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ABSTRACT
Depression is a major health issue affecting over 21 million
American adults that often goes untreated, and even when
undergoing treatment it is hard to monitor the effectiveness
of the treatment. To address these issues, we have created a
real-time depression monitoring system for the home. This
system runs 24/7 and can potentially detect the early signs
of a depression episode, as well track progress managing a
depressive illness. A cohesive set of integrated wireless sen-
sors, a touch screen station, mobile device, and associated
software deliver the above capabilities. The data collected
are multi-modal, spanning a number of different behavioral
domains including sleep, weight, activities of daily living,
and speech prosody. The reports generated by this aggre-
gated data across multiple behavioral domains are aimed
to provide caregivers with more accurate and thorough in-
formation about the client’s current functioning, thus help-
ing in their diagnostic assessment and therapeutic treatment
planning as well for patients in the management and track-
ing of their symptoms. We present data of a case study
showing the value of the system, deployed over a period of
two weeks in a home during a depressive episode. Larger
scale studies are planned for the future.
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1. INTRODUCTION
Depression is a major health issue that affects over 21

million American men and women each year. Depression of-
ten goes unrecognized and untreated, and even once treat-
ment begins it is often difficult to monitor its effectiveness.
This poses particular challenges for the diagnosis and treat-
ment of depression, particularly for those who avoid visit-
ing a doctor or therapist due to social stigmas or a lack
of energy. Currently, depression diagnosis is often based
on subjective screening questionnaires or structured clini-
cal interviews that rely on timely in-person visits as well as
accurate recollections by the patient. This makes early de-
tection of depression symptoms exceedingly difficult among
this population. Yet early detection and treatment of this
debilitating disorder has been shown to improve patient out-
comes considerably. Along with depression’s detrimental
affect on mood, it can lead to other associated problems
because of reduced social interactions, decrease in personal
hygiene, increased alcohol use, and neglect of medications
for current medical conditions. Assessment and treatment
are often hampered by a lack objective data to corroborate
patients’ retroactive self-reports about their current func-
tioning; hence an objective symptom-monitoring tool could
complement subject self-report measurement and enhance
diagnostic accuracy.

Depression has several behavioral and psychosomatic man-
ifestations [24, 22]. Independently, each has been studied
and is well-documented in clinical research as well as in
the widely used Diagnostic and Statistical Manual of Men-
tal Disorders (DSM IV) [2]. For example, severe forms
of depression have been shown to affect individuals’ vocal
prosody. Frequently, depressive episodes affect sleeping pat-
terns, leading to increased or decreased sleep duration as
well as diminished sleep quality (with frequent bouts of wak-
ing in the night, more restlessness during sleep, etc.) De-
pressive episodes are also commonly characterized by lack
of social interaction and signs of anhedonia, i.e. the lack of
pleasure in doing things one previously enjoyed and the with-
drawal from one’s usual activities of daily living. Appetite
changes and resulting weight gain and loss are another com-
monly observed symptom and a DSM criterion for depres-
sion. Behavioral changes associated with depression onset
also include reduction in gross motor activity and slowing of
gait. Each of these components, on their own, do not give
caretakers a complete picture of an individual’s condition,
since depression is syndromatic. Observing the combination
of several behavioral markers can aid in the correct classifi-



cation of the overall phenomenon as depression and in the
prevention of false positives. We believe that by monitoring
several factors together, and taking advantage of systematic
temporal patterns of change across different behavioral do-
mains, we can help clinicians to predict and reliably detect
the onset of depression. To address this aim, we propose
a 24/7 depression-monitoring product for in-home sensing,
ideal for use in single-person homes. This product can aid
in detecting the early signs of depression and can provide
information about the effectiveness of any treatment. The
end result could be improved quality of life and possible im-
provement of other medical conditions and problems caused
by or related to depression. Additional goals are to min-
imize deployment cost and to make the system as passive
and unintrusive as possible, to enable greater user adoption.
The contributions of this paper include: 1) presentation of

an emotional health monitoring system installed in a home
that can recognize danger signs for a depressive episode by
combining objective measures such as activities and motion,
speech prosody, sleep quality, and weight monitoring with
subjective measures; 2) an integrated a set of user interfaces
for patients and caregivers; 3) system installed and real data
collected from an apartment and the results are presented
to show the value of the system.
The remainder of the paper is organized as follows: Sec-

tion 2 summarizes existing in-home health monitoring so-
lutions. In Section 3 we present the Empath system and
discuss the implementation of each component. In Section
4 we present results from a two week deployment collecting
real data and perform controlled experiments on the sleep
and speech to test specific problems. We conclude in Section
5.

2. RELATEDWORK
We have seen an emergence of research into wireless sen-

sor networks and smart environments for remote-monitoring
for health-care [15] applications. At-home and mobile ag-
ing applications have been proposed to detect the cognitive,
physical, and social changes that occur in the elderly that
challenge their health [28]. Wireless networked sensors em-
bedded in people’s living spaces or carried on a person can
collect objective information about behavioral patterns in
real-time [27, 26]. Systems have been introduced to deal
with quality of patient care, in particular for the impending
worldwide“silver tsunami”where the aging population could
overload the capacity of current hospitals. It is economically
and socially advantageous to reduce burden of hospitals by
enhancing prevention and early detection so people can stay
at home for as long as possible. A few systems have been
developed for this purpose, one example is AlarmNet [28],
and assisted living and residential monitoring network for
pervasive adaptive health-care using an extensible and het-
erogeneous architecture. Intel Research Seattle and Univer-
sity of Washington have built a system to infer activities of
daily living (ADLs) using sensor tags placed on everyday
objects such as toothbrushes and coffee cups. Their goal is
to create an unobtrusive system to help manage ADLs for
the senior population [19]. University of Rochester has built
a five-room house outfitted with infrared sensors, comput-
ers, bio-sensors, and video cameras as they test concepts and
prototype products. Georgia Tech built an Aware Home [14]
as a prototype of an “intelligent space” combining context-
aware and ubiquitous sensing, computer vision-based mon-

itoring, and acoustic tracking for ubiquitous computing of
everyday activities. MIT is working on their PlaceLab [12]
initiative, which is a part of the House n project, a one-
bedroom condominium with hundreds of sensors installed in
nearly every part of the house. Oregon State presented a
technique for monitoring motor activity as a means of pre-
dicting cognitive changes in the elderly. It is able to detect
both acute and gradual changes that may indicate the need
for medical intervention [8]. There has been much focused
research to improve ADL detection accuracy [26, 13].

The Quantified Self is a guiding principle that posits that
a person should be an active participant in managing their
own health and lifestyle through self-experimentation. Sev-
eral sensor devices have been used for this purpose that col-
lect data about a person’s exercise, diet, and vital signs
(blood pressure, resting heart rate) to give the, valuable
feedback about their efforts to maintain a positive lifestyle.
A few systems target emotional wellness. For instance, the
Optimism App [16] is an application for both the desktop
and mobile platforms that logs self-reported mood as well
as medication use, exercise, and sleep quality. These mood
charts have been recommended by psychiatrists and thera-
pists as tools for their clients to use in monitoring their own
mental health. A group from Digital Ecosystems and Busi-
ness Intelligence Institute is working to integrate different
kinds of patient data such as daily activities, bodily func-
tions and emotions, as well as mental-health data reported
by therapists, all of which is collected and collectively mined
to reveal interesting patterns [6]. Researchers at the Rhode
Island Hospital have developed a telemedicine-based depres-
sion protocol using simple display in-home healthcare, with
pilot studies showing that it could improve geriatric depres-
sion [23]. The subjects in the study were favorable to the
technology, reporting that the frequent checks from the dis-
play were reassuring and helped them to better understand
their condition.

A project most related to depression monitoring was done
by MIT and Mass General Hospital using their LiveNet sys-
tem [25]. Subjects wore mobile physiologic sensing technol-
ogy to track depression symptoms over time and to measure
objective measures of depression. The patient pool came
from psych wards and the technology was used to validate
whether electro-convulsive therapy (ECT) was having posi-
tive effects on patients’ depressive state. The measured data
included skin conductance response, heart rate variability,
movements, and vocal characteristics.

To our knowledge, there has been no system yet that has
been implemented to provide continuous emotional moni-
toring in the home by combining objective symptomatic be-
havioral factors with the subjective factors. Continuous and
daily self-report instruments such as Optimism go a long way
toward mitigating self-reflection errors but do not incorpo-
rate enough potential factors that could be useful for episode
monitoring such as speech, sleep, weight, and movement.
Although LiveNet is able to collect similar behavioral fea-
tures, it requires costly and cumbersome mobile equipment,
and not designed to be deployed in the home. In addition,
it did not track bodyweight and subjective measures which
are important factors for depression.
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Figure 1: The communications architecture provides
a reliable system for collecting data from the pa-
tient’s apartment and uploading to a webserver for
processing. Behavioral measures can be delivered to
caregivers or patients on a variety of platforms.

3. EMPATH PLATFORM
We implemented an integrated system of sensors and anal-

ysis code called Empath, an abbreviation for Emotional Mon-
itoring for PATHology. Each module of the system addresses
the factors listed among the DSM-IV criteria for depression
as well as other factors identified in the depression literature.

3.1 System Architecture
When designing Empath, we considered the potential of

scaling the system for multiple home deployments with var-
ious stakeholders such as caregivers (therapists, physicians,
family) and patients needing access to the data, therefore a
federated architecture with a single webserver and database
was chosen. The communication infrastructure is presented
in Figure 1. Each of the data collection modules (speech,
activity, and sleep) archives its data locally. The synchro-
nization client is responsible for connecting to the server
and resolving disconnections with periodic retries. If any
new data has been generated since disconnection, the new
data are bundled and sent to the server. The webserver acts
as a mediating layer between the sensing and user interfaces
to the backend MySQL database.
The behavior analysis routines run on the server. Each

module (sleep, weight, movement, etc) are programmed to
activate at various intervals such as daily, weekly, or bi-
weekly. All processing occurs on data stored in the database
tables, which is processed into statistics or factor scores
which then stored into different tables. Figure 2 shows the
details of this process.

3.2 Sleep Monitoring
A number of clinical studies have found that depression

results in disruptions in sleep patterns. Three sleep pattern
abnormalities have been well documented in depressed pa-
tients [7]: sleep continuity problems such as difficulty falling
asleep or staying asleep or waking up early, decreased slow-
wave delta sleep, and alterations in the nature and timing
of Rapid Eye Movement (REM) sleep. These abnormalities
are present in about 80% of people with major depression,
and hence shows the importance of monitoring sleep.
To measure the quality of sleep, there are self-report ques-
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Figure 2: Each module is responsible for processing
lower level data to high-level knowledge at defined
intervals. The behavioral factors can be combined
to arrive at a global depression risk index.

tionnaires such as the Pittsburgh Sleep Quality Index (PSQI)
[4]. However, studies have shown that subjects with insom-
nia are not accurate in their subjective report of variables
such as sleep latency, sleep duration, and the number of dis-
turbances. Therefore, there is a need for objective instru-
ments that can measure sleep quality where the subjective
ratings fail. However to date, there are few low-cost and un-
obtrusive sleep monitoring systems. The most accurate in-
struments are polysomnography devices, but there are major
drawbacks to using them since they need to be worn, require
monitoring in a sleep lab, and need specialists to analyze the
data. Therefore, they are expensive to use and not feasible
in home environments. The actigraph is an accelerometer
device that can be attached to any of the limbs (e.g. wrist,
legs) to provide data on movement, however they still need
to be worn. The Zeo is a headband that measures electri-
cal signals on the skin of the scalp to estimate the stage
in sleep, however they need to be worn and their accuracy
has not been thoroughly evaluated. There are new research
into various types of unobtrusive sleep monitoring solutions
[20]. In our previous work [11], we have shown how WISP
tags, active RFID devices with accelerometers, can be used
to detect motions in the bed for measuring restlessness and
potentially the quality of sleep. But to date, the RFID re-
ceiver device (which is placed under the bed) is too costly
($600 each), so we decided not to use our WISP solution.

To detect sleep cheaply and non-invasively, we built a cus-
tom solution using the Synapse SNAPpy RF motes for wire-
lessly transmitting data. We attached three independent tri-
axis accelerometers to the mote as shown in Figure 3 and
they are sampled at 1 Hz. Data is processed on the client
PC which determines the amount of deflection since the last
sample. Since the accelerometers roughly indicate the force
due to gravity as a vector, we use the dot product of the last
sampled vector with the new to determine the amount of de-
flection since the last sampling. If that deflection exceeds a
threshold (we used 3◦ based on controlled experiments for
this particular mattress) a movement event has occurred.
The advantage of this approach is that the true orientation
of the accelerometer does not have to be established to mea-
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Figure 3: The sleeping monitoring setup. Three tri-
axis accelerometers are taped onto the mattress and
connected to a wireless Synapse mote.
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Figure 4: The discrete bed movements are processed
by a multi-stage filter to discover the duration of
sleeping and the number of interruptions. When
other sensors fire (such as a toilet), an interruption
has been created inside the sleeping segment.

sure movements, which allows us to do detection without
calibration and it allows continued operation even when the
sensors may have been knocked out of place. Since we only
store events and not raw measurements, we can eliminate
noise and lower the amount of storage required.
The next stage of the sleep analysis is to convert the dis-

crete bed movements to sleeping activity segments. The
process is illustrated in Figure 4. The first stage of the algo-
rithm performs segmentation on the movement data using
a rule that a sleeping segment will have at least ten move-
ments and lasts for at least 20 minutes. Although the thresh-
olds are contrived, this method performs well for eliminating
noise such as if the user touches or lays something on the
bed. The next stage joins possible segments together if no
other sensors in the apartment fired such as a refrigerator,
toilet, etc. The assumption, at least for single person homes,
is that if no other sensors fire, you can assume the patient
is still on the bed. Restlessness can also be recorded by
the number of discrete movement events during a sleeping
activity segment. More studies need to be done to corre-
late bed movements with sleeping quality, but should come
correlation exist, it could be important for depression.
We created the following scoring strategy for calculating

the sleeping factor. The parameters were chosen to match
similar components used on the PSQI exam [4]. The follow-

ing are determined and summed to get a score between 0
and 9:

1. Terminal insomnia - getting up early in the morning
(>7AM=0 pts;6-7AM=1 pt;5-6AM=2;<5AM=3 pts).

2. Interruptions - if time taking an interruption is 1 hr
or over, +3pts.

3. Sleep Duration - (>7 hrs=0 pts;6-7 hrs=1 pt;5-6 hrs=2
pts;<5 hours=3 pts)

3.3 Weight Monitoring
Weight measurements are taken by the Withings WIFI

bodyweight scale. When a reading is taken, the data is
uploaded using WIFI to the Withings webserver. When our
weight module needs to evaluate changes in bodyweight, it
polls the Withings server for new data using the WS-API
web interface. The weight monitoring module uses the past
two weeks of historical weight data to detect any significant
weight gain or loss. Guided by the DSM criterion, if the
patient’s bodyweight has changed at least 5% in the past two
weeks, it could be a sign of appetite changes and depression.
If no new measurements have been taken for a week, an alert
appears on the patient’s touch-screen device. The following
scoring system is used for the weight factor : 0 pts - within
5% of body weight, 1 pt - 5% gained or lost, 2 pts - over
10% of body weight gained or lost.

3.4 Speech Analysis
Acoustic features of voice such as pitch, utterance dura-

tion, and speech pause time have been shown in previous
studies to detect the severity of depression [10, 18, 1, 5].
However, these studies were done in controlled environments
under the oversight of speech pathology experts analyzing
the patient’s voice at a fixed distance from a microphone.
The challenge is to incorporate speech monitoring to work
at real-time in natural home settings. Our solution, uses a
microphone attached to the patient’s touchscreen device. A
prompt appears on the screen telling the patient to give a
free response to the question “How was your day today?”.
Speech segments are recorded at 44.1K sampling rate mono
channel and only taken when the input exceeds the silence
threshold and simple filters are used to remove noise. Pitch
contours are generated from the signal using a pitch detec-
tion algorithm (PDA) [17] implemented in the Edinburgh
Speech Tools (EST) Library. It is important to note that
the fundamental frequency in speech cannot determined as
simply as taking a DFT since the pitch requires estimat-
ing the missing fundamental. Human perception of pitch is
more determined by the ratio of the ascending harmonics.
The fundamental frequency for male voices fall within 60-
200 Hz and females 120-400 Hz. The standard deviation on
the pitch contour is used to infer the amount of vocal in-
flection. The speech pause time, the silent interval between
phonations, were estimated by the duration of silence be-
tween successive pitch contours. Large gaps (greater than
1s) were not used in the calculation. Once the statistics are
computed, they are uploaded from the client to the server.
The original file can be kept on the client PC or deleted
if privacy is a concern. There is a challenge to compute a
speech factor score since the relationship between mood and
speech characteristics seem to be dependent on a particular
person. We use multi-variate linear regression model to fit



the self report mood to the speech features. Once those pa-
rameters can be found, then the speech monitoring can be
done automatically.

3.5 Activity Detection
We used X10 PIR motion detectors and door/window con-

tact reed switches (DS10A) for basic activity detection. On
the client PC, a W800RF32A antenna receives the X10 pack-
ets, and sends it by a serial port to the PC. We built our own
driver for parsing the X10 packets. X10 devices do not guar-
antee reliable communication, instead, they will send five
duplicate packets in series when a sensor fires. Each packet
contains byte-compliment pairs. If at least one packet gets
through to the receiver, then a packet delivery ratio can be
computed. We found that poor packet delivery ratio can
be a result of poor antenna range and obstructions such as
walls. Parity check errors occur from two devices sending
messages at the same time. The solution to this problem is
to move the sensors farther apart.
We use activity detection to detect symptoms that are

related to loss of energy or anhedonia and social isolation.
In particular, Empath examines two factors that are linked
to depression 1) home occupancy and 2) movement levels.

3.5.1 Home Occupancy and Movement Level
Depression can express itself in anhedonia or by social iso-

lation. In this case, patients will leave their homes less often
than normal. We measure the percentage of time spent in
the home versus away, and monitor for anomalies in this
pattern. Many things can contribute to this factor chang-
ing and it is sensitive to false positives such as 1) going on
a vacation 2) medical problems (cold, broken leg) and 3)
weekend and weekday work schedules.
We use a simple algorithm to predict the time the patient

was in their home. The basic principle is that segmenta-
tion of periods where people are inside or outside of their
homes should occur when a front door sensor fires. In our
deployment, this is the only portal through which someone
could enter or leave the apartment. However, each time the
door opened the patient did not necessarily enter or leave
their home since they can open the door to let a breeze in
or more light in. Next, each segment is labelled as occupied
or not occupied by using the other X10 devices in the home
(kitchen sensors, bathroom, etc). If the sum of events ex-
ceeds a threshold, the segment is labelled as home occupied.
This simple approach works sufficiently well, however it has
a single point of failure- the front door sensor. If the sensor
malfunctions, the system cannot define crisp boundaries for
home occupancy, and instead would have to rely on cluster-
ing of other activities to estimate occupancy. We suggest
having double redundancy on front door sensors to improve
reliability.
A score from 0 to 3 is generated for the social isolation

score, and one point is given for each increase in time spent
at home by one standard deviation. Next, the movement
factor is computed from the number of sensor firings that
go off in a day. We scale the activity level to the amount of
time spent in the home.

3.5.2 Activities of Daily Living
Activities of daily living are logged for future reference,

but not used yet for any calculations of factors since mis-
classification levels are too high and the challenge of deter-

Figure 5: Two user interfaces were created for the
patients. The touchscreen administers the CES-D
exam and the iPhone runs an App that does fre-
quent experiential sampling of mood.

mining anomalies has not been solved yet. Activities that
can be monitored include 1) cooking 2) hygiene and 3) clean-
ing. We differentiate two types of cooking: preparing light
meals and snacks, to preparing more complex meals. Con-
tact switches are placed on the microwave, the oven, and the
cabinets (spice and sauces), the refrigerator, and the freezer.
Our simple recognition algorithm detects the opening of the
spice cabinet or the use of the oven and stove as being a
complex meal. Using the microwave or the freezer without
the previous mentioned sensors, it is considered a light meal.
Detecting whether someone is eating out, or not eating at all
is challenging, and cannot be easily determined using our ac-
tivity recognition system. This is why augmenting the ADL
data with a bodyweight scale is important. For hygiene, we
detect showering, using the bathroom sink, opening clean-
ing closets, and opening the trash lid. A motion sensor was
placed in the shower unit and over the sink, and contact
sensors are placed between the trash can and the lid and
storage cabinets.

3.6 Patient Display and Subjective Scores
The patient interface shown in Figure 5 runs on a touch-

screen inside the patient’s apartment. Its primary purpose
is to receive continuous subjective scores from the items in
the CES-D [21] exam. The test is available at all times, but
encouraged to be taken once a week. The exam consists
of 20-items, where each item is scored on a scale from 0-3
points. The sum of these items are used to predict the sever-
ity of the episode. A score of 15-21 might suggest mild to
moderate depression and over 21 a possibility of major de-
pression. The implementation is was built with Adobe AIR
2, which connects to the server and transmits the scores
through an XML protocol. Notifications and alerts can be
sent from the server to the patient that appear on the screen.
Some examples of alerts include: reminders to check body
weight on the scale and to complete a late CES-D exam. We
plan on expanding the touchscreen’s capabilities to serve as
a mood coach, social planner, and mood journal. Personal
behavioral factors similar to the caregiver is presented to
patient for positive feedback.

We created an iPhone application (shown on the right in
Figure 5)using the iOS 4.3 SDK that serves as an input de-
vice for instantaneous mood measurements. The patient to



Figure 6: The caregiver display shows an overview of
attending patients and a breakdown of their objec-
tive and subjective measurements. More data can
be “drilled down” by selecting a factor, which then
a time plot or table is shown.

input instantaneous mood on a 1-10 ladder on the contin-
uum of extreme depressed to extreme elevated mood. We
created this mobile interface so that the patient does not
necessarily need to be in his or her home to input data into
the system. This experiential sampling approach [9] is use-
ful for collecting instantaneous measurements. The iPhone’s
local notifications can be enabled to alert the patient when a
new measurement is recommended. The application’s capa-
bilities can be expanded in the future to record other types
of emotions, such as levels of anxiety or irritability which
are also typically experienced during depression.

3.7 Caregiver Display
We developed a user interface especially for caregivers

such as therapists, nurses, or doctors. The caregiver’s screen
is shown in Figure 6. The caregiver’s list of attending pa-
tients are presented with an overview of their depression
risk factor. When a patient is selected, a summary of the
current behavioral factors: sleeping quality, social isolation,
CES-D score, weight, movement levels, and speech analysis
are presented as a bar graph. Each factor is represented on
a scale (from green to red) representing the risk for a par-
ticular factor. When the caregiver selects the factor, a new
view appears either with a time-series plot or table show-
ing detailed information. For instance, when the CES-D is
selected, historical tests and items can be individually eval-
uated. For sleep, detailed statistics can be shown such as
bed time, number of interruptions, and sleep durations. To
put each patient’s history in context and to see if a patient
is improving, annotations can be added to the display indi-
cating when a patient started new therapy or medication.
This system does not perform diagnosis, rather it exposes
all the factors in a presentable way to improve diagnosis.

4. DEPRESSION CASE STUDY
In this section, we present a case study of the Empath

system deployed in a real apartment over a period of 14 days.

In Out Roll

2
4

6
8

10
12

Deflection Angle and Movement Classes

M
ax

D
efl

ec
ti
on

A
n
gl
e

Figure 7: The maximum deflection angles for the
actions: getting in the bed, out of the bed, or rolling
from side to side.

The following results are not meant to make any scientific
claims or prove any medical hypotheses, however it shows
an example of the system in operation and how it is able
to collect data about a depressive episode continuously in
the home. The subject who volunteered for this study has
had a history of depressive illness and during the period of
data collection, scored a 30 and 37 on the CES-D indicating
moderate to severe depressive symptoms. During the case
study, the subject was not undergoing any medications or
undergoing any form of therapy.

It took less than one hour to install Empath in the sub-
ject’s home. X10 devices were attached to the stove, freezer,
refrigerator, kitchen sink, microwave, spice cabinet, plate
cabinet, glasses and cups cabinet, front door, cleaning closet,
medicinal closet, bathroom sink, trash can, wardrobe closet,
and shower. The weight scale was placed on the floor of
the bathroom. A PC with the client software was placed in
the living room. The total cost of the system excluding the
laptop and phone is less than $500.

The subject used the iPhone App to record his mood
twice daily. Due to the diurnal variation of symptoms dur-
ing depression, these measurements can vary greatly. We
took measurements more frequently than would be typically
needed by a patient using Empath. But the high-granularity
of data is useful for comparing against the objective factors.

4.1 Sleep Analysis

4.1.1 Controlled Experiment
From initial testing, we discovered that the placement of

the accelerometers on the bed must carefully be considered.
We tried different options, starting with placing them on
the rim of sides of the mattress. This worked well for de-
tecting when the user entered and left the bed, it could not
capture rolling around. The final configuration chosen was
to place two accelerometers on the sides of the mattress in-
set about one foot. The third accelerometer was tested at
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Figure 8: The number of movements needed for each
action were compared across groups.

various places, and we decided to place it under the pillow.
Detecting feet moving would be useful, however the weight
from the feet were not heavy enough to depress the mattress.
We performed the following experiment to test the bed

sensors, and to investigate whether the accelerometers on
their own can recognize different types of movements pro-
duced relating to sleep. The mattress tested was a Serta
posturepedic twin-size mattress and the sheets were placed
on top of the accelerometers. The subject remarked that she
could not feel the accelerometers when lying on the bed.
The subject performed the following rolling movements

five times each: rolling right, to the center, rolling left, and
back to the center. Additionally, we tested getting in and
out of the bed. Five times each, the subject entered the
bed to the left, then to the right, and five times each again
the subject got out of the bed on the left and the right.
When measuring the maximum deflection angle of the series
of movements, we see in Figure 7 that getting into the bed
produced the greatest deflection angle. As expected, rolling
on the bed produced a lower deflection angle. We ran a one-
sided T-test that the mean deflection angle of rolling in bed
is less than getting out of the bed with a resulting value of
p<0.001. From the following data, it suggests that threshold
boundaries such as one standard deviation from the mean
can be set between class types. We decided to investigate
whether the number of movements can be used to tell the
difference between the same class types. We found that one
roll in the bed produced fewer movements than getting into
the bed and getting out of the bed as shown in Figure 8.
Getting out of the bed produced the most amount of move-
ments since this action requires several steps such as pushing
oneself into a seated position, then placing the legs on the
floor and finally exiting the bed. The problem with using
the number of movements as a feature is that multiple rolls
could be confused with getting into and out of the bed. Since
our deployment has multiple sensors, we decided to use the
algorithm described earlier for determining the sleep periods
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Figure 9: For 13 days, the duration of sleep, number
of interruptions, and the time spent for each inter-
ruption were recorded. The sleep rating score was
computed and compared against the mood.

Estimate Std. Error t value Pr(>|t|)
intercept -0.26398 0.78950 -0.33 0.7439
µ(F0) -0.01203 0.00917 -1.31 0.2141
σ(F0) 0.02561 0.01528 1.68 0.1196
µ(SPT ) -0.33934 0.09636 -3.52 0.0042
σ(SPT ) 0.36225 0.27552 1.31 0.2131

Table 1: A linear model of speech features were fit to
the subjective self-report mood using multi-variate
linear regression. For this subject, the mean speech
pause time was the strongest indicator variable for
the mood.

and interruptions. From this study, we show that using only
accelerometer data from the bed motion we can get similar
accuracy than using an entirely instrumented apartment.

4.1.2 Case Study
Each morning, the subject reported his subjective rating

of the previous night’s rest as being good or poor. Figure 9
shows the sleep quality rating and mood for each night. We
inverted the sleep score by taking the difference from 9, since
we wanted to present in the graph poor sleep quality with a
lower number. The nights where the subject responded that
his sleep was poor were on days 2, 3, and 10, which appears
to correlate with our sleep quality index. The graph suggests
that for this subject, the previous day’s mood highly affects
the sleeping quality that night.

These results show how Empath’s sleep monitoring solu-
tion can approximate sleep quality with some degree of ac-
curacy. However, one challenging problem we aim to solve,
is determining the sleep efficiency, the amount of time spent
in bed attempting to sleep rather than actually sleeping. We
plan to run studies showing the relationship between actual
sleep times and bed motion.

4.2 Speech Analysis

4.2.1 Deployment Analysis
For each day, two speech samples were taken once in the



Figure 10: The vocal modulation of speech (stan-
dard deviation) using the pitch detection algorithm
for each of the ten speakers in the EmoDb dataset.

morning and once at night roughly when the self-report
scores were collected on the iPhone App. The following
prompts were used to guide the subject’s response: for the
morning sample, the subject discussed what he had planned
for the day, and during the evening the subject discussed
what he had done that day. Extracting speech samples in
this manner have several advantages: 1) the microphone
was only inches from the subject gave high quality record-
ings and no voice discrimination was necessary. 2) the free
responses were generally 1-2 minutes long which gave us a
long sample to do the analysis more accurately.
We use the iPhone self-report measure as our dependent

variable and fit the following linear function:

mood = β0 + β1µ(F0) + β2σ(Fo) + β3µ(SPT ) + β4σ(SPT )

The parameters of the speech samples considering funda-
mental frequency (F0) and speech pause time (SPT) with a
subjective mood are shown in Table 1. The model fit the
data extremely well with a residual error of 0.0916 on 12
degrees of freedom (p<0.011).

4.2.2 Dataset Analysis
Next, we decided to test if this approach would work

with a larger set of speakers. We tested the speech com-
ponent against a known public dataset, the Berlin Database
of Emotional Speech (EmoDB) [3]. This database contains
emotional utterances that were spoken by actors and each
sample were evaluated using perception tests by others to
determine their naturalness. There were five male and five
female speakers, and each said the same ten different ut-
terances with varied emotions. We used the data labelled
happy, sad, and neutral.
Each of the ten utterances in each mood group were con-

catenated together to form a long running instance. We
run the feature extraction algorithm from Empath on these
waveforms to determine the frequency curves. The modula-
tion of fundamental frequencies for neutral, sad, and happy
data for each of the ten speakers are plotted in Figure 10.
Each of the speakers showed a decrease in the level of mod-
ulation in their voice as the affect went from happy to sad.

Figure 11: The speech pause time for each of the
ten speakers in the EmoDb dataset.

Figure 12: Body weight measurements were taken
over a period of three months, and the stay-
ing within healthy limits (within upper and lower
bounds)

Those with the higher variation across groups were the fe-
males (speakers 2, 3, 7, 8, and 10). Speech pause time how-
ever did not always yield significant difference between the
classification types. It can be a discerning factor for some
speakers, and not for others. It is is clear that both variables
are important to help predict affect in the voice.

4.3 Weight Monitoring
For three months the subject took his weight at various in-

tervals as shown in Figure 12. Every two weeks the evaluator
created new upper and lower limits for the weight using the
historical information from the last evaluation time. For the
period of evaluation, the subject remained within 5% of his
body weight in each of the two week intervals, and thus the
weight gain/loss risk factor was zero across the experiment
time. The weight monitoring solution is not yet resilient to
planned changes in body weight such as starting a new diet
or weight training.
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Figure 13: For 11 days, the number of hours spent
away from home were recorded.
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Figure 14: For 11 days, the number of movements
detected in the home were normalized to the time
spent in the home.

4.4 Apartment Occupancy
The occupancy detection algorithm was used on 11 days

worth of data. Figure 13 shows for each of the 11 days
the amount of time spent away (vacant) each day. For this
particular dataset, we found no relationship between mood
and time spent away from the home, by running an ANOVA
on the linear relationship between mood and duration. The
assumption here is that higher levels of vacancy correlate to
less social isolation. There are complications to this measure
as if the subject stays at home, but receives visitors, the
factor will be lower than it should be. In addition, times
spent on vacation can produces errors in this estimation.
We see that this is where other factors are important in this
measure.

4.5 Motion Levels
For each day, we recorded the number of sensor firings in

the home to give us a gross estimate of the amount of motion
and activities occurring in the home. Those who stay still,
and therefore do not interact with many devices, and will
receive a lower movement factor. We realized that the num-
ber of firings do not give us an fair measure of the activity

level, since a person who scurries about their apartment for
a few hours would receive a lower score than someone who
spent the entire day in the apartment but spending most of
the time on the couch. So we normalized the score based
on the apartment occupancy times. Figure 14 shows the
results of producing this factor against the reported mood.
The sixth day was the most active for the participant, since
day was spent cleaning the apartment. We ran an ANOVA
on the linear model again to find a relationship between the
movement factor and mood levels, but no significance were
found. This method gives us an approximation of energy
levels, that may correlated heavily to psychomotor retarda-
tion that depressed individuals experience.

4.6 Depression Index and Integration
We use various factors together for arriving at a depression

risk index. People exhibit depression in different ways, so
relying on single measures is not accurate. In this case study,
for instance, the speech factor and sleeping factors were most
highly indicative of depression, while the weight, movement,
and isolation were within healthy limits. The depression
index is a weighted sum of various subcomponents, however
should any of the subfactors be in extremely high risk, the
depression index should be elevated to a high level. Studies
on the population need to be run first to make decisions on
the weighting factors.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we presented Empath, a continuous moni-

toring system for the home that can collect continuous ob-
jective and self-report measurements concerning mood and
factors linked to depression.

We have shown through controlled studies that the sleep
monitoring solution can accurately measure sleeping data,
and could potentially be an objective tool that can match
the objective measurements in the PSQI exam. Based on ac-
cepted datasets, the speech analysis solution seems to scale
to other speakers as well. The week long deployment shows
all the factors Empath can generate presenting its usefulness
to both to the patient and to caregivers looking to get more
data about depression conditions.

5.1 Future Plan for Technology Updates
For this work, we focused on sleep, occupancy, speech, and

bodyweight. However, there are many other factors that can
give patients and caregivers better knowledge about the con-
dition. In particular, the activity detection module can be
refined to report specific events that are occurring in the
day. Some important activities include: 1) taking medica-
tion 2) social interaction 3) exercise 4) alcohol use and 5)
recreation and play. One challenge is to detect activities
that do not occur inside the home such as social interaction
and exercising. Hence, we are investigating ways to expand
the activity recognition onto mobile devices.

5.2 Future Plan for Medical Research
Because Empath is designed for people living by them-

selves, a target group that could benefit from such a system
are the elderly living in by themselves or in assisted living.
It is estimated that over 15% of people over the age of 65
have depressive symptoms. As technology enables the el-
derly to age in their homes, they will be in less contact daily
with caregivers. Beyond monitoring for clinical depression,



Empath could be used by soldiers returning from war and
monitoring Post-traumatic Stress Disorder (PTSD). PTSD
shares several symptoms of depression, such as isolation, loss
of interest in activities and life in general, difficulty falling
or staying asleep, and difficulty concentrating.
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