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1 Introduction

Advances in micro-electro-mechanical systems have triggered an enormous
interest in wireless sensor networks (WSN). WSN are formed by large numbers
of densely deployed nodes enabled with sensing and actuating capabilities.
These nodes have very limited processing and memory capabilities, limited
energy resources and it is envisioned that they will be mass produced, to
reduce costs.

Several challenging problems exist in wireless sensor networks. Among
these is how to obtain location information for sensor nodes and events present
in the network. From this perspective, we categorize the localization problem
as: node localization, target localization and location service. Node localiza-
tion is the process of determining the coordinates of the sensor nodes in the
WSN. Target localization is the process of obtaining the coordinates of an
event or a target present in the sensor network. The location of a target can
be obtained either passively (the nodes sense the target) or actively, when
the target cooperates and communicates with the sensor network. A location
service acts as a repository that can be used to answer questions like “where
is entity X?”. In the remaining part of this chapter we focus on the node
localization problem in WSN.

Node localization is a complicated and important problem for wireless
sensor networks (WSN). The aspects of this problem that have challenged the
research community can be summarized as follows:

• Assumptions - The node localization problem remains a difficult chal-
lenge to be solved practically. To make the problem practically tractable,
its complexity had to be reduced, by making simplifying assumptions. As
a result, many localization schemes proposed solutions that are based on
assumptions that do not always hold or are not practical. Examples of such
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assumptions are: circular radio range, symmetric radio connectivity, addi-
tional hardware (e.g., ultrasonic), lack of obstructions, lack of line-of-sight,
no multipath and flat terrain.

• Localization Protocol Design - The problem of localization in WSN
is further complicated by the large number of parameters that need to
be considered when designing a localization system for a particular WSN
deployment. Among these parameters are: the deployment method for the
sensor network; the existence of a line-of-sight between sensor nodes and
a remote, central point; the time required by the localization scheme; the
presence of reference points (anchors) in the network, and the density;
the cost for localization, represented by additional hardware (form fac-
tor) and energy expenditure (messages exchanged or time necessary for
localization).

• Cost/Accuracy trade-off - Due to the mostly static nature of many
WSN, obtaining the location information by each sensor node is often a
one time or rare event. Adding hardware to each sensor node, to assist
in the localization, is a costly solution, and, so far, has been ruled out
from real system deployments. For example, GPS is a typical high-end
solution, which requires sophisticated hardware to achieve high resolution
time synchronization with satellites. The constraints on power and cost for
tiny sensor nodes and the need for a line of sight from a sensor node to four
or more satellites preclude this as a viable solution. Other solutions require
per node devices that can perform ranging among neighboring nodes. The
difficulties of these approaches are two-fold. First, under constraints of
form factor and power supply, the effective ranges of such devices are very
limited. For example the effective range of an ultrasonic transducer is on
the order of a few meters, when the sender and receiver are not facing
each other. Second, since most sensor nodes are static, i.e., the location is
not expected to change, it is not cost-effective to equip these sensors with
special circuitry just for a one-time localization.

• Performance Evaluation - The problem of localization in wireless sen-
sor networks has been studied and evaluated predominantly in simulators.
Due to the severe hardware constraints imposed on wireless sensor nodes,
real system implementations of the proposed simulated solutions have not
produced encouraging results. Solutions that use the most tempting means
of evaluating relative distances between sensor nodes - RF signal strength,
have largely failed in practice, due to the unreliable nature and irregular
pattern of the radio communication. Localization schemes that are based
on the receive signal strength indicator (RSSI) have been, however, inten-
sively studied in simulators.

• Security - Since localization is a critical factor in WSN, attacks on it can
render the sensor network ineffective. To date, very little work has been
done on creating robust and secure localization schemes. A few notable
exceptions are [15] [14] [17] [16] [5].
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For wireless sensor networks ranging is a difficult option. The hardware
cost (hardware used only for localization), the energy expenditure, the form
factor, the small range, all are difficult compromises, and it is hard to envision
cheap, unreliable and resource-constraint devices make use of range-based
localization solutions. Their high accuracy in localization is very desirable,
however.

To overcome the limitations of the range-based localization schemes, many
range-free solutions have been proposed. These solutions estimate the loca-
tion of sensor nodes by, either, exploiting the radio connectivity information
among neighboring nodes, or exploiting the sensing capabilities that each sen-
sor node possesses. Due to the distinct characteristics of these two approaches,
we categorize the range-free localization schemes into: anchor-based schemes
(which assume the presence of sensor nodes in the network that have knowl-
edge about their location) and anchor-free schemes, which require no special
sensor nodes for localization. The range-free localization schemes eliminate
the need of high-cost specialized hardware on each sensor node. The fact that
the radio propagation characteristics vary over time and are environment de-
pendent, imposes higher calibration costs for the anchor-based localization
schemes.

In this chapter we review a representative set of range-free localization
schemes, from the perspective of the above proposed taxonomy: anchor-based
and anchor-free solutions. We point out that hybrid solutions exist and, some-
times, one solution does not neatly fit in either one of the categories. Also, in
addition to the localization schemes described below, many more have been
proposed. To name a few: the ELA [32], Thunder [35], Hop-TERRAIN [26],
KPS [7], RIPS [18], Resilient LSS [13], Robust Quadrilaterals [19] and MAL
[23] . In the remaining part of this chapter, we use R to denote the radio range
of a sensor node.

2 Anchor-Based Solutions

The location of a sensor node has to be expressed in a coordinate system.
In a 2D space, three anchor nodes (three fixed points in the space) uniquely
determine a coordinate system. In a 3D space, four anchor nodes are required.
In this section, to demonstrate a wide range of possible solutions, we present
several range-free localization schemes that use radio connectivity to infer
proximity to a set of anchor nodes.

2.1 Centroid

The Centroid scheme was proposed by Bulusu et al. in [2]. This localization
scheme assumes that a set of anchor nodes (Ai, 1 ≤ i ≤ n), with overlapping
regions of coverage, exist in the deployment area of the WSN. The main idea
is to treat the anchor nodes, located at (Xi, Yi), as point masses mi and to
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find the center of gravity (centroid) of all these masses. In the most general
form, the coordinates of the centroid of n point masses mi are given by:

(XG, YG) =
(∑n

i=1 miXi∑n
i=1 mi

,

∑n
i=1 miYi∑n
i=1 mi

)

which, for equal masses mi simplifies to:

(XG, YG) =
(∑n

i=1 Xi

n
,

∑n
i=1 Yi

n

)

An example of how the Centroid scheme works is shown in Figure 1, where
a sensor node Nk is within communication range to four anchor nodes, A1...A4.
The node Nk localizes itself to the centroid of the quadrilateral A1A2A3A4

(for the case of a quadrilateral, the centroid is at the point of intersection of
the bimedians - the lines connecting the middle points of opposite sides).
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Fig. 1. Centroid localization - node Nk localizes to the centroid of the A1A2A3A4

quadrilateral.

The steps of the localization scheme are the following:

• Each anchor node Ai broadcasts its position.
• Each sensor node Nk listens for beacons from anchors and computes a

connectivity metric, for each anchor node Ai it has received beacons from.
This metric is defined as follows:

CMk,Ai =
Nrecv(Ai, t)
Nsent(Ai, t)

where Nrecv(Ai, t) and Nsent(Ai, t) are the numbers of beacons received
from anchor Ai and sent by anchor Ai, respectively, in the time interval t.

• A node Nk computes its location as the average of all the anchor nodes
Ai it has heard from with a connectivity higher than a threshold, e.g.,
CMk,Ai > 90%, as follows:
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(Xk, Yk) =
(

XAi1 + ... + XAij

j
,
YAi1 + ... + YAij

j

)

where j is the number of anchors with a higher connectivity than the
threshold.

In subsequent work [3], the authors explored adaptive mechanisms for
placing additional anchor nodes in a WSN, in order to reduce the average
localization error.

2.2 APIT

APIT [8] is an area-based range-free localization scheme. It assumes that a
small number of nodes, called anchors, are equipped with high-powered trans-
mitters and know their location, obtained via GPS or some other mechanism.
Using beacons from these anchors, APIT employs a novel area-based approach
to perform location estimation by isolating the environment into triangular
regions between anchor nodes as shown in Figure 2. A node’s presence inside
or outside of these triangular regions allows a node to narrow down the area
in which it can potentially reside. By utilizing different combinations of an-
chors, the size of the estimated area in which a node resides can be reduced,
to provide a good location estimate.

 
Fig. 2. Area-based APIT Algorithm Overview

The theoretical method used to narrow down the possible area in which a
target node resides is called the Point-In-Triangulation Test (PIT). For three
given anchors: A(ax, ay), B(bx, by), C(cx, cy), the Point-In-Triangulation test
determines whether a point M with an unknown position is inside triangle
4ABC or not. APIT repeats this PIT test with different anchor combinations
until all combinations are exhausted or the required accuracy is achieved. At
this point, APIT calculates the center of gravity (COG) of the intersection of
all of the triangles in which a node resides to determine its estimated position.
These steps are shown in Algorithm 1.

In [8], the authors provide a perfect, albeit theoretical, solution for perfect
Point-In-Triangulation test as follows:



6 Radu Stoleru, Tian He and John A. Stankovic

Algorithm 1 APIT
1: Receive location beacons (Xi, Yi) from N anchors;
2: InsideSet = ∅;
3: for each triangle Ti ∈

�
N
3

�
triangles do

4: if Point-In-Triangle-Test (Ti) == TRUE then
5: InsideSet = InsideSet

S
Ti;

6: end if
7: end for
8: Estimated Position = CenterOfGravity(

T
Ti ∈ InsideSet);

Perfect P.I.T. Test Theory: If there exists a direction such that a point
adjacent to M is further/closer to points A, B, and C simultaneously, then M
is outside of 4ABC. Otherwise, M is inside 4ABC (Figure 3).

�

Outside Case

�

�

�

�

�

�

�

Inside Case
Fig. 3. Cases for Point-In-Triangulation Test

The perfect P.I.T. test can correctly decide whether a point M is inside
triangle 4ABC (the formal proofs can be found in [8]). However, there are
two major issues to apply this theory practically in wireless sensor networks:
First, how does a node recognize directions of departure from an anchor with-
out moving? Second, how to exhaustively test all possible directions in which
node M might depart/approach vertexes A, B, C simultaneously? The answer
to the first question is to use RSSI comparisons. Through experiments, the
authors confirm that in a narrow direction, the further away a node is from the
anchor, the weaker the received signal strength (RSSI) will be. Through signal
strength comparisons, a node can determine whether the direction towards a
neighboring node is closer to a given anchor or not. To address the second
issue, the authors propose an approximation (APIT) for the perfect PIT test,
which uses neighbor information, through RSSI comparisons, to emulate the
node movement in the Perfect PIT test. With a finite number of neighbors,
APIT can only evaluate a limited number of directions. Consequently, APIT
could make an incorrect decision. Fortunately, experiments indicate that the
percentage of APIT tests exhibiting such an error is relatively small (14% in
the worst case). Figure 4 demonstrates this error percentage as a function
of node density. When node density increases, APIT can evaluate more di-
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rections, considerably reducing false positive, i.e. APIT returns true, while a
node is outside of triangle (OutToInError). On the other hand, false nega-
tive (InToOutError) will slightly increase due to the increased chance of edge
effects.
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Fig. 4. APIT Error under Varying Node Densities

Once the individual APIT tests finish, APIT aggregates the results (in-
side/outside decisions among which some may be incorrect) through a grid
SCAN algorithm (Figure 5). In this algorithm, a grid array is used to repre-
sent the maximum area in which a node likely resides. In the experiments, the
length of a grid side is set to 0.1R, to guarantee that estimation accuracy is
not noticeably compromised.
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Fig. 5. APIT Error under Varying Node Densities

For each APIT inside decision (a decision where the APIT test determines
the node is inside a particular region (Figure 5) the values of the grid regions
over which the corresponding triangle resides are incremented. For an outside
decision, the grid area is similarly decremented. Once all triangular regions are
computed, the resulting information is used to find the maximum overlapping
area (e.g., the grid area with value 2 in Figure 5). Since the majority (more
than 85% in the worst case shown in Figure 4) of APIT tests are correct,
the correct decisions build up on the grid and the small number of errors
only serves as a slight disturbance to the final estimation. Evaluation in [8]
indicates APIT works better than other range-free solutions under irregular
radio patterns and random node placement. However, it should be pointed
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out that APIT has a more demanding requirement on the number of anchors
used in localization.

2.3 SeRLoc

SeRLoc [15] is another area-based range-free localization. The authors assume
two types of nodes: normal nodes and locators (i.e., anchors). Normal nodes
are equipped with omnidirectional antennas, while locators are equipped with
directional sectored antennas and their locations of locators are known a priori.
In SeRLoc, a sensor estimates it location based on the information transmitted
by the locators. Figure 6 shows the main idea, with node Nk within radio range
to locators A1, A2 and A3:
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Fig. 6. SerLoc Localization

SeRLoc localizes the sensor nodes in four steps. First, a locator transmits
directional beacons within a sector. Each beacon contains the locator’s po-
sition and the angles of the sector boundary lines. A normal node collects
the beacons from all locators it hears. Second, it determines an approximate
search area within which it is located based on the coordinates of the locators
heard. Third, it computes the overlapping sector region using a majority vote
scheme. Finally, SeRLoc determines a node location as the center of gravity
of the overlapping region. These steps are shown in Algorithm 2.

We note that SeRLoc is unique in its secure design. It can deal with various
kinds of attacks including wormhole and Sybil attacks. We do not describe
its security features here except to note that the authors prove in [15] that
their approach is more secure, robust and accurate in the presence of attacks,
compared with other state-of-the-art solutions that largely ignore this issue.

2.4 Multidimensional Scaling

The MDS-MAP algorithm proposed by Shang et al. in [28] is based on a data
analysis technique, called MultiDimensional Scaling (MDS), extensively used
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Algorithm 2 SeRLoc
1: Receive beacons from locators; each beacon contains the position of locator and

the angles of sector boundary.
2: Find four values: (Xmin, Ymin, Xmax, Ymax) among all the locator positions

heard.
3: Set the search area as the rectangle (Xmin−R, Ymin−R, Xmax +R, Ymax +R),

where R is the radio range.
4: Partition the search area into grids.
5: for each beacon received do
6: Increase the value of a grid point by one if this grid point is within the sector

defined in this beacon.
7: end for
8: Estimated Position = CenterOfGravity(the grid points with the largest values)

in psychometrics. MDS attempts to provide a visualization (2D or 3D) of the
original data, and preserving the essential information present in the data set
(i.e., similarities in a multidimensional space). The MDS-MAP algorithm uses
the classical metric scaling, the simplest case of the MDS technique, which has
a closed form solution, enabling a relatively efficient computation (requires no
iterations).

An important concept for MDS is how to compute the distance between
two points. If we denote by X the matrix of coordinates of points (n × m
matrix of n points in m dimensions), and by D = [dij ] the matrix of distances
between points, it can be shown that the matrix of squared distances between
points, i.e., D(2), can be written as follows:

D(2) = c1′ + 1c′ − 2XX′ = c1′ + 1c′ − 2B

where c is a vector with elements the diagonal elements of XX′. The matrix
B = XX′ is the scalar product matrix. So the questions becomes, given the
matrix of squared distances D(2) how can one obtain B, and implicitly X? It
can be shown [1] that by double-centering D(2), one can obtain B:

−1
2
JD(2)J = B

where J = I− 11′/n (called the centering matrix), I the identity matrix and
1 the n-dimensional column vector with all elements one. Once B is obtained,
the coordinates X can are computed by eigendecomposition.

The steps of classical scaling are summarized as follows:

1. Compute the squared distances matrix D(2) = [d2
ij ]

2. Double-center the D2 matrix:

B = −1
2
JD(2)J
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3. Compute the singular value decomposition of B = VAVT

4. Compute the coordinate matrix:

X = V+A1/2
+

where A+ is the matrix of the first m eigenvalues greater than zero and
V+ the first m columns of V.

The MDS-Map algorithm that uses the classical metric scaling technique
is shown in Algorithm 3.

Algorithm 3 MDS-MAP
1: Compute the shortest paths dij , 1 ≤ i, j ≤ n. This gives the distances matrix

D.
2: Compute the relative positions (map), by applying classical MDS to the dis-

tance matrix D, and retain the largest 2 (for a 2D space) or 3 (for a 3D space)
eigenvalues and eigenvectors.

3: Transform the relative map, into an absolute map, based on the absolute posi-
tions of anchor nodes.

The main drawbacks of the MDS-MAP algorithm, the need for global
information and centralized computation are addressed in subsequent work
by the authors [27].

2.5 Gradient

In the Gradient algorithm, proposed by Nagpal et al. in [20], the anchor nodes
initiate a gradient that self-propagates and allows a sensor node to infer its
distance from the anchor. After estimating distances to three anchors a sensor
node infers its own location through multilateration.

The steps of the algorithm are as follows:

• Each anchor node Ai initiates a flood of the network by broadcasting a
packet containing its position and a counter with the initial value set to
one.

• Each sensor node Nj keeps track of the shortest path (in terms of radio
hop counts, hj,Ai) to an anchor Ai from which it has received a beacon. A
distance estimate, between the sensor node and anchor is obtained by:

dji = hj,Aidhop

where dhop is the estimated Euclidian distance covered by one radio hop,
and it is given by the Kleinrock-Silvester formula [11]:

dhop = r

(
1 + e−nlocal −

∫ 1

−1

e−
nlocal

π (arccos t−t
√

1−t2)
)
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• Each node Nj computes its coordinates such that the total error is mini-
mized:

Ej =
n∑

i=1

(dji − d̂ji)

where dji =
√

(xi − xj)2 + (yi − yj)2 and d̂ji is the estimated distance
computed through gradient propagation, as shown above.
The coordinate are incrementally updated in the following way:

∆x = −α
∂Ej

∂xj
and ∆y = −α

∂Ej

∂yj

where:

∂Ej

∂xj
=

n∑

i=1

(xj − xi)

(
1− dji

d̂ji

)
and

∂Ej

∂xj
=

n∑

i=1

(xj − xi)

(
1− dji

d̂ji

)

Sources for errors in location estimation arise in the Gradient scheme from:
incorrect estimation of the one-hop distance (dhop), and the multilateration
procedure.

2.6 Ad-Hoc Positioning System

In a similar manner with the Gradient method, the Ad-Hoc Positioning Sys-
tem (APS) proposed by Niculescu and Nath [22], uses the hop-by-hop propa-
gation of distances to known anchors (a set of anchors is assumed to be present
in the WSN). After obtaining distance estimates to three or more anchors, a
sensor node employs a multilateration (similar with that of GPS) for itera-
tively improving its location estimation. The main difference resides in how a
sensor node Nj estimates its distance to an anchor Ai (dji from the Gradient
method, presented before).

The steps of the APS localization scheme algorithm are the following:

• Each anchor node Ai initiates a flood of the network by broadcasting a
packet containing its position and a counter with the initial value set to
one.

• Each sensor node Nj keeps track of the shortest path (in terms of radio
hop counts, hj,Ai) to an anchor Ai from which it has received a beacon. In
[22] the authors propose four methods for propagating the distances from
anchors to sensor nodes: DV-Hop, DV-Distance, Euclidian and Coordinate.
The method that does not assume ranging, DV-Hop is described below.
An example of the DV-Hop scheme is shown in Figure 7. At the end of
this phase, node Nj knows that it is 3 hops, 2 hops and 1 hop from A1,
A2 and A3, respectively.
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Fig. 7. The DV-Hop localization scheme

• Once an anchor node Ai obtains distances to other anchors, it computes a
correction factor ci (the estimated 1 radio hop Euclidian distance), which it
propagates in the network. Corrections are propagated through controlled
flooding, i.e., after a node receives and forwards the first correction, it will
stop forwarding subsequent corrections. The correction factor is computed
as follows:

ci =
∑√

(xi − xj)2 + (yi − yj)2∑
hi

for all anchors Aj 6= Ai from which it has received a beacon (anchor Aj

is positioned at (xj , yj) and hi is the number of hops between the sensor
node and anchor Ai).
For the example shown in Figure 7, if the distances A1A2, A2A3 and A3A1

are 30m, 40m and 50m, respectively, the correction factor for anchor A3

is: c3=(50+40)/(4+3)=12.9m/hop.
• A least square method (the authors used the Householder method) is em-

ployed for solving the non-linear system of equations:



∆ρ1

∆ρ2

∆ρ3

...
∆ρn




=




1̂1x 1̂1y

1̂2x 1̂2y

1̂3x 1̂3y

... ...

1̂nx 1̂ny




[
∆x
∆y

]

where ∆ρi = ρ̂i − ρi, ρ̂i and ρi are the estimated and the real distances
between a sensor node and an anchor Ai, 1̂ix is the unit vector of ρ̂i in the
x direction and ∆x and ∆y are the corrections in the position estimate
for the node Nj .
For the example shown in Figure 7, the estimated distances between node
Nj and anchors A1, A2 and A3 are ρ̂1=4*12.9=51.6m, ρ̂2=38.7m and
ρ̂3=12.9m.
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2.7 Probability Grid

In a similar manner with the DV-Hop, a localization scheme that can be used
in scenarios where the topology of deployment is known a priori to be a grid,
is proposed in [31].

The steps of the localization scheme are the following:

• Each anchor node Am initiates a flood of the network by broadcasting a
packet containing its position and a counter with the initial value set to
one.

• Each sensor node Nk keeps track of the shortest path (in terms of radio
hop counts) to each of the anchors Al from which it has received beacons.

• Once an anchor node Am obtains distances to other anchors, it computes
a correction factor cm (the estimated radio range), and it propagates it in
the network.

• After receiving hop-count estimates to three or more anchor nodes, and a
correction factor cm a sensor node Nk evaluates the probability of being
located at any position in the grid (labeled (i, j)). For this, it computes
an expected hop count:

λ = d(i,j),l/cm

where d(i,j),l is the Euclidian distance between anchor Al and the point
(i, j) being evaluated. It then computes the probability of it (node Nk) to
be positioned at (i, j):

pk,(i,j) =
|A|∏

l=1

P
hk,l

(i,j)

where P
hk,l

(i,j) is the probability of node Nk, positioned at (i, j), to be hk,l

hops from anchor Al.
• A node Nk chooses as its location, the position in the grid (i, j) with the

maximum probability pk,(i,j).

The authors make the observation that hk,l is a discrete random variable
that represents the number of radio hops between one anchor and the point
of interest, i.e. (i, j). The main features that the distribution function for hk,l

needs to exhibit are: to have one parameter λ (defined above) , to be narrow
and skewed positively for small values of λ and become broader and relatively
symmetric for larger values of λ. This is illustrated in Figure 8:

These requirements follow the intuition that for smaller values of the pa-
rameter λ (i.e., grid points closer to the anchor) the number of hops (call it τ)
has a limited range of possible values with higher and higher values being less
and less probable (positively skewed). As the distance between the anchor and
the node increases (λ increases), the number of possibilities for the hop count
(τ ) increases and the distribution becomes bell-shaped, i.e., smaller and larger
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Fig. 8. The intuition behind the PMF of hk,l

hop counts are equally probable. The authors found through simulations that
a Poisson distribution is a good approximation for the hk,l discrete random
variable. The distribution is given by:

P(h(k,l)=τ) =
λτ−1e−λ

(τ − 1)!

where τ = 1, 2, ....

3 Anchor-Free Solutions

Anchor-free localization schemes exploit the proximity to an event with a
known location: a light event in [30] [24] or a nearby radio packet in [29].
One common characteristic for these schemes is the moving of the complex-
ity (hardware and computational, associated with an accurate localization)
from the sensor node to a central, more sophisticated device. By controlling
well the spatio-temporal properties of the events (light and radio packets), a
much higher accuracy in localization (when compared with the anchor-based
schemes) can be obtained. While anchor nodes are not required for any of
the following schemes, anchor nodes can be beneficial for extensions of the
proposed schemes.

3.1 Spotlight

The main idea of the Spotlight localization system [30] is to generate con-
trolled events in the field where the sensor nodes are deployed. An event
could be, for example, the presence of light in an area. Using the time when
an event is perceived by a sensor node and the spatio-temporal properties of
the generated events, spatial information (i.e. location) regarding the sensor
node can be inferred. The system architecture for the Spotlight localization
system is shown in Figure 9.

With the support of these three functions, the localization process goes as
follows:
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Fig. 9. Spotlight system architecture

• A Spotlight device distributes events e(t) in the space A over a period of
time.

• During the event distribution, sensor nodes record the time sequence Ti =
{ti1, ti2, ..., tin} at which they detect the events.

• After the event distribution, each sensor node sends the detection time
sequence back to the Spotlight device.

• The Spotlight device estimates the location of a sensor node i, using the
time sequence Ti and the known E(t) function.

The Event Distribution Function E(t) is the core technique used in the
Spotlight system and the authors propose three designs for it, with different
tradeoffs/costs. These designs are presented below.
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Fig. 10. The implementation of the Point Scan EDF

Point Scan

The Point Scan EDF is applicable to a simple sensor system where a set of
nodes are placed along a straight line (A = [0, l] ⊂ R). The Spotlight device
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generates point events (e.g., light spots) along this line with constant speed
s, as shown in Figure 10. The set of timestamps of events detected by a node
i is Ti = {ti1}. The Event Distribution Function E(t) is:

E(t) = {p | p ∈ A, p = t ∗ s}
where t ∈ [0, l/s]. The resulting localization function is:

L(Ti) = E(ti1) = {ti1 ∗ s}

Line Scan

Some devices, e.g. lasers, can generate an entire line of events simultaneously.
With these devices, the Line Scan Event Distributed Function can be sup-
ported. Assuming that the sensor nodes are placed in a two dimensional plane
(A = [l× l] ⊂ R2) and that the scanning speed is s. The set of timestamps of
events detected by a node i is Ti = {ti1, ti2}.

������
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Fig. 11. The implementation of the Line Scan EDF

The Line Scan EDF, depicted in Figure 11, is defined as follows:

Ex(t) = {pk | k ∈ [0, l], pk = (t ∗ s, k)} for t ∈ 0, l/s

Ey(t) = {pk | k ∈ [0, l], pk = (k, t ∗ s− l)} for t ∈ l/s, 2l/s

and E(t) = Ex(t) ∪ Ey(t).
The location of a node can be calculated from the intersection of the two

event lines, as shown in Figure 11. More formally:

L(Ti) = E(ti1) ∪ E(ti2)
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Area Cover

Other devices, such as light projectors, can generate events that cover an
area. This allows the implementation of the Area Cover EDF. The idea of
Area Cover EDF is to partition the space A, where the sensor nodes are
deployed, into multiple sections and assign a unique binary identifier, called
code, to each section. Let’s suppose that the localization is done within a
plane (A ∈ R2). Each section Sk within A has a unique code k.
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Fig. 12. The implementation of the Area Cover EDF

The Area Cover EDF, with its steps shown in Figure 12 is then defined as
follows:

BIT (k, j) =
{

true if jth bit of k is 1
false if jth bit of k is 0

E(t) = {p | p ∈ Sk, BIT (k, t) = true}
and the corresponding localization algorithm is:

L(Ti) = {p | p = COG(Sk), BIT (k, t) = true if t ∈ Ti,

BIT (k, t) = false if t ∈ T − Ti}

where COG(Sk) denotes the center of gravity of Sk.

Cost Comparison

Although all three proposed techniques are able to localize the sensor nodes,
they differ in the localization time, communication overhead and energy con-
sumed by the Event Distribution Function (call it Event Overhead). Assume
that all sensor nodes are located in a square with edge size D, and that
the Spotlight device can generate N events (e.g. Point, Line and Area Cover
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events) every second and that the maximum tolerable localization error is r.
Table 1 presents the execution cost comparison of the three different Spotlight
techniques.

Criterion Point Scan Line Scan Area Cover

Localization Time D2/r2)/N D2/r2)/N logr(D/N)

# Detections 1 2 logr D

# Time Stamps 1 2 logr D

Event Overhead D2 2D2 D2 logr(D/2)

Table 1. Execution Cost Comparison

Table 1 indicates that the Event Overhead for the Point Scan method is the
smallest - it requires a one-time coverage of the area, hence the D2. However
the Point Scan takes a much longer time than the Area Cover technique,
which finishes in logr D seconds. The Line Scan method trades the Event
Overhead well with the localization time. By doubling the Event Overhead,
the Line Scan method takes only r/2D percentage of time to complete, when
compared with the Point Scan method. From Table 1, it can be observed
that the execution costs do not depend on the number of sensor nodes to be
localized. It is important to remark the ratio “Event Overhead”/“Localization
Time”, which is indicative of the power requirement for the Spotlight device.
This ratio is constant for the Point Scan (r2N) while it grows linearly with
area, for the Area Cover (D2N/2). If the deployment area is very large, the
use of the Area Cover EDF is prohibitively expensive, if not impossible. For
practical purposes, the Area Cover is a viable solution for small to medium
size networks, while the Line Scan works well for large networks.
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Fig. 13. Localization Error vs. Event Size for Spotlight system.

For the Spotlight system evaluation, the authors deployed 10 XSM [6]
motes in a football field. The Spotlight device consisted of diode lasers, a
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computerized telescope mount, connected to a laptop. The Event Distribution
Function investigated was the Point Scan. The range between the Spotlight
device and the sensor nodes was approximately 170m.

Figure 13 shows the average localization errors versus the size of the event
(diameter of the laser beam, on the ground), for different scanning speeds s.
Localization errors of 10-20cm are reported.

3.2 Lighthouse

In a similar way to the Spotlight localization system, the Lighthouse scheme,
proposed by Römer [24], makes use of the free-space optical channel between
a device (called Lighthouse in this case) and sensor nodes.
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Fig. 14. Lighthouse Localization

The main idea of the Lighthouse system is exemplified in Figure 14. A
parallel light beam of width b, emitted by anchor A1 rotates with a certain
period tturn. A sensor node Nk detects this light beam for a period of time
tbeam, which is dependent on the distance d between the Lighthouse device
and the sensor node, in the following way:

d =
b

2 sin(α1/2)
=

b

2 sin(πtbeam/tturn)

From measuring tbeam and knowing b and tturn, one can compute the
distance between the sensor node and the lighthouse device d. By constructing
a device with three mutually perpendicular light emitting Lighthouses, a 3D
location can be obtained.

The main difficulty encountered by the authors in the implementation of
the Lighthouse prototype is ensuring that the light beam is perfectly parallel
(zero divergence), having a width b. Instead, two laser beams of widths bi

and angle orientations βi, γi and δi i = 1, 2, are used. To account for the
misalignments, the authors develop a better approximation for the resulting
beam width b:
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b ≈ Cb +
√

d2 + h2Cβ + hCγ + dCδ

where Cb = b1+b2, Cβ = sin β1+sin β2, Cγ = tan γ1+tan γ2 and Cδ = sin δ1+
sin δ2. These parameters are constant for a particular Lighthouse system, and
they are obtained through calibration, by localizing four points with known
locations.

The experiments use 22 nodes placed in a 5x5m2 area, with the Lighthouse
device positioned at the coordinate (0,0). The accuracy of the localization al-
gorithm is presented relative to the distance between the Lighthouse device
and the sensor node (i.e., |x̂ − x|/x). The mean relative error (difference be-
tween the computed location and ground truth) in localization is 1.1% in one
direction and 2.8% in the second direction (the difference is attributed to the
calibration). This translates in localization errors of a few centimeters.

3.3 Walking-GPS

In many applications it is envisioned that WSN will be deployed from Un-
manned Aerial Vehicles. In the meantime, manual deployments have been
prevalent and the employed localization solutions have used some variant of
associating the sensor node ID with prior knowledge of that ID’s position in
the field.

In [29] the authors propose a solution, called Walking GPS, in which the
deployer (either person or vehicle) carries a GPS device that periodically
broadcasts its location. The sensor nodes being deployed, infer their position
from the location broadcast by the GPS device. The proposed solution is
simple, cost effective and has very little overhead.

In the Walking GPS architecture the system is decoupled into two software
components: the GPS Mote and the Sensor Mote. The GPS Mote runs on a
Mica2 mote. The mote is connected to a GPS device, and outputs its location
information at periodic intervals. The Sensor Mote component runs on all
sensor nodes in the network. This component receives the location information
broadcast by the GPS Mote and infers its position from the packets received.
The proposed architecture pushes all complexity derived from the interaction
with the GPS device to a single node, the GPS Mote, and to significantly
reduce the size of the code and data memory used on the sensor node. Through
this decoupling, a single GPS Mote is sufficient for the localization of an entire
sensor network, and the costs are thus reduced.

A relatively simple design for the GPS Mote would have been to peri-
odically broadcast the actual GPS location received from the GPS device. In
order to reduce the overhead incurred when exchanging data containing global
GPS coordinates, the Walking GPS system uses a local, Cartesian, coordinate
system. The conversion between coordinate systems is performed by the GPS
mote. A local coordinate system of reference is better suited for WSN, than
a global coordinate system.

The localization scheme that makes use of the Walking GPS solution has
two distinct phases:
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1. The first phase is during the deployment of the sensor nodes. This is
when the Walking GPS solution takes place. The deployer has a GPS-
enabled mote attached to it; the GPS-enabled mote periodically beacons
its location; the sensor nodes that receive this beacon infer their location
based on the information present in this beacon.

2. The second phase is during the system initialization. If at that time, a
sensor node does not have a location, it asks its neighbors for their location
information. The location information received from neighbors is used in a
triangulation procedure by the requester, to infer its position. This second
phase enhances the robustness of the scheme.

 

Fig. 15. Walking GPS system evaluation. Nodes deployed in a grid.

The experimental evaluation of the entire system, consisted of 30 MICA2
motes that were deployed in a 5x6 grid (for ease of measuring the localization
error). The experimental results are shown in Figure 15. The average localiza-
tion error obtained from fitting a grid to the experimental data is 0.8m with
a standard deviation of 0.5m.

4 Open Problems

4.1 Security

Recently, several research groups have started to address robust and secure lo-
calization. For example, SeRLoc [15] demonstrates robustness against worm-
hole, Sybil and compromise of network nodes attacks. However, this work
assumes a particular two-tier architecture and special hardware they call lo-
cators. In addition, the jamming of the wireless medium is not considered. It
is an excellent start, but a lot more needs to be done especially for military
domains and to meet various reality assumptions.
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For securing localization, robust statistical methods (e.g. least median
square) have been proposed [16]. The assumption is that an attacker selectively
alters distance estimates to known anchor locations. The highest contamina-
tion ratio (i.e., affected readings) that the mathematical model supports is
50%, with significant degradation even at 35%. If an attacker possesses the
capability of affecting distance estimates easily, then it is very likely that all
distance estimates will be affected, making this set of solutions, less effective.
The idea, however, of using robust statistical models, is a very good one.

In a similar approach, in [17], two solutions are proposed for secure lo-
calization: an attack resistant minimum mean square error (MMSE) which
suffers from an unbounded localization error (the attack can result in an ar-
bitrarily large localization error), and a voting-based scheme, which corrects
the unbounded localization error, at a higher computational and storage cost.

Distance bounding has also recently been proposed as a technique for se-
cure verification of localization. In [25] a combination of ultra-sound and radio
communication is used for bounding the location claimed by a node, to a re-
gion. In this region, called region of interest, a set of trusted verifiers has
to exist. This scheme is robust against attackers that can not be physically
present in the region of interest. Similarly, [4] proposes a Verifiable Multilat-
eration, that also relies on the distance bounding technique. The basic idea
is to use the Time of Flight (ToF) of radio communication. Since the speed
of light can not be exceeded, the location to be verified can not be closer
than it actually is. It can only be further. However, claiming a longer distance
would require a shorter distance to an even further positioned verifier. The
main drawback is the hardware requirements (with nanosecond accuracy) im-
posed on the sensor nodes. In addition, [4] requires a relatively large number
of anchor nodes.

In order to address some of the deficiencies of SeRLoc (e.g. jamming is not
considered) and the Verifiable Multilateration (e.g., relatively high number of
anchor nodes), a new scheme is proposed in [14]. This scheme can be used for
both, location determination and location verification. The main idea is to
fully utilize the strengths of both solutions: SeRLoc’s use of sectored anten-
nas and the distance bounding properties of Verifiable Multilateration. The
deficiencies of both schemes, are still present.

The most recent effort on secure localization [5], attempts to depart from
the aforementioned, “traditional”, approaches, which require high speed hard-
ware, sectored antennas or statistics, with a limited robustness. The idea is
to use covert, hidden base stations (their position is known only to an au-
thority), in addition to the “public”, known base stations. The role of covert
base stations is to perform TDoA (between radio and ultra-sound) ranging
and verify the location computed and claimed by a node. For the effectiveness
of this solution, the covert base stations communicate with a central location
verification authority either in a wired manner or infra-red, to reduce the risk
of being detected by the attacker. The authors also propose mobile base sta-
tion assisting with the verification of location. While this direction for secure
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localization is novel, in its current form, has demanding requirements for the
infrastructure of covert base stations.

4.2 Impact of Localization on Protocols

In localization for WSN, achieving better results (usually with regard to
location accuracy) requires increasing the relative cost of the localization
scheme via additional hardware, communication overhead, or the imposition
of constraints and system requirements. Although more accurate location in-
formation is preferable, the desired level of granularity should depend on a
cost/benefit analysis of the protocols that utilize this information. In this sec-
tion, we investigate the impact of localization error on other communication
protocols and proposed sensor network applications. Designers of sensor net-
work systems with certain performance requirements can use this analysis to
aid in their architectural design and in setting system parameters. Although
requirements are expected to vary between deployments, we found that in the
general case for the protocols studied, performance degradation is moderate
and tolerable when the average localization error is less than 0.4R.

Routing Performance

A localization service is critical for location-based routing protocols such as
geographic forwarding (GF) [21], [10], [12] and [34]. In these protocols, indi-
vidual nodes make routing decisions based on knowledge of their geographic
location. While most work in location-based routing assumes perfect location
information, the fact is that erroneous location estimates are virtually impos-
sible to avoid. Problems arise as error in the location service can influence
location-based routing to choose the best next hop (the neighbor closest to
the destination), or can make a node inadvertently think that the packet could
not be routed because no neighbors are closer to the final destination.

To investigate the impact of localization error on routing, the authors of [8]
studied the GF [21] routing protocol under the low traffic network conditions
so that network congestion does not influence the results. The baseline was the
perfect localization, the protocol where every sensor node knows its correct
physical location.

Figure 16 shows the delivery ratio (the percentages of packets that reach
destination over all packets sent) with regard to node density for various levels
of location error. From this graph, we see that for average localization errors
of 0.2R and 0.4R, the delivery ratios of GF are very close to the baseline
(no error). Beyond these numbers, the results diminish with increased error;
a trend that could be problematic and costly depending on the implemented
architecture, reliability semantics, tolerance of message loss, and application
requirements. For example, when localization error is the same as the node
radio range, even with high node density (20 nodes per radio range), the
delivery ratio still falls below 60%.
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Fig. 16. Delivery ratio with different localization errors, changing node density
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Fig. 17. Path length overhead with different localization errors under varying node
density

Another metric affected by localization error is the route path length. Fig-
ure 17 measures the hop count increase (in percentage) due to location error
to assess the cost in communication overhead of this error. We see from this
graph that for low localization error (less than 0.4R), this routing overhead
remains moderate (less than 15%). However, as was the case for the delivery
ratio metric, when localization error grows beyond 0.4R, the routing overhead
increases to as high as 45%. We also note that this trend occurs regardless of
the network node density, a fact that was not true for our previous metric. We
acknowledge here that GF was chosen as a representative protocol, and an in
depth study about localization’s impact on various routing protocols and its
implications on the design of location-dependent systems is future work.

Target Estimation Performance

Many of the most frequently proposed applications for WSN utilize target po-
sition estimations for tracking, search and rescue, or other means. In these pro-
posed applications, when a target is identified, some combination of the nodes
that sensed that target report their location to a centralized node (leader or
base station). This node then performs aggregation on the received data to
estimate the actual location of the target. Because target information could
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be used for locating survivors during a disaster, or identifying an enemy’s po-
sition for strategic planning, the accuracy of this estimation is crucial to the
application that uses it.
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Fig. 18. Target estimation error with different localization errors under varying
node density

Intuitively an increase in localization error directly leads to target esti-
mation error. To better understand the degree to which this error propagates
to other protocols, the authors of [8] investigate the average estimation error
under different node densities for varying degrees of location error. For these
experiments, a simple and widely used target estimation algorithm is used:
the average X and Y coordinates of all reporting nodes are taken as the target
location estimation. The sensing range is set to be equal to the node radio
range so that the node density is equivalent to the average number of sensors
involved in target estimation. The results of various experiments are depicted
in Figure 18. This graph shows that target estimation error due to location
error is dampened during the aggregation process. As before, the baseline oc-
curs when no localization error exists. Aside from showing varying degrees
of estimation error with respect to node location error, Figure 18 also shows
that the absolute target estimation error decreases with increased node den-
sity. For example, when localization error is equal to 1.0R, and node density
reaches 12 nodes per radio range, the estimation error is only about 67% as
large as when the node density is 6 nodes per radio range. From this chart
we see that more nodes participating in estimation results in more random
estimation error being ameliorated through aggregation.

Object Tracking Performance

In [8], the authors further evaluate the performance of target estimation by
simulating a tracking application that uses estimation in context. In this ex-
periment, a mobile evader randomly walks around the specified terrain while
a pursuer attempts to catch it. In this simple experiment, the pursuer is in-
formed of the current location of the evader periodically via sensing nodes in
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the terrain that detect the evader, coordinate to estimate the targets position
with regard to their own positions, and periodically report this result to the
mobile pursuer. When receiving a report, the pursuer readjusts its direction
in an attempt to intercept the evader. When the pursuer comes within the
node communication radius of the evader, the evader is considered caught and
the simulation ends. For this experiment, the average tracking time (the time
from pursuer take-off to when the evader is caught) under different localiza-
tion errors is compared to the tracking time in the case of no localization
error. Figure 19 shows normalized tracking time in relation to the pursuer
speed for various degrees of localization error.
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Fig. 19. Normalized tracking time with different localization errors varying pursuer
speed. Terrain size 1000x1000m, Radio range = 40m, density = 8 nodes/radio range.
Evader speed = 5m/s

From Figure 19 we see that the tracking time overhead decreases with
increased pursuer speeds. More importantly, Figure 19 shows that the track-
ing time increases as localization error increases. This result implies that it is
important for tracking applications with real-time requirements to take local-
ization error into consideration. For example, when the average localization
error is known to be 0.8R, and the pursuer speed is 5 units per second, the
pursuer requires 30% more time in comparison to the ideal situation in which
no localization error exists. To reduce this overhead to 10%, either the pur-
suers speed must be increased to 10 units per second, or the estimation error
must be reduce to 0.4R. Again, Figure 19 shows that 0.4R is a tolerable bound
for estimation error since tracking time only increases by 7% in the worst case.

4.3 Impact of Environment on Localization

The problem of range-free localization is further complicated by the diverse
types of environments, where a WSN system can be deployed. Outdoor, real
deployment environments very little resemble typical lab environments. Hence,
issues like calibration, mobility (if nodes are “moved” by the environment, or
the WSN is designed to be mobile), the lack of line-of-sight, the existence of
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obstructions and multipath effects often arise in realistic, outdoor environ-
ments.

Some preliminary work on the aforementioned issues are the following:

Calibration

Whitehouse formulates the calibration problem in WSN as a parameter es-
timation problem [33]. Each device in the WSN is parameterized and the
values of the parameters are chosen such that the system performance is max-
imized (higher accuracy in location estimation). The author propose a macro-
calibration procedure, called joint-calibration, that calibrates each device, by
optimizing the overall system performance, instead of individual nodes. The
steps of the joint calibration are the following:

1. Model the overall system, by using individual, device specific parameters.
2. Collection data.
3. Tune the parameters of individual devices, such that the overall system

performance is improved.

The key insight into how to choose parameters to be tuned, such that
the overall system performance improves is to look at trends in the transmit-
ter/receiver pairs, and identify individual nodes for which the chosen parame-
ters are problematic.

The proposed joint calibration is a good solution where manual calibra-
tion is possible. Obviously, in rugged, remote outdoor environments, auto-
calibration (i.e., no manual intervention) is highly desirable.

Mobility

Hu and Evans [9] propose a sequential Monte-Carlo (SMC) localization algo-
rithm for WSN in which sensor nodes and anchors are all mobile. The authors
show that mobility can be used to enhance localization accuracy, a rather
counterintuitive result - one would expect to be a significant impediment for
an accurate positioning.

The proposed algorithm is an adaptation of the Sequential Monte Carlo
localization scheme, frequently used in robot localization, target tracking and
computer vision, to the domain of WSN. The main idea of the SMC localiza-
tion algorithm is to represent the posterior distribution of possible locations
using a set of weighted samples and to update them recursively in time.

From simulations of a 10Rx10R WSN, with an average number of nodes
per transmission range of 10, the authors report localization errors of ap-
proximately 0.5R, when both sensor nodes and anchors move at a speed of
R meters/sec. The localization error starts from high values (1.9R) and de-
creases rapidly, with the accumulation of new observations (nodes entering
the ranges of new anchor nodes).
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Line-of-Sight and Multipath

Real, outdoor environments pose significant challenges for range-free localiza-
tion. Localization schemes designed and evaluated in “friendly” environments
frequently fail to produce encouraging results in real deployments. When line-
of-sight is a main assumption of the scheme [30], and does not always hold,
or when obstructions and multipath for acoustic and radio waves are not
considered [35], the performance of the localization scheme is degraded.

In order to address this, a potential direction to pursue is multimodal
localization. In a multimodal localization system, more than one localization
scheme is executed, in an attempt to reduce the impact the assumptions of a
single localization scheme could have on the overall localization accuracy. By
using Bayesian inference, and the knowledge (even if partial) obtained during
the execution of one localization scheme, a finer, more accurate positioning
can be obtained from the execution of subsequent localization schemes. For
example, if a WSN is localized using the Line Scan scheme of the Spotlight
system, described before, and due to some environmental conditions one of the
two events created in the network is not detected (the Spotlight localization
scheme fails to produce a location in this case), the knowledge gained from the
detection of the other event can be used to initialize a subsequently executed
localization scheme.

5 Conclusions

In this chapter we presented a suite of range-free localization schemes for
WSN. We define ranging, in the context of sensor networks, as the ability of
a sensor node to infer distances to its neighbor sensor nodes, either through
localization specific hardware (e.g., ultrasound transceivers) or the strength
of the received radio signal. Hence, the localization schemes presented here
(i.e., range-free schemes) do not posses sophisticated hardware and do not
rely on the received signal strength for inter-node ranging. The sensor nodes
we consider have simple radio communication and sensing capabilities.

The taxonomy that we adopt for categorizing the range-free localization
schemes is based on the (non)existence of an infrastructure of anchor nodes
(i.e., at least three nodes, for a 2D localization, with known locations) in the
WSN. An anchor-free localization scheme exploits the proximity to an event
with a known location: a light event in Spotlight [30] and Lighthouse [24] and
a nearby radio packet in Walking GPS [29].

One main observation is the high accuracy in localization of the anchor-
free, event based, localization schemes, at a reduced, per node, cost. It is
remarkable to obtain location accuracies of tens of centimeters, at zero dollar
cost (if the sensor node is equipped with a photo sensor for the mission it was
deployed for) and relatively low communication overhead (reduced energy
cost). Characteristic to the anchor-free localization schemes, is the moving of
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the complexities associated with the localization from the sensor node to a
capable, sophisticated device. While the cost of such device is not negligible,
the possibility of its reuse make the event-based, anchor-free solutions very
attractive. The anchor-free, event based, class of localization schemes seems
a very promising direction for high accuracy, low cost localization in WSN.

Despite the extensive attention the range-free localization has received,
several open problems remain. Among these are how to secure the radio
communication and sensing channels that sensor nodes posses, how to make
range-free localization more robust against attacks, node or protocol failures
(possibly due to its strict assumptions), understand the impact of localiza-
tion schemes on other protocols and how to design more robust, cost efficient,
calibration techniques. The breadth and depth of all these issues present in-
teresting opportunities for future research in the domain of range-free node
localization in WSN.
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