. Systems such
as CodeBlue [49], MEDiSN [42], and the Washington
University’s vital sign monitoring system [13] target these
application scenarios. Specifically, CodeBlue [49] aims to
improve the triage process during disaster events with the
help of WSNs comprising motes with IEEE 802.15.4 radios.
The CodeBlue project integrated various medical sensors
(e.g., EKG, SpOs, pulse rate, EMG) with mote-class devices
and proposed a publish/subscribe-based network architecture
that also supports priorities and remote sensor control [11].
Finally, victims with CodeBlue monitors can be tracked and
localized using RF-based localization techniques [47].

Ko et al. proposed MEDiSN to address similar goals as
CodeBlue (e.g., improve the monitoring process of hospital
patients and disaster victims as well as first responders), but
using a different network architecture [42]. Specifically, unlike
the ad-hoc network used in CodeBlue, MEDiSN employs a
wireless backbone network of easily deployable relay points
(RPs). RPs are positioned at fixed locations and they self-
organize into a forest rooted at one or more gateways (i.e.,
PC-class devices that connect to the Internet) using a variant



Fig. 2. Medical information tag, or miTag for short, used in MEDiSN [42].
The miTag is a Tmote mini [52] based patient monitor that includes a pulse
oximetry sensor with LEDs, buttons and a LCD screen. The miTag is powered
using a re-chargeable 1,200 mAh 3.7 V Li-Ion battery and external finger tip
sensors are used to make the pulse oximetry measurements.

of the Collection Tree Protocol (CTP) [25] tailored to high
data rates. Motes that collect vital signs, known as miTags (see
Fig. 2), associate with RPs to send their measurements to the
gateway. The dedicated backbone architecture that MEDiSN
incorporates significantly reduces the routing overhead com-
pared to a mobile ad-hoc network architecture and results in
two major benefits. First, it allows the network’s operator to
expand its coverage and engineer its performance by altering
the number and position of RPs in the backbone. Second,
since miTags do not have to route other nodes’ data, they
aggressively duty cycle their radio to conserve energy. The
Washington University’s patient monitoring has adopted a sim-
ilar wireless backbone network to take advantage of similar
benefits [12], [13].

The systems described above were deployed in disaster sim-
ulations [23] and hospital pilot studies [13], [40], [41]. These
studies showed that wireless sensing systems can in fact over-
come the challenging RF conditions that exist in these envi-
ronments to meet the applications’ stringent trustworthiness
requirements [41].

Chipara et al. found that another source of unreliability in
clinical environments is the outage of the sensing capability
itself [13]. The authors show that the distribution of sensing
outages is heavy-tailed containing prolonged outages caused
by sensor disconnections. Their experience reveals that the use
of automatic sensor disconnection alarms and over-sampling
can enhance system reliability. Finally, the pilot studies above
also report that the satisfaction levels of healthcare personnel
and users such as patients or disaster victims is high and
conclude that the systems are practically feasible.

While the systems introduced above deal with improving
the quality of patient care in hospitals or disaster scenarios,
researchers and practitioners noticed that the coming world-
wide silver tsunami [68], where a large number of retiring el-

ders overload the capacity of current hospitals, is stressing the
traditional concept of healthcare which is focused on clinical
and emergency medical service (EMS) settings. Specifically,
it is economically and socially advantageous to reduce the
burden of disease treatment by enhancing prevention and early
detection while allowing people to stay at home for as long
as possible. This requires a long-term shift from a centralized,
expert-driven, crisis-care model to one that permeates personal
living spaces and involves informal caregivers, such as family,
friends, and members of the community.

A typical home healthcare system based on WSN is Alarm-
Net [74], [75], an assisted-living and residential monitoring
network for pervasive, adaptive healthcare. AlarmNet is a sys-
tem based on an extensible, heterogeneous network architec-
ture targeting ad-hoc, wide-scale deployments. It includes cus-
tom and commodity sensors, an embedded gateway, and a
back-end database with various analysis programs. The system
includes protocols such as context-aware protocols informed
by circadian activity rhythm analysis for smart power man-
agement. It supports real-time on-line sensor data streaming
and an inference system to recognize anomalous behaviors
as potential indicators of medical problems. Privacy control
is based on access control lists and all queries are logged.
Future work is planned to use data mining on the query logs
to detect privacy attacks. All messages are encrypted to ensure
data confidentiality.

Intel Research Seattle and the University of Washington
have built a prototype system that can infer a person’s activities
of daily living (ADLs) [58]. In their system, sensor tags (both
passive and active) are placed on everyday objects such as a
toothbrush or a coffee cup. The system tracks the movement
of tagged objects with tag readers. Their long-term goal is
to develop a computerized and unobtrusive system that helps
manage ADLs for the senior population [37].

University of Rochester is building the Smart Medical Home
[45], which is a five-room “house” outfitted with infrared sen-
sors, computers, bio-sensors, and video cameras for use by
research teams to work on research subjects as they test con-
cepts and prototype products. Researchers observe and interact
with subjects from two discreet observation rooms integrated
into the home. Their goal is to develop an integrated personal
health system that collects data for 24 hours a day and presents
it to the healthcare professionals.

Georgia Tech built an Aware Home [39] as a prototype
for an intelligent space. This space provides a living labo-
ratory that is capable of gathering information about itself
and the different types of activities of its inhabitants. The
Aware Home combines context-aware and ubiquitous sensing,
computer vision-based monitoring, and acoustic tracking all
together for ubiquitous computing of everyday activities while
remaining transparent to its users.

The Massachusetts Institute of Technology is working on
the PlaceLab initiative [35], which is a part of the House_n
project. The mission of House_n is to conduct research by de-
signing and building real living environments—*“living labs”—
that are used to study technology and design strategies in
context. The PlaceLab is a one-bedroom condominium with
hundreds of sensors installed in nearly every part of the home.



The systems introduced above provide useful physiological
information to medical personnel using resource constrained
devices. Nevertheless, these systems deal with only the sim-
plest aspects of medical data security. For example, MEDiSN
performs 128-bit AES-based encryption and authentication to
secure all physiological data [31] but does not provide any
of the policy controls described above. Another limitation of
existing systems is the small number of sensors that each
mobile device can support due to hardware constraints. De-
veloping new platforms that integrate stronger security and
privacy mechanisms with more diverse sensing and processing
capabilities is likely to increase the range of physiological
monitoring applications that WSNs can support.

B. Motion and Activity Monitoring

Another application domain for WSNs in healthcare is high-
resolution monitoring of movement and activity levels. Wear-
able sensors can measure limb movements, posture, and mus-
cular activity, and can be applied to a range of clinical set-
tings including gait analysis [59], [63], [72], activity classifica-
tion [28], [51], athletic performance [3], [50], and neuromotor
disease rehabilitation [48], [56]. In a typical scenario, a patient
wears up to eight sensors (one on each limb segment) equipped
with MEMS accelerometers and gyroscopes. A base station,
such as a PC-class device in the patient’s home, collects data
from the network. Data analysis can be performed to recover
the patient’s motor coordination and activity level, which is in
turn used to measure the effect of treatments.

In such studies, the size and weight of the wearable sen-
sors must be minimized to avoid encumbering the patient’s
movement. The SHIMMER sensor platform shown in Figure 1
measures 44.5 x 20 x 13 mm and weighs just 10 g, making it
well-suited for long-term wearable use.

In contrast to physiological monitoring, motion analysis in-
volves multiple sensors on a single patient each measuring
high-resolution signals, typically six channels per sensor, sam-
pled at 100 Hz each. This volume of sensor data precludes
real-time transmission, especially over multihop paths, due
to both bandwidth and energy constraints. The SHIMMER
platform incorporates a MicroSD interface, permitting up to
2 GBytes of storage — enough to store up to a month of
continuously-sampled sensor data. While the energy consump-
tion of flash I/O is non-negligible, it is about f—oth the energy
cost to transmit the same amount of data over the radio. As
a result, it is necessary to carefully balance data sampling,
storage, processing, and communication to achieve acceptable
battery lifetimes and data fidelity.

Two systems, SATIRE [22] and Mercury [48], typify the
approach to addressing these challenges. SATIRE is designed
to identify a user’s activity based on accelerometers and GPS
sensors integrated into “smart attire” such as a winter jacket.
SATIRE nodes measure accelerometer data and log it to local
flash. This data is opportunistically transmitted using the low-
power radio when the SHIMMER node is within communica-
tion range with the base station. Once the data is collected at
the base station, the collected data is processed offline to char-
acterize the user’s activity patterns, such as walking, sitting,

or typing. Sensor nodes perform aggressive duty cycling to
reduce power consumption, extending lifetimes from several
days to several weeks.

The goal of the Mercury system is to permit long-term stud-
ies of a patient’s motor activity for neuromotor disease studies,
including Parkinson’s disease, stroke, and epilepsy. Energy is
far more constrained in Mercury than in SATIRE, due to the
use of lightweight sensor nodes with small batteries. Mercury
builds upon SATIRE’s approach to energy management and in-
tegrates several energy-aware adaptations, including dynamic
sensor duty cycling, priority-driven data transmissions, and
on-board feature extraction. Mercury is being used in several
studies of Parkinson’s and epilepsy patients [48].

While SATIRE and Mercury show the feasibility of using
low-power wireless platforms to perform longitudinal studies
of human activity, issues related to improving node lifetime
and providing stronger security and privacy guarantees remain
areas of active research.

C. Large-Scale Physiological and Behavioral Studies

The final application of WSNs in healthcare that we dis-
cuss is their use in conducting large-scale physiological and
behavioral studies. The confluence of body-area networks of
miniature wireless sensors (such as the previously mentioned
miTag and SHIMMER platforms), always-connected sensor-
equipped smartphones, and cloud-based data storage and pro-
cessing services is leading to a new paradigm in population-
scale medical research studies, particularly on ailments whose
causes and manifestations relate to human behavior and living
environments.

Traditionally such studies are either conducted in controlled
clinical laboratory settings with artificial stimuli, or rely on
computer-assisted retrospective self-report methods. Both of
these approaches have drawbacks: the complex subtleties of
real-life affecting human behavior can rarely be recreated ac-
curately in a laboratory, and self-report methods suffer from
bias, errors, and lack of compliance. However, the combi-
nation of body-area wireless sensor networks, smartphones,
and cloud services permits physical, physiological, behavioral,
social, and environmental data to be collected from human
subjects in their natural environments continually, in real-time,
unattended, and in an unobtrusive fashion over long periods.
Typically, data is collected from wireless sensors worn by sub-
jects, wireless medical instruments, and sensors embedded in
devices such as smartphones. After local validation, artifact re-
moval, and local processing, sensor data is wirelessly transmit-
ted using cellular or WiFi networks to cloud-based services for
subsequent analysis, visualization, and sharing by researchers.
Such systems provide insight into subject states that traditional
study methods simply cannot achieve. Consequently, research
efforts such as the Exposure Biology program under NIH’s
Genes and Environment Initiative (GEI) are developing field
deployable wireless sensing tools to quantify exposures to en-
vironments (e.g., psychosocial stress, addiction, toxicants, diet,
physical activity) objectively, automatically, and for multiple
days in participants’ natural environments.

One example of such systems is AutoSense [44], in which
objective measurements of personal exposure to psychosocial



stress and alcohol are collected in the study participants nat-
ural environments. A field-deployable suite of wireless sen-
sors form a body-area wireless network and measure heart
rate, heart rate variability, respiration rate, skin conductance,
skin temperature, arterial blood pressure, and blood alcohol
concentration. From these sensor readings, which after initial
validation and cleansing at the sensor are sent to a smartphone,
features of interest indicating onset of psychosocial stress and
occurrence of alcoholism are computed in real-time. The col-
lected information is then disseminated to researchers answer-
ing behavioral research questions about stress, addiction, and
the relationship between the two. Moreover, by also capturing
time synchronized information about a subject’s physical ac-
tivity, social context, and location, factors that lead to stress
can also be inferred, and this information can potentially be
used to provide personalized guidance about stress reduction.

A second example is a portable system called the Physical
Activity and Location Measurement System (PALMS) devel-
oped at UCSD [57]. PALMS aims at monitoring study subjects
in everyday life for long enough periods of time to detect
patterns in physical activity and energy expenditure. These
information (collected from combined heart rate and motion
sensors) and location (from GPS units) are collected in the nat-
ural environment of the study participants. The system helps
answer questions about the energy used by a person during
different activities in the course of the day and the variance
across a population of subjects. The synchronized geolocation
information permits understanding how physical activity and
energy expenditure varies by location and is influenced by
environmental factors such as the built environment, crime,
the availability of parks, and recreation facilities, or terrain.

These systems for population-scale medical studies are still
in their early stages, and several technical and algorithmic
challenges remain to be addressed. Energy is certainly one
challenge. While some on-body sensors have high sampling
rates leading to significant energy consumption (i.e., low bat-
tery life), the desire to facilitate easy compliance with the
study protocols preclude a frequent charging schedule.

However, a bigger challenge with this technology is the
issue of information privacy, and its tension with the quality
and value of information [18]. Contemporary privacy practices
center on the notion of “personally identifiable information”
and “informed consent”. However, with these systems, the
traditional intuitive notion of privacy is not enough. Privacy
is not just about removing explicit identifiers, encrypting data,
using trusted software, and securing servers. These are easily
done, though imperfectly. Sensory information traces captured
by these systems are highly personal. Embedded in them is
information that correlates with our identity and our behaviors.
When combined with publicly available innocuous facts - the
so called “digital footprints” and “information breadcrumbs”
that we all leave behind as we lead our lives - these sensor
information traces can be de-anonymized, and subjects’ iden-
tities and life patterns can be inferred statistically.

For example, Chaudhuri and Mishra showed that personal
information may be identified even from anonymized and san-
itized population level data sets [10]. Similarly, Krumm has
shown that location traces can be de-anonymized via statistical

analysis to infer subjects’ home location with high probabil-
ity [43], which then can be used to reveal their identity using
information that is freely available on the web such as reverse
white-page lookup.

Likewise, traditional prior informed consent is not adequate
when sensors may capture data in unanticipated situations
and the sheer amount and nature of sensor data makes in-
formation leakage risks hard to comprehend. Collecting data
continuously as subjects go through their daily lives at their
homes, offices, and other places means that it is impossible to
anticipate upfront, and accordingly inform subjects about, the
complete nature of information that the sensor data may reveal.
Some of the seemingly innocuous sensor data thus collected in
relatively uncontrolled settings may capture information about
confidential aspects of subjects’ life patterns, personal habits,
and medical condition.

One answer to these problem can be to allow the study
subjects and patients to retain control over their raw sensor
data throughout its life cycle: its capture, sharing, retention,
and reuse [7], [65]. However, giving study subjects control
over data raises concern about quality of data for researchers.
As it is, ensuring high quality trustworthy information from
sensors out in the real world is hard due to malfunctions, mis-
behaviors, and lack of compliance. Letting subjects selectively
hide or perturb data raises the issue of bias and availability,
and thus utility. Quoting Ohm from a recent article: “Data can
either be useful or perfectly anonymous, but never both” [55].
Technology assists such as automated validation procedures,
audit traces, and incentive mechanisms to ensure compliance
and encourage sharing may provide further help.

VI. FUTURE DIRECTIONS

Driven by user demand and fueled by recent advances in
hardware and software, the first generation of wireless sen-
sor networks for healthcare has shown their potential to alter
the practice of medicine. Looking into the future, the tussle
between trustworthiness and privacy and the ability to deploy
large-scale systems that meet the applications’ requirements
even when deployed and operated in unsupervised environ-
ments is going to determine the extent that wireless sensor
networks will be successfully integrated in healthcare practice
and research.
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