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Abstract

This paper presents a Feedback Control real-time Scheduling (FCS) framework for adaptive real-
time systems. An advantage of the FCS framework is its use of feedback control theory (rather than ad
hoc solutions) as a scientific underpinning. We apply a control theory based methodology to
systematically design FCS algorithms to satisfy the transient and steady state perfor mance specifications
of real-time systems. In particular, we establish dynamic models of real-time systems and develop
performance analyses of FCS algorithms, which are major challenges and key steps for the design of
control theory based adaptive real-time systems. We also present a FCS ar chitecture that allows plug-ins
of different real-time scheduling policies and QoS optimization algorithms. Based on our framework, we
identify different categories of real-time applications where different FCS algorithms should be applied.
Performance evaluation results demonstrate that our analytically tuned FCS algorithms provide robust
transient and steady state performance guarantees for periodic and aperiodic tasks even when the task
execution times vary by as much as 100% fromtheinitial estimate.

1. Motivation and Introduction

Red-time scheduling algorithms fall into two categories: static and dynamic scheduling. In static
scheduling, the scheduling algorithm has complete knowledge of the task set and its constraints, such as
deallines, computationtimes, precalence @nstraints, and future relesse times. The Rate Monaonic (RM)
algorithm and its extensions [15][19] are static scheduling algorithms and represent one major paradigm
of red-time scheduing. In dynamic scheduling, however, the scheduling agorithm does not have
complete knowledge of the task set or its timing constraints. For example, new task adivations, na
known to the dgorithm when it is sheduling the airrent task set, may arrive & a future unknown time.
Dynamic scheduling can be further divided into two categories: scheduling algorithms that work in
resource sufficient environments and thase that work in resource insufficient environments. Resource
sufficient environments are systems where the system resources are sufficient to a priori guaranteethat,
even though tasks arrive dynamicdly, at any given time dl the tasks are schedulable. Under certain
condtions, Earliest Dealline First (EDF) [19][31] is an optima dynamic scheduling algorithm in
resource sufficient environments. EDF is a second major paradigm for red-time scheduling. While red-
time system designers try to design the system with sufficient resources, becaise of cost and
unpredictable environments, it is metimes imposdble to guarantee that the system resources are
sufficient. In this case, EDF s performance degrades rapidly in overload situations. The Spring scheduling
algorithm [34] can dynamicdly guaranteeincoming tasks via on-line almisson control and gdanning and
thus is applicable in resource insufficient environments. Many other algorithms [31] have dso been
developed to operate in this way. These almisson-control-based agorithms represent the third major
paradigm for red-time scheduling. However, despite the significant body of results in these three
paradigms of red-time scheduling, many red world problems are nat easily suppated. While dgorithms
such as EDF, RM and the Spring scheduling algorithm can suppat sophisticaed task set characteristics,
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they are dl "open loop' scheduling algorithms. Open loop refers to the fad that once schedules are
creded they are not "adjusted” based oncontinuouws feedbadk. Whil e open-loop scheduling algorithms can
perform well in predictable enwvironments in which the workloads can be acwrately modeled (e.g.,
traditional processcontrol systems), they can perform poarly in unpredictable environments, i.e., systems
whose workloads canna be acarately modeled. For example, systems with open-loopschedulers sich as
the Spring scheduling algorithm are usually designed based on worst-case workload parameters. When
acarate system workload models are not avail able, such an approach can result in a highly underutili zed
system based onan extremely pessmistic estimation o workload.

In recent yeas, a new caegory of soft red-time gplicaions exeauting in open and unpedictable
environments is rapidly growing [32]. Examples include open systems on the Internet such as online
trading and e-business ®rvers, and data-driven systems such as gnart spaces, agile manufaduring, and
defense gplicaions sich as C4l. For example, in an e-business ®rver, neither the resource requirements
nor the arival rate of servicerequests are known a priori. However, performance guarantees are required
in these gplications. Failure to med performance guarantees may result in lossof customers, financial
damage, liability violations, or even misson falures. For these gplicaions, a system design based on
open loop scheduling can result in an extremely expensive and uncbrutili zed system.

As a mst-effedive gproadch to adieve performance guarantees in unpedictable environments,
adaptive scheduling algorithms have been recantly developed. While ealy reseach on red-time
scheduling was concerned with guarantedang complete avoidance of undesirable dfeds such as overload
and cealline mises, adaptive red-time systems are designed to hand e such effeds dynamicdly. There
remain many open reseach questions in adaptive red-time scheduling. In particular, how can a system
designer spedfy the performance requirement of an adaptive red-time system? And hav can a designer
systematicdly design a scheduling algorithm to satisfy system performance spedficaions? The design
methoddogy for automatic adaptive systems has been developed in feedbadk control theory [12].
However, feedbad control theory has been mostly applied in medhanicd and eledricd systems. In trying
to apply feedbadk control theory to a cmputer systems domain, the modeling and implementation o
adaptive red-time systems facesignificant reseach chall enges. Some of thase dhall enges are answered in
this paper.

Recently, several works have gplied control theory to computing systems. For example, several
papers [3][9][10][1]] presented flexible scheduling techniques to improve digital control system
performance These techniques are tail ored to the spedfic charaderistics of digital control systemsinstead
of general adaptive red-time computing systems. Li and Nahrstedt [18] utili zed control theory to develop
afeedbadk control loopto guaranteedesired network padket rate in a distributed visual trading system.
Hollot et. a. [13] apply control theory to analyze a @ngestion control algorithm on IP routers. A control-
theoreticad approach has also been applied to provide QoS guarantees in web servers [2][4][21] and e
mail servers [25]. While these works use antrol theory analysis on computing systems, they do nd
diredly addresstiming constraints, which is the key requirement of red-time systems.

Transient state performance of adaptive red-time systems has recaéved speda attention in recent
yeas. For example, Brandt et. al. [8] evaluated a dynamic QoS manager by measuring the transient
performance of applicaions in resporse to QoS adaptations. Rosu et. al. [27] proposed a set of
performance metrics to capture the transient responsivenessof adaptations and itsimpad on applicaions.
The paper proposed metrics that are simil ar to settling time and steady-state eror metrics foundin control
theory.

However, to the authors best knowledge, no unfied framework exists to date for designing an
adaptive red-time wmputing system from performance spedficaions of desired dynamic resporse. In
this paper we present Feedback Control real-time Scheduling (FCS), an analyticd framework that maps
QoS control in adaptive red-time systems to feedbadk control theory. Our control theoreticd framework
includes the following elements:

« A scheduling architedure that maps the feedbadk control structure to adaptive resource
scheduling in red-time systems,



» A set of performance specifications and metrics to characterize both transient and steady state
performance of adaptive real-time systems, and

* A control theory based design methodology for resource scheduling algorithms to satisfy system
performance specifications.

In contrast to ad hoc approaches that rely on laborious design/tuning/testing iterations, FCS enables
system designers to systematically design adaptive real-time systems with established analytical methods
to achieve desired performance guarantees in unpredictabl e environments.

The feedback control rea-time scheduling architecture is described in Section 2. Performance
specifications and metrics for adaptive real-time systems are presented in Section 3. The control theory
based design methodology is presented in Section 4. An analytical model for generic CPU bound real-
time systems is established in Section 5. Based on this model, the design and analysis of a set of FCS
algorithms are given in Section 6. Performance evaluation results of these scheduling algorithms are
presented in Section 7. Finally, we conclude this paper in Section 8.
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Figure 1: Feedback Control Real-Time Scheduling Architecture

2. Feedback Control Real-Time Scheduling Architecture

Our feedback control real-time scheduling (FCS) architecture (Figure 1) is composed of a feedback
control loop composed of a Monitor, a Controller, a QoS Actuator, and a Basic Scheduler. Before we
describe the components of the FCS architecture, we define our task model and a set of control related
variables.

2.1. Task Model

Each task has several QoS levels. In this task model, each task T; has N QoS levels (N = 2). Each QoS
level j (0<j < N-1) of T, is characterized by the following attributes:

Di[j]: therelative deadline

EEi[j]: the estimated execution time

AEj[j]: the (actual) execution time that can vary considerably from instance to instance and is
unknown to the schedul er

Vi[i]: the value task T; contributes if it is completed at QoS level j before its deadline Dj[j]. The
lowest QoS level 0 represents the rejection of the task and V;[0] < 0 (when V{[0] < 0, it is
called the rejection penalty [6]). Every QoS level contributes a value of V;[Q] if it misses its
deadline.

For periodic tasks:
P[j]: theinvocation period



B[j]: theestimated CPU utilization B[j] = EE[j] / P{j]
A[i]: the (acual) CPU utilization A[j] = AE[j] / P[j]

For aperiodic tasks:
Eli[j]: the estimated inter-arrival-time between subsequent invocations
Ali[j]: theaverageinter-arrival-time that is unknown to the scheduler
Bi[j]: theestimated CPU utilization Bi[j] = EE[j] / El[j]
Aljl: the(adua) CPU utilization A[j] = AE[j] / Ali[j]

In this model, a higher QoS level of atask has a higher (both estimated and adual) CPU utili zation and
cortributes a higher value if it medsitsdealing, i.e., Bj+1] > Bi[j], A[j+1] > A[j], and Vi[j+1] > Vi[j]. In
the simplest form, ead task only has two QoS levels (correspondng to the aimisson and the rejedion o
the task, respedively). In many appli cations including web services [4], multimedia[8], embedded dgital
cortrol [11], and systems that suppat impredse mmputation [20] or flexible seaurity [30], ead task has
more than two QoS levels and the scheduler can trade-off the CPU utili zation o atask with the value it
contributes to the system at afiner granularity. The QoS levels can dffer in term of exeautiontime and/or
period/inter-arrival-time. For example, a web server can dynamicdly change the exeaution time of a
HTTP sesdon by changing the complexity of the requested web page [4]. For ancther example, severa
papers have shown that the deadlines and periods of tasks in embedded dgital control systems and
multimedia players can be adjusted online [8][10]. A key feaure of our task model isthat it charaderizes
systems in ungredictable environments where task’s actual CPU utili zation is time varying and unknown
to the scheduler. Such systems are anenable to the use of fealbadk control loops to dynamicdly corred
the scheduling errors to adapt to load variations at run-time.

2.2. Control Related Variables

An important step in designing the FCS architedure is to dedde the following variables of a red-time
system in terms of control theory.

* Controlled variables are the performance metrics controll ed by the scheduler. Controll ed variables of
ared-time system may include the deadline missratio M(k) and the CPU utilization U(K) (also cdled
missratio and uili zation, respedively), bah defined over atime window ( (k-1)W, kW), where Wis
the sampling period and k is cdl ed the sampling instant.

0 The missratio M(k) at the k™ sampling instant is defined as the number of deadline misss
divided by the total number of completed and aborted tasks in a sampling window ((k-1)W, kW).
Missratio is usualy the most important performance metric in ared-time system.

0 The utilization U(K) at the k™ sampling instant is the percentage of CPU busy time in a sampling
window ((k-1)W, kW). CPU utili zation is regarded as a @ntrolled variable for red-time systems
due to cost and throughpu considerations. CPU utili zation is important because of its dired
linkage with the deadline missratio (seeSedion5).

o Ancther controlled variable might be the total value V/(K) delivered by the system in the k™
sampling period. In the remainder of this paper, we do nd diredly use the total value & a
cortrolled variable, bu rather address the value imparted by tasks via the QoS Actuator (see
Figure 1 and Sedion 7.1)

» Performance references represent the desired system performance in terms of the ontrolled
variables, i.e., the desired miss ratio Ms and/or the desired CPU utili zation Us. For example, a
particular system may require deadline miss ratio Ms = 0 and CPU utili zation Us = 90%. The
difference between a performance reference and the aurrent value of the correspondng controll ed
variableis cdled an error, i.e., the missratio error Ey = Ms— M(K) and the utili zation error Ey = Us—
U(Kk).



e Manipulated variables are system attributes that can be dynamicdly changed by the scheduler to
affed the values of the mntrolled variables. In ou architedure, the manipulated variable is the total
estimated utilization B(K) = Y;Ui[li(K)] of al tasksin the system, where T, is atask with a QoS level of
li(K) in the K" sampling window. The rationale for chosing the total estimated utili zation as a
manipulated variable is that red-time scheduling padlicies such as EDF and Rate/Deadline Monaonic
can guaranteeno deadline misses when the CPU is not overloaded, andin hamal situations, the miss
ratio increases as the system load increases. The other controlled variable, the utili zation U(k), also
usually increases asthe total estimated utili zationincreases. However, the utili zationis often diff erent
from the total estimated utili zation B(k), which is due to the estimation error of exeaution times when
workload is ungredictable and time varying. Ancther difference between U(k) and B(K) is that U(k)
can never excead 100/ whil e B(k) does not have this limit.

2.3. Feedback Control Loop

The FCS architedure fedures a feedbadk control loopthat is invoked at every sampling instant k. It is
composed of aMonitor, a Controll er, and a QoS Actuator (Figure 1).

1) The Monitor measures the mntrolled variables (M(k) and/or U(k)) and feeads the samples bacd to the
Cortroller.

2) The Controller compares the performance references with correspondng controll ed variables to get
the airrent errors, and computes a dhange Dg(k) (cdled the control input) to the total estimated
requested uili zation based onthe erors. The Controller uses a wntrol function to compute the
corred manipulated variable value to compensate for the load variations and keep the wntrolled
variables close to the references. The detail ed design of the Controller is presented in Sedion 6.

3) The QoS Actuator dynamicadly changes the total estimated requested utili zation at ead sampling
instant k acarding to the control input D(k+1) by adjusting the QoS levels of tasks. The goal of the
QoS Actuator is to enforce the new total estimated requested utili zation B(k+1) = B(k) + Dg(K).
Under the utili zation constraint of B(k+1), the QoS Actuator cdls a QoS optimization algorithm (see
Sedion 7.1) to maximize the system value. In the simplest form, ead task has only two QoS levels
and the QoS Actuator is esentially an admisson controll er. In this paper, we asaume the system has
arriving-time QoS contral, i.e., the QoS Actuator is also invoked uponthe arival of ead task. The
arriving-time amisdon control isolates disturbances caused by variations in task arrival rates (see
Sedion 5). Feadbadk control scheduling in systems without arriving-time QoS control was previously
studied in [21].

2.4. Basic Scheduler

The FCS architedure has a Basic Scheduler that schedules admitted tasks with a scheduling pdicy (e.g.,
EDF or Rate/Dealline Monatonic). The properties of the scheduling pdicy can have significant impad
onthe design o the feadbadk control loop.Our FCS architedure permits plugging in different palicies for
this Basic Scheduler and then designing the entire feedbadk control scheduling system aroundthis choice
A key difference between ou work and the previous work is that whil e previous work often assumes
the CPU utili zation o ead task is known a priori, we focus on systems in unpedictable ewironments
where tasks' adual CPU utili zations are unknown and time varying. This more dallenging problem
necesstates the feedbadk control loopto dynamicdly corred the scheduling errors at run-time.

3. Performance Specificationsand Metrics

We now describe the seaond element of the FCS framework, the performance spedfications and metrics
for adaptive red-time systems. Traditional metrics auch as the aserage missratio canna capture the



transient behavior of the system in resporse to load variations. Recently, a set of metrics [21][27] was
propacsed to charaderize both transient and steady state behavior of an adaptive system. In this ®dion,we
extend and map the metrics to dynamic resporses of control systems. The performance spedficaions
consist of a set of performance profiles' in terms of the mntrolled variables, utili zation U(K), and miss
ratio M(K). We dso present a set of representative load profiles adapted from control theory [12].

3.1. Performance Profile

The performance profile charaderizes important transient and steady state performance of a red-time
system. M(k) and U(k) charaderize the system performance in the sampling window ((k-1)W, kW). In
contrast, traditional metrics for real-time systems sich as average missratio and average utili zation are
defined based ona much larger time window than the sampling period W. The average metrics are often
inadequate metric in charaderizing the dynamics of the system performance in resporse to overload
condtions [22]. The performance profil e of ared-time system includes the foll owing:

o Sability: A red-time system is gable if its missratio M(k) and uili zation U(k) are dways
boundxd for bounced references. Since both missratio and uili zation are naturally bounad in
the range [0, 100@%], stability is a necessary condtion to prevent missratio and uili zation from
staying at the undesirable 100% li mit.

» Transient-state response represents the red-time system’s resporsivenessand efficiency of QoS
adaptationin reading to changes in rur-time conditions.

0 Overshoot M, and U,: For a red-time system, we define overshoot as the maximum
amourt that the system overshods its missratio or utili zation reference divided by its
missratio or utili zation reference, i.e., My = (Myax — Ms) / Ms, Uy = (Upax — Ug) / Us,
respedively. The maximum missratio M, and uili zation U, in the transient state is cdled
the absolute overshoot. Overshod is important to a red-time system becaise ahigh
transient missratio or utili zation can cause system fail ure in many systems uch asrobas
and media streaming [8].

0 Settling time Ts: The time it takes the system to enter a stealy state in resporse to aload
profile. The settling time represents how fast the system can settle down to steady state
with desired missratio and/or utili zation.

e Steady-state error Egy and Egy: The diff erence between the average values of missratio M(K)
and/or utili zation U(K) in steady state and its correspondng reference. The steady state aror
charaderizes how predsely the system can enforce the desired missratio and/or utili zation in
steady state.

« Sengitivity S;: Relative dhange of a controlled variable in steady state with resped to the relative
change of a system parameter p. For example, sensitivity of missratio with respead to the task
exeaution time Sye represents how significantly the dhange in the task exeaution time dfeds the
system missratio. Sensitivity describes the robustness of the system with regard to workload or
system variations.

3.2. Load Profile

According to control theory, the performance profile of an adaptive system may be spedfied assuming
representative load profiles including step load and ramp load. The step load represents the wor st case of

! The performance profil e has been cdled the miss-ratio profile in [22]. The performance profile can be generalized
to ather metrics such as response time, throughput, and value-cognizant metrics.



load variation that overloads the system instantaneously, whil e the ramp load represents a nomina form
of load variation. The load profil es are defined as foll ows.

e Sep-load SL(L,, Lm): aload profil e that instantaneously jumps from anominal l1oad L, to a higher
load L, > L, and stays constant after the jump. Instantaneous load change such as the step load is
more difficult to handle than gradual |oad change.

Ramp-load RL(L,, Lm, Tr): aload profile that increases linealy from the nominal load L, to a
higher load L, > L, during atime interval of Tr sec Compared with the step load, the ramp signal
represents aless gvere load variation scenario.

One key advantage of using the éove load profiles for performance spedfication is that they are
amenable to well -established design and analysis methods in control theory and, therefore, fits well with
our control theoreticd framework. This means that a system designer can use cntrol theory method to
analyticaly design the system to satisfy a performance profile in resporse to a load profile & defined
above. Spedficdly, aload profile can be modeled as disturbance signals in the form of a step o ramp
signal. Based on control theory, alinea system’s dynamic properties can be determined by its dynamic
resporse to a step signal or a ramp load regardless of its parameters including the magnitude of load
variation (L,-L,) andthe ramp duation Tr. If ared-time system can be gproximated with alinea model
in its operation conditions, its performance profile can be determined by stresdng the system with a step
load, i.e., the system can achieve satisfadory performance under any combinations of step and ramp load
if its performance profil e in resporse to astep load or ramp load satisfiesits gedficaions.

However, if a red-time system is nonlinea, the dynamic response of a system in respornse of any
load variations canna be determined by its resporse to a single step load or a single ramp load because
the system performance depends on the spedfic parameters of the load profiles. In this case, the
performance profiles in resporse to spedfic load profiles are only “indicaions’ of the system
performancein general. In this case, the load profiles are gplicaion-spedfic based ona set of expeaed
load charaderistics and system requirements.

The load profiles are abstractions of the workload, and there can be many passble instantiations of
the same load profile. The instantiation d a load profile shoud incorporate the knowledge of the
workload, and, therefore, the load profile shoud be viewed as an enhancement to existing benchmarks.
For example, the system load can be interpreted as the total requested CPU utili zationin the system where
CPU isthe battlened resource. For ancther example, the load of an Internet server may be interpreted as
the number of concurrent users.

4. Control Theory Based Design M ethodology

The third element of our FCS framework is the control theory based design methoddogy. Based onthe
scheduling architedure and the performance spedficaions, a system designer can systematicdly design
an adaptive resource scheduler to satisfy the system’'s performance spedficaions with established
analytica methods in control theory. This methoddogy isin contrast to existing ad hoc approacdes that
depend onlaborious design/tuning/testing iterations. The antrol design methoddogy is as foll ows.

1) The system designer spedfies the desired dynamic behavior with transient and steady state
performance metrics. This dep maps the performance requirements of an adaptive red-time
system to the dynamic response spedficaion d a wntrol system.

2) The system designer establishes a dynamic model of the red-time system for the purposes of
performance @ntrol. A dynamic model describes the mathematica relationship between the
cortrol inpu and the controlled variables of a system with dff erential/diff erence equations or
state matrices. Modeling is important because it provides a basis for the analyticd design of the



cortroller. However, modeling has been a major challenge for applying cortrol theory to red-
time systems due to the lack of established dfferential/difference ejuations to describe red-time
systems.

3) Based on the performance specs and system nmodel from step 1) and 2, the system designer
applies established mathematicd techniques (i.e., the Root Locus method, frequency design, o
state based design) of feedbadk cortrol theory [12] to design FCS agorithms that analytically
guaranteethe spedfied transient and steady-state behavior at rurttime.

Compared with existing ad hoc approades, this anayticd design approacd significantly reduces design
time of adaptive systems. The resultant system’s parameters can be eaily tuned with existing control
theory methods and the resultant system can be proved to satisfy its performance spedficaions. In
contrast, the tuning adaptive systems designed with ad hoc methods often depends on repeded testing,
guessng, or rule-of-thumb withou performance guarantees at run-time.

5. Modeling the Controlled Real-Time System

A key step of using the mntrol theory methoddogy is to establi sh an analytica model to approximate the
controlled systemin the FCS architedure.

The ontrolled system includes the QoS Actuator, the scheduled tasks, the CPU, the Basic Scheduler,
and the Monitor. The control inpu to the cntrolled system is the change in the total estimated utili zation
Dg(k). The output of the controlled system includes the cntrolled variables, miss ratio M(k) and
utili zation U(K). Althowgh it is difficult to predsely model a norlinea and time varying system such as a
red-time system, we can approximate such a system with alinea model for the purpose of control design
because of the robustnessof feedbadk control with regard to system variations. We now derive the model
from the cntrol inpu to the output.

Starting from the control inpu, the QoS aduator changes the total estimated utili zation B(k+1) in the
next sampling period acording the control input Dg(K) at every sampling instant k:

B(k+1) = B(k) + Dg(K) (1)

Since the predse exeaution time of ead task is unknown and time varying, the total (adual) requested
utili zation A(k) may differ from the total estimated requested utili zation B(K):

AK) = G4(K)B(K) ()

where G4(K), cdled the utilization ratio, is a time-variant variable that represents the extent of workload
variation in terms of total requested uili zation. For example, G,(k) = 2 means that the adual total
requested utili zation is twice of the estimated total utili zation. Since G4(K) is time variant, we use the
maximum possble value G, = max{ G,(k)}, cdled the worst-case utilization ratio, in control design to
guarantee stability in all cases. Hence Equation 2 can be simplified to the following formula for the
purpose of control design:

A(K) = GaB(K) ©)

The relationship between the total requested tili zation A(K) and the wntrolled variables are nonlinear
due to saturation, i.e., the @ntrolled variables remain constant when the control input Dg(K) # 0. When
the CPU is uncerutili zed (A(K) < 1), the utili zation U(K) is outside its saturation zone and equals A(K);
when the CPU is overloaded, however, U(K) saturates at 1 because it can never exceal 100%.

Based onEquations 1-3, the analytica model for the utili zation oupt is as foll owing:
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UK = U(k-1) + GaDg(k-1)  (AK) <) (4)
Uk =1 (AKK) > 1) (5)

Now we derive the model for the missratio ouput M(K). In contrast with U(K) that saturates in
overload condtions, M(K) saturates at 0 when the CPU is underutilized, i.e., the total requested utili zation
is below a utilization threshold Ax(K). In red-time scheduling theory, schedulable utilization bounds have
been derived for various red-time scheduling palicies under different workload assumptions [19]. A
utili zation boundA, is typicdly defined as a fixed lower bound for al possble workloads under certain
assumptions, while we define the utili zation threshold A (K) as the time varying actual threshold for the
system's particular workload in the k™ sampling period (and hence A, < An(K)).

When A(K) > An(k), M(K) usually increases nonlinealy with the total requested utili zation A(k). The
relationship between M(k) and A(K) needs to be lineaized by taking the derivative & the vicinity of the
performancereference Ms as the missratio fador G,

_adMm(k)
" dAK)

In pradice the miss ratio factor Gy, can be estimated experimentally by plotting a missratio curve & a
function d the total utili zation based onexperimental data. We use the maximum slope Gy at the vicinity
of Ms in control design to guarantee stability. Given the miss ratio fador, we have the following
lineaized formulafor the purpose of control design:

M(K) = M(k-1) + Gu(A(k) — A(k-1)) (6)

Based onEquations 1-3 and 6,the analyticd model for the missratio ouput is as foll owing:

M(k) =0 (A(K) = An(K)) (7)
M(K) = M(k-1) + GuGaDe(k-1)  (A(K) > An(K)) (8)

Note that different scheduling pdicies in the Basic Scheduler usually lead to a different utili zation
threshold An(k). For example, if EDF is plugged into the FCS architedure and the workload is composed
of independent and periodic tasks, the utili zation threshold Ay = 100%. In comparison, the utili zation
threshold is usually lower than 1004 if RM is plugged into the achitedure. Therefore, the scheduling
palicy and the workload charaderistics affed the chaices onthe wntrolled variable and its performance
reference

We now convert the models to z-domain transfer functions that are anenable to control theory
methods. Let Y(2) be the z-transform of a output variable y(k) (e.g., U(k) or M(K)) and X(2) be the z-
transform of a inpu variable x(k). A linea system (or a lineaized system) can be represented by a
transfer function P(2) such that Y(2) = P(2)X(2). For our controll ed red-time system, its linearized models
in Equations 4 and 8 are euivaent to the following transfer functions outside their own ursaturated
Zones, respedively.

Utilization: Pu(2 =Gal (1) 9
Missratio: Pu(2) = GaGwu / (1) (20

Since the model for missratio and uili zation are the same except for the extra missratio fador Gy in
Equation 10,for simplicity of discussonwe use asame formula P(z) to represent the transfer functions of
baoth controll ed variables:

P(2 =G/ (z1) (11

where G is cdled the processgain. G = G, for the utili zation ouput and G = GaGy for the missratio
output.

The saturation o U(k) and M(Kk) renders gedal challengesin the controll er design because the output
bemmes unresporsive to the control inpu in the saturation zones. However, since the utili zation



threshold is lower than 100% (i.e., An(k) < 1) for any scheduling policy [19], the saturation zones of U(K)
and that of M(K) are always mutually exclusive. This leads to the following important property of real-
time systems:

Property 1. At any instant of time, at least one of the controlled variables (U(k) and M(K)) does not
saturate in areal-time system.

We design a scheduling algorithm, FC-UM, to solve the saturation problem by taking advantage of
this property in Section 6.4.3.

6. Design of Feedback Control Real-Time Scheduling Algorithms

In this section, we apply control theory methods to the Controller, the key component of FCS algorithms.
We first present the control algorithm and the model of the feedback control loop for each controlled
variable. Based on the analytica models, we apply control theory to tune the Controller and develop
mathematical analyses on the performance profiles of the resultant Controller. We then present several
FCS agorithms to handle different types of real-time systems.

6.1. Design of the Controller

At each sampling instant k, the Controller computes a control input Dg(k), the change in the total
estimated requested utilization, based on the missratio error Ex(k) = Ms- M(k) and/or the CPU utilization
error Ey(k) = Us- U(K). In this section, we focus on a Controller for a single controlled variable. The goal
of the Controller includes (1) guaranteed stability, (2) zero steady state error, (3) zero sensitivity to
workload variations, and (4) satisfactory settling time and overshoot. Since the same control function can
be used for both controlled variables, we use the same symbol E(K) to denote the miss ratio error Ey(k)
and the utilization error Ey(k). Similarly we use Sto denote the miss ratio reference Ms and utilization
reference Us, and the symbol y(k) to denote the miss ratio reference M(k) and utilization reference U(K).

For the FCS architecture, we choose to use a simple P (Proportional) control function [12] to compute
the control input. The P control function isin Equation 12 where Kr is a tunable parameter.

De(k) = KeE(K) (12)

The rationale for using a P Controller instead of a more sophisticated Controller such as PID
(Proportional-Integral-Derivative) Controller is that the controlled system includes an integrator in the
QoS Actuator (Equation 1) such that zero steady state error can be achieved without an | (Integral) termin
the Controller (see detailed analysis in Section 6.2). The D (Derivative) term is not used in this case
because Derivative control may amplify the noise in miss ratio and utilization due to frequent workload
variations in unpredictable environments.

The performance of the real-time system depends on the Controller parameter Kp. An ad hoc
approach to design the Controller isto repeat numerous experiments on different parameter values. In our
work, we apply established control theory methods to tune the parameters analytically to guarantee the
performance specifications. In Section 6.2 we first tune the Controller for each of the controlled variables
based on the linear models of the controlled system (Equation 11). Due to the saturation properties, the
performance of the closed loop system may deviate from the linear case.

6.2. Closed-L oop System Model

The system output is miss ratio M(k) or utilization U(k). There are two input signals to a closed loop
system with asingle (miss ratio or utilization) Controller.

10
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Figure 2: Models of Feedbadk Control Loops

6.2.1. Referencelnput and Arrival Overload

The first inpu is the performance reference S (i.e., Ms or Us) modeled as a step signal, S2/(z-1) in the z
domain. Note that with the arival-time QoS control mecdhanism in ou FCS architedure, the particular
form of load profiles does nat affed the system’'s resporse because the adual tasks admitted into the
system are dways determined by the QoS Actuator. Therefore, the system response to the referenceinpu
corresponds to the system performancein resporse to arrival overload. Given the model of the cntrolled
system P(2) (Equation 17 and the Controller C(2) (Equation 12, we can establish a same dosed-loop
transfer function o both missratio and utili zation control in resporse to the referenceinpu:

H.(2)= C(2)P(2) _ K.G @
S 1+C(2)P(2) z-(1-K,G) (13

Y@ =H (S (®)

where G = G, for utili zation control, and G = G,Gy, for missratio control.

6.2.2. Disturbancelnput: Internal Overload

The secondinpu to the dosed-loopsystem istheinternal overload when admitted tasks' CPU utili zations
vary. The internal overload can be modeled as a disturbance that adds to the total requested utili zation
A(K) (see Figure 2ab). In particular, a step load SL(L,, L) is modeled as a step signal L(K) that jumps
instantaneously from 0 to (L, — L), or L(2) = (Lin— Ln)Z/(z-1) in the z domain; aramp load RL(L,, Li, Tr)
is modeled as a ramp signal L(k) that linealy increases from O to (L., — L) in aduration d Tg sec Note
that in the case of internal overload inpu, the spedfic load profile deddes the input signal and therefore
has a dired impad on the system performance In this paper, we focus our analysis on the step load
profile because it represents more severe load variations than the ramp load with a finite duration.
Regarding the disturbance inpu, the transfer function for utili zation control and the system output in
resporse to the internal overload as foll ows.

H, (2) = 1féz)P(z) _ z-1 (@)
(2P(2) z2-(1-K,G,) (14
Y(2) =H s(z)zi_18+ Ho (2)L(2) (b)

11
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The above transfer function is also applicable to miss ratio control except the disturbance input would be
GuL(K) or GuL(2) to account for the extra Gy termin Figure 2a.

6.3. Control Tuning and Analysis

We now present the tuning and analysis of the utilization Controller and the miss ratio Controller based
on the analytical models described in Equations 13a and 14a According to control theory, the
performance profile of a system depends on the poles of its closed loop transfer function. Based on
Equations 13a and 14a, we can place the closed loop pole p = 1-KpG at the desired location by choosing
the right value for the control parameter K. We now use control theory to derive Kp to achieve the
desired performance profile.

o Stability Condition: The sufficient and necessary condition for the utilization and the miss ratio
control to guarantee stability is

0<Kp<2/G (15)

Proof: According to control theory, a system is stability if and only if al the poles{p; |0<j < n} (nisthe
total number of poles) of its transfer function are in the unit circle of z-plane[12], i.e., |p|<1(0<j<n).

From Equations 13a and 144, the only pole of the utilization and the miss ratio control system in
response to the arrival overload and the internal overload is

pozl-KpG

Hence, the utilization control and the missratio control guarantee stability if and only if |1 - KpG|<1 = O
< Kp < 2/G. Therefore, the sufficient and necessary condition of stability is Equation 15.

We derive the steady state performance of the utilization and the miss ratio control system by
applying the Final Value Theorem [12] to the system output in Equations 13b and 14b. The following
steady state analysis assumes that the stability condition in Equation 15 is satisfied.

O Steady state error (arrival overload): under the stability condition in Equation 15, in response to

an arrival overload, the missratio and the utilization control guarantee zero steady state error.
Proof: Let y(k) be the output of a stable system, the Final VValue Theorem of digital control theory states
that the system output convergesto afina value

limYK) =y(®) =lim((z-DY(2)

k- oo z-1

From Equation 13b, the output of the utilization and the miss ratio control in response to an arrival
overloadis
K,G &
z-(1-K;G) z-1
where Srepresents the constant performance reference. Hence it follows that

Y(2) =

. : KoG ¥
o) = - = - P = 16
y(e) ||Zaml (z-1DY(2) ||Zaml (z 1)2_(1_KPG)Z_1 S (16)

that is, the steady state error Esc = S- y(o0) = 0.



O Steady state error (internal overload): under the stability condition in Equation 15, the miss ratio
and the utilization control achieve zero steady state error despite the presence of an internal
overload.

Proof: From Equation 14b,the system output of the utili zation and missratio control in response to an
internal overload (L, Ly) is

K:G 574 z-1 ALz
Y(2) = +
z-(1-K,G) z-1 z-(1-K,G) z-1

where AL = L,,— L, for the utili zation control, and AL = Gy (L, — L) for the missratio control.
Applying the Final Vaue Theorem to the éove equation, the final value of the utili zation control and
the missratio cortrol is

y(0) :|izm(z—1)Y(z) :|izm ((z-l)(z_(l_ K.G) z-1 2-(1-K,G) -

KPG < + z-1 ALZ)) =5 (17)

It follows that the steady state a@ror Eqc = S- y(o0) = 0.

O Sensitivity: under the stability condition in Equation 15, the steady-state performance of the
utilization control and the missratio control has zero sensitivity with regard to task execution times,
inter-arrival-times, and miss ratio factor.

Proof: In Equation 11, G = G4(K) for the utili zation control, and G = G,(k)G(K) for the missratio control.
The variation in G4(k) represents the variation in the task exeaution times and/or inter-arrival-times, and
the variationin G(K) represents the variationin the missratio fador.

From Equations 16 and 17, thefinal output of the utili zation and missratio control system in response
to the arival overload and the internal overload always equals the performance reference Sfor any value
of Gif it satisfies the stability condtion (Equation 15, that is, the related sensitivity is zero.

In summary of our steady state analysis, we have proven that, under the stability condtion in
Equation 15,the utili zation control and the missratio control always adhieve the performancereferencein
steady state in resporse to arrival and internal overload. Furthermore, we have dso shown that this
guaranteeis robust with regard to task exeaution times, inter-arrival -times, and the missratio fador.

According to control theory, for the system transfer function Equation 133, the overshod remains
zero in resporse to arrival overload if the dosed loop pde po = 0. From Equation 16,the utili zation
control and the missratio control achieves zero overshoa if and only if

0<Kp= UG

The settling time increases as the Controll er parameter increases in the dove range.
We placethe pde pp = 0.63 ty settling Kp = 0.37G, or:

MissRatio Cortrol: Kp = 0.37(GaGw) @
Utili zation Cortrol: Kp=0.37Ga (b) (18)

The &ove values for the Controll er parameter Kp has the foll owing properties based oncontrol analysis.

1) The parametersin Equations 18ab satisfy the stability condtionin Equation 15.
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2) Sincethe wntrol parameter value in Equations 18a and 18bsatisfy the zero avershod condtion,
the overshoa in resporse to the referenceinpu is:
MissRatio Cortrol: Mo=0 Mpax = Mg (@
Utili zation Cortrol: Uo=0 Umax = Us (b) (19

3) The Controller canna: affed the overshod in resporse to the disturbance inpu, which dredly
changes the output before any control adion could take place
MissRatio Control: Mo = Gu(Lm—L)/Ms  Mpyax = Ms+ Gu(Lm—Ly) @
Utili zation Control: Mo = (Lm—Ln)/Us Umax =Us+ Ly —L, (b) (20

4) Regarding the system to be in steady state if its output y(K) is within €% = 2% of its final value,
the dove pde placament corresponds to a same settling time in resporse to the reference input
and the disturbanceinpu.

MissRatio/Utili zation Control: Ts=4.5sec (21

The aove settling time is not applicable to the missratio control in resporse to arrival overload
because the missratio M(k) saturates at 0. Assume an arrival overload occurs to an idle system at time O,
the missratio control observes M(0) = 0, which resultsin a cntrol signal of Kp(Ms— M(0)) = KeMs. Since
Ms is typicdly small, the control signal is also small. Due to the saturation problem, the missratio will
stay at 0 and cause the control signal to remain small. This property can cause the utili zation and miss
ratio to increase slower than in case of the linear model and result in alonger settling time than Equation
21. One solution is to asdgn a high initial value to the estimated requested utili zation B(k) when the
systemisidle, which will help to push the system out of the saturation zone faster than a zero initial B(k).

Based onthe @ove analysis, we have the foll owing conclusions on the transient performance of the
closed-loop system.

o Transient Performance in Response to Arrival Overload: From Equation 21,in resporse to an
arrival overload the output settles to within 2% the performance reference in 4.5sec Furthermore,
Equation 2(a ensures that with miss ratio control, the miss ratio never exceals the miss ratio
reference in resporse to an arrival overshoa. Similarly, Equation 20bensures that with utili zation
control, the CPU utili zation rever exceals the utili zation referencein resporse to an arrival overload.

0 Internal Overload: From Equation 21,the system output can recover to within 2% the performance
referencein 4.5sec dter the beginning of an internal step-overload. However, Equations 20a and 20b
show that the system suffers from a nonzero overshod during transient state in resporse to an
internal step-overload. With missratio cortrol, the system missratio M(k) can overshoa the reference

Ms by Gu(LnrLn). With utili zation control, the CPU utili zation can overshoa the reference Us by
Gu(LnLy).

6.3.1. Impact of System/Workload Variations on Performance Profiles

Because ared-time system is usually a time-varying system (as discussed in Sedion 5), an important
issue is how the variations in system/workload parameters (e.g., task exeaution times and miss ratio
fador) affed the @ove analysis based onfixed values of the parameters. Spedficdly, since G4(k) and
Gm(K) may be different from the worst-case utili zation ratio G, and the worst-case missratio fador Gy.
We ned to analyze how the dhanges in missratio fador G(k) and utili zation ratio G,(k) affed the
performance profil e of the dosed-loop system in the foll owing.

. Stability

Based the stability condtion in Equation 15and the Controller parameter in Equations 18a and 18b,we
can derive the range of G(K) and G,(k) such that the system stability is guaranteed.
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MissRatio Control: 0 < Ga(K)G(k) < 5.4GAGy
Utili zation Control: 0 < Gy(k) <5.4G, (22

Note that since we usualy compute the Controll er parameter Kp based onthe worst case estimation such
that, Ga > G,(k) > 0 and Ga > G4(k) > 0, ou closed-loop system guarantees dability. Furthermore, even if
the adual system parameter can exceal the design-time estimations (due to estimation error or dramatic
system change), stability is gill guaranteed by the dosed loop system as long as G4(k) and G(K) stay
within the dove stability range.

» Steady State Performance

We have proven that both miss ratio control and uilization control can achieve their performance
references in stealy state & long as the systems remain stable. Therefore, bath the missratio control and
utili zation control provide robust and acairate performance guarantees in steady state regardlessof the
adual values of missratio fador and utili zationratio if they stay in the stability range (Equation 2.
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Figure 3: Settling Time vs. ProcessGain

e Transent Performance

Unlike stability and steady state performance the dosed loop system’s ttling time is ®ensitive to the
variations in missratio fador G,, and uili zation ratio G,. Asaume we use a1 estimation d G, = 2.0to
compute the utili zation control parameter Kp = 0.37 G, = 0.185(asin ou experimentsin Sedion 7), then
we plot the theoreticd settling time arrespondng to dfferent processgains G = G, shown in Figure 3.
The processgain deaeases from 12.5secto 4 sec a the processgain G increases from 0.8to 2.2.This
result shows that with a same Controller parameter Kp, the system reads faster to overload when its
utili zation ratio and miss ratio fador are larger. Therefore, a P Controller with a fixed parameter Kp
cannat guarantee afixed settling time. Instead, if the range of the processgain G is known, a range of
settling times can be guarantead. For example, if we know that the processgain staysin therange 0.8< G
< 2.0,the settling time can be guarantead to bein therange of 4.5< Ts< 12.5(seg as shown in Figure 3.

Similarly, the overshoa is also sensitive to the variations in the process gain. For our closed-loop
transfer function in resporse to arrival overload (Equation 133), the overshoa remains zero if the dosed
loop pde p=0. Therefore, the system can achieve zero overshoa in resporse to an arrival overload if miss
ratio fador and

MissRatio Control: 0 < G4(K)G(K) < 2.7GaGy
Utili zation Control: 0<Gy(k) <2.7Gp (23
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In summary, given the system parameters, the worst-case utili zation ratio G,, and the missratio fador
Gwm, we can dredly derive the antrol parameter Kp based onEquations 18a and 18bto guarantee aset of
performance profiles including stability, zero steady state eror, and a satisfadory range of transient
performance Note that the analyticd tuning method d the wntrol parameter is sgnificantly easier and
less time consuming than ad hoc approaches based on repeaed simulation experiments. This is one
important advantage of using our control-theory based FCS framework instead of ad hoc solutions.

6.4. FCS Algorithms

In this dion, we present FCS algorithms based on uili zation and/or miss ratio control to achieve
satisfadory performance profilesin dff erent types of red-time systems. We dso discusstheimpad of the
basic scheduling padlicy and workloads on the design of FCS algorithms,

6.4.1. FC-U: Feedback Utilization Control

FC-U embodes a utili zation control loop to control the utili zation U(k). The utili zation control loop
periodicadly samples the utili zation, computes a change in the total estimated utili zation, and cdls an
value optimization algorithm to assgn QoS levels to tasks under the wnstraint of the new total estimated
utili zation. The pseudo code of FC-U is asfoll owing.

/I Invoked periodically at every sampling instant
/I Us: utilization reference
/I Kpy: utilization control parameter computed using Equation 18b

FC- U(Us, Kpy){
//Monitor

U = utilization in the last sampling period (( k-1) W kW;
/[Control ler

Eub = U — U

Ds = Key*Ey;

/lActuator

B =B + Dy

/ldecide task QoS levels to optimize total value under the constraint that
/lthe total estimated utilization of all tasks < B;
AssignQoS( B);

}

FC-U guarantees that the missratio M(k) = 0 in stealy state if its reference Us < Ay, where Ay, is the
schedulable utili zation threshold of the system.

Because utilization U(k) saturates at 100, FC-U canna deted how severely the system is
overloaded when U(k) remains at 100%. The cnsequence of this problem is that in severely overload
condtions FC-U can have alonger settling time than the analysis results based onthe linea model. The
closer the referenceisto 100%, the longer the settling time will be. Thisis becaise the utili zation control
measures an error with a smaller magnitude and thus generates a small er control input than the ided case
described by the linear model (Equation 11). For example, suppase the total requested utili zation A(k) =
200% and the utili zation referenceis 99%, the eror measured by the Controller would be E; = 0.99-1 = -
0.0, however, the aror would have been Ey = 0.99—- 2 = -1.01 acarding to the linea model. In the
extreme cae, Us = 100% can cause the system to stay in overload (a settling time of infinity) because the
error Ey=0 even when the system is sverely overloaded. Therefore, the reference Us shoud have enough
distancefrom 100% to all eviate the impad of saturation onthe wntrol performance.

FC-U is espedally appropriate for systems with a utili zation boundthat is a priori known and nd
pessmistic. In such systems, FC-U can guarantee azero missratio in stealy state if Us< A, < Ap. For
example, FC-U performs well in a system with EDF scheduling and a periodic and independent task set
because its utili zation boundis 100%. FC-U is not applicéble for systems whaose utili zation bound are
unknown o pesgmistic. In such systems, a reference that is too ogimistic (higher than the utili zation
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threshold) can cause high missratio even in stealy state. On the other hand, a reference that is too
pessmistic can unrecessarily underutili ze the system.

6.4.2. FC-M: Feedback Miss Ratio Control

Unlike FC-U that controls missratio indiredly through utili zation control, FC-M utili zes a miss ratio
cortrol loopto directly control missratio®. The pseudo code of FC-M is as foll owing.

/I Invoked periodically at every sampling instant
/I Ms: miss ratio reference
/I Kpy miss ratio control parameter computed using Equation 18a

FC MM, Kpy{
/IMonitor

M = miss ratio in the last sampling period (( k-1) W kW;
/IController

Ewv=M-M

Ds = Ko En

/[Actuator

B =B+ Dy

AssignQoS( B);

Compared with FC-U, the advantage of FC-M isthat it does nat depend onany knowledge dou the
utili zation boundIn the processof diredly controlli ng the missratio, the missratio control loop aways
changes the total requested utili zation A(K) to the vicinity of the (unknown) utili zation threshold Ay(k). An
additional advantage of FC-M is that it can achieve higher CPU utili zation than FC-U because the
utili zation threshaold is often higher than the utili zation bound.

Similar to FC-U, FC-M has restrictions on the missratio reference Ms due to saturation. Becaise miss
ratio M(k) saturates at 0, FC-M canna deted how severely the system is underutili zed when M(k) = 0.
Consequently, FC-M can have alonger settling time than the analysis results based onthe linear model
(Equation 17 in severely underutilized condtions, and the settling time increases as the miss ratio
reference deaeases. Thisis because the missratio control measures an error of a smaller magnitude and
generates a smaler control inpu than the cae of the linea model. For example, suppase the total
requested utili zation A(K) = 10% and the missratio reference is Ms = 1%, the error measured by the
Controller would be Eyy = 0.01— 0= 0.0%, however, the eror would have been much larger acarding to
the linear model because it would have a ‘hegative” missratio. In the extreme cae, Ms= 0 can cause the
CPU to remain uncerutili zed because the aror Ey = 0 even when the system is sverely underutili zed.
Therefore, the missratio reference shoud have some distance from the saturation bounery O to all eviate
the impad of saturation onthe @ntrol performance Unfortunately, a positive missratio reference dso
means that the system canna achieve zero missratio in steady state.

In summary, the FC-M scheduling algorithm (with a small pasitive missratio reference) can achieve
low deadline missratio (close to Mg) and high CPU utili zation even if the system’s utili zation boundis
unknown or time varying. Since FC-M canna guaranteezero dealline missratio in stealy state, it is only
appli cable to soft red-time systems that can tolerate sporadic dealline missesin stealy state.

6.4.3. FC-UM: Integrated Utilization/Miss Ratio Control

FC-UM integrates missratio control and tili zation control to combine the alvantages of both FC-U and
FC-M 2. In this integrated control scheme, bath missratio M(k) and tili zation U(K) are monitored. At
ead sampling instant, M(k) and U(K) are fed bad to two separate Controll ers, the missratio Controll er
and the utilization Cortroller, respedively. Eadch Controller then computes its control signal

2 FC-M was also cdled FC-EDF in [23] when working with EDF as the Basic Scheduler.
3 FC-UM was aso cdled FC-EDF? in [22] when working with EDF as the Basic Scheduler.
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independently. The antrol inpu of the utili zation control Dgy(K) is compared with the missratio control
inpu Dgy(k), and the smaller one Dg(k) = min(Dgy(K), Dew(K)) is ent to the QoS Actuator.

/I Invoked periodically at every sampling instant

/I Ms: miss ratio reference

/I Us: utilization reference

/I Kpyi m iss ratio control parameter computed using Equation 18a
/I Kpy: utilization control parameter computed using Equation 18b

FC Ulv( NISA US! KPM I'<PU) {
/[Monitors
M = miss ratio in the last sampling period (( k-1) W kW;
U = utilization in the last sampling per iod (( k-1)W kWw;
/IControllers
Em=M-M
Dev = Keu Ev
Eub = U — U
Dy = Keu* Ey;
Dz = min( Dgy Dsy
/lActuator
B =B + Dy
AssignQoS( B);

Note that the advantage of FC-U is that it can achieve excdlent performance (M(k) = 0) in steady
state if the utili zation referenceis corred, whil e the alvantage of FC-M isthat it can always achieve low
(but, nonzero) missratio and, therefore, is more robust in faceof utili zation threshold variations. The
integrated cortrol structure can achieve the advantages of both controls because of the foll owing reasons.
If used alone, the utili zation cortrol would change the total requested utili zation A(K) to itsreference Usin
steady state, and the missratio control loopwould change A(K) to the vicinity of the utilization threshold
An(K) in steady state. Due to the min operation onthe two control inpus, the integrated control loop
would change the total requested utilization to the lower value caised by the two control loops,
min(An(K), Us). The implication d this fedure is that the integrated control loop always achieves the
performance of the relatively more conservative control loop in steady state. Spedficdly, in a system
scheduled by FC-UM, if Us < Ay (K), the utili zation control dominates in steady state and guarantees that
the total requested utili zation A(K) stays closetoits utili zation reference Us and thus missratio M(k) =0 in
steady state. On the other hand, if Us > Ay(K), the utili zation control dominates in steady state and
guarantees that the total requested tili zation stays close to its utili zation threshold Agq(k) and missratio
M(K) = Msin steady state.

In a system with the FC-UM scheduler, the system administrator can simply set the utili zation
reference Usto a value that causes no deadline missesin the nominal case (e.g., based onsystem profili ng
or experiences), and set the missratio reference Ms acarding to the gplication’s requirement on miss
ratio. FC-UM can guarantee zero dealline misss in the nominal case while guarantedng that the miss
ratio stay close to Ms even if the utili zation threshold of the system becomes lower than the utili zation
threshold. Our experimental results (Sedion 7) demonstrate that FC-UM adiieves stisfadory
performance

6.4.4. Impactsof Scheduling Policies and Applications on FCSalgorithm Design

An important fador that affeds the design of FCS agorithms is whether an a priori known and non-
pessimistic utili zation boundexists for the scheduling palicy and workload of a system. Existing red-time
scheduling theory has derived the schedulable utili zation boundfor various heduling palicies based on
different workload assumptions. For example, assuming a periodic and independent task set, it has been
establi shed that the schedulable utili zation bound & EDF and RM is 100% and 6%, respedively [19].
Recantly, the schedulable utili zation boundior Deadline Monaonic scheduling is aso derived for genera
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aperiodic and periodic tasks in the ided case [1]. Other papers establi shed schedulable utili zation bound
for other types of workloads (e.g., [15][31]). Since FC-U can guarantee amissratio M(k) = 0 in stealy
state if its utili zation reference Us < A, the utili zation reference shoud be determined based on the
scheduling policy and workload of a system. For example, for an independent and periodic task set
scheduled by EDF, aUs= 90% is sufficient to guarantee that missratio stays at O in steady state. Because
FC-U can achieve zero steady state miss—atio, it is the most appropriate FCS algorithm for systems with
a known and nonpessmistic utili zation bound.FC-UM can also achieve zero steady state missratio in
thistype of system, but it is more compli cated than FC-U.

Unfortunately, the utili zation bouna of many unpredictable red-time systems are still unknown. For
example, in a typicd on-ine trading server, database transadions and Web request processng can be
blocked frequently due to concurrency control, disk 1/0, and TCP congestion control. The task arrival
patterns may also vary considerably because its workload is composed of periodic price updating tasks
and unpedictable and aperiodic stock trading request procesing. Dedding a utili zation bound onop d
commercial OS's can be even more difficult due to unpedictable kernel adivities such as interrupt
handing. Ancther iswe is a theoreticd utili zation boundcan be severely pessmistic for the spedfic
workload currently in a system. For example, athough the utili zation bound & Rate Monaonic is 69%
for periodic independent tasks, uriformly distributed task sets often do na suffer deadline misses even
when the CPU utili zation reades 88% [17]. Enforcing the utili zation at the utili zation boundmay not be
cost-eff edive in soft red-time systems. FC-M and FC-UM are more gpropriate than FC-U for systems
withou aknown and nonpessmistic utili zation bound.

We shoud naethat diff erent scheduling pali cies and workloads usually introduce diff erent missratio
fadors Gy. Because the gain Kp of the missratio Controll er shoud be inversely propational to the miss
ratio fador (Equation 18&)), the scheduling palicy and workload can dredly affed the wrred parameter
settling of the missratio Controller. For example, while our previous experiments showed that while the
EDF agorithm with a periodic task set led to a missratio fador Gy = 1.254,the Extended Dealline
Monaonic (DM) agorithm with a mixed periodic and aperiodic task set has a much smaller missratio
fador Gy = 0.447(seeSedion 7.5). This result means that for DM with the mixed task set, the Kp of the
missratio Controller shoud be 2.81times the K of EDF with the geriodic task set in order to achieve
similar performance.

In summary, we have designed three FCS algorithms (FC-U, FC-M, and FC-UM) using control
theory based onan analyticd model for a red-time system. Our control theory analysis proves that the
resultant FCS agorithms can adchieve the foll owing performance guarantees under the stability condtion
of Equation 22

1) Guarantedng stahility,

2) Guaranteéng that the system miss ratio and uili zation remains close to the @rrespondng
performancereferencein steady state, and

3) Achieving satisfadory settling time (Figure 3) and zero overshod under condtion o Equation 23
in transient state.

7. Experiments

In this ®dion, we describe the simulation experiments that evaluate the performance of our FCS
algorithms and the @rredness of our control design. We first describe ared-time CPU scheduling
simulator used for our experiments. We then describe the wnfigurations of the experiments and
workloads. A set of profili ng experiments onthe wntrolled system is presented next. We then present two
sets of evaluation experiments for our FCS algorithms.

7.1. FECSIM Simulator

The FCS architedure is implemented on a generic uniproces®r red-time system simulator cdled
FECSIM [23]. FECSIM (Figure 4) has five comporents: a set of Sources that ead generates a periodic or
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aperiodic task; an Executor that emulate the Basic Scheduler and the execution of the tasks; a Monitor
that periodically measures controlled variables; a Controller that periodically computes the control input
based on the performance errors; and a QoS Actuator that adjusts the QoS levels of the tasks to optimize
the system value (based on estimated utilizations) under the utilization constraints. Different basic real-
time scheduling policies can be plugged into the Executor. The Controller can be turned on/off to emulate
the closed loop or open loop scheduling.

performance......
references

De(k)

control input
QoS Opti mizati on |, QoS <
Algorithm Actuator :

Source l\ adjust QoS
Source 2>~y @ finish
I. abort
- A

controlled variables
.M (k) and/or U(k)

A

v

| Scheduling Policy |

Figure 4: The FECSIM

7.2. Scheduling Policy of the Basic Scheduler
To demonstrate the generality of our FCS architecture and the robustness of our FCS algorithms, we
present experimental results with two combinations of task sets and scheduling policies for the basic
scheduler. We denote these two combinations as DM/PA and EDF/P (see Table 1. We describe the
scheduling policiesin this section, and the workloads in Section 7.3.

Simulator

Configuration | Basic Scheduling Policy Task Set
EDF/P EDF Periodic (P)
DM/PA Extended Deadline Monotonic | Periodic/Aperiodic (PA)

Table 1: Testing Configurations

Two different scheduling policies, Extended Deadline Monotonic (DM) and EDF are used in the Basic

Scheduler.

 DM: Each task is assigned a fixed priority that equals its relative deadline. A shorter relative
deadline leads to a higher priority. DM has been proved to be the optimal static scheduling policy
in term of maximizing schedulable utilization bound under certain conditions [1]

* EDF: Each task is dynamically assigned a priority that equals its absolute deadline. An earlier
absolute deadline leads to a higher priority. EDF is a dynamic real-time scheduling policy [19].

7.3. Workload

Two different task sets are used in our evaluation experiments.

» Periodic/Aperiodic (PA): the workload is composed of 50% aperiodic tasks and 50% periodic
tasks. This type of task set can be found in a typical on-line trading server whose workload is

20



composed of periodic stock updeting tasks and aperiodic user requests such as trading and
information qLeries.

» Periodic (P): al the tasks are periodic tasks. This type of task set emulates red-time gplications
such as multi-media streaming and process control where most of the system operations are
periodic.

Eadh task foll ows the task model described in Sedion 2.1 Ead task is asaumed to have threeQoS levels
(0, 1, 9 including the lowest level O that represents srvicerejedion. For the rejedionlevel, bah the task
exeaution time and value ae set to 0. The distributions of the task parameters are as follows. For the
purpose of presentation, we a&sdime eabtitimeunit is0.1ms.

EE[j]: The estimated exeaution time ET[2] of task T; at the QoS level 2 follows a uniform
distributionin therange [0.2, 0.8 ms, and ET;[1] = 0.2ET;[2].

AE[j]: The atua exeadution time AE[j] of task T; at QoS level j follows a norma distribution
N(AAE,, AAE"), where the average exeaution time AAE[j] = G,ETi[j]. G., cdled the
execution time factor, is a tunable workload parameter that approximates the utili zation ratio
G, Thelarger G4 is, the more pessmistic isthe estimation o exeaution time. The maximum
value of G, is2.0in al of our experiments, which means that the estimated exeautiontimeis
twicethe average exeautiontime, i.e., worst-case utili zationratio: Ga=2.0. This vaue is
used to compute the Controll er parameters based onEquations 18a and 18b.

Di[j]l: All QoS levels of atask T, have asame and fixed relative dealline D; = (10F; + 10)ET|[2],
where F;, follows a uniform distribution in the range of [10, 15. A task instance is
immediately aborted orceit misesits dealline.

Vi[i]l: The vaue Vi[j] of task T; at QoS level j is computed as a weight w; times its estimated
exealtiontime, i.e., Vi[j] = WET;[j]. The weight w; foll ows a uniform distribution in the range
[1, 5.

Periodic tasks:

Pijl: All QoS levels of atask T; have asame period that equals its dealline P, = D;. The average

utili zation d ead periodic task i at QoS level | is AA[j] = AAE[]]/P:.
Aperiodic tasks:

Al{[j]: The inter-arrival-time of an aperiodic task T; follows an exporential distribution with an
average inter-arrival-time of Al; = D;. The average utili zation d ead periodic task i at QoS
level j is AA[]] = AAE([j]/AI.

Eli[j]: The estimated inter-arrival-time of an aperiodic task T; equals the average inter-arrival-time,
i.e., El; = Al, = D,.

7.4. QoS Actuator

A Highest-Vaue-Density-First (HVDF) QoS assgnment algorithm [29] is used in the QoS Actuator. The
value density of QoS level j of atask T; is defined as VDi[j] = Vi[j]/Bi[j]. The HVDF agorithm assgns
QoS levels to al the airrent tasks in the order of the deaeasing value density urtil the total estimated
requested utili zation reades a utilization constraint Uc. A fixed threshold of 80% is used by open loop
scheduling agorithms. In comparison, ou FCS agorithms dynamicdly change the threshald at eadh
sampling instant.

When ead task’s utili zation is small and there ae no dealline misses, HVDF approximates the
optimal value under the utili zation constraint. However, if the task exeaution times and/or task inter-
arrival rates are unknown, an open-loop QoS optimization algorithm may not acdieve maximize values
due to deadline misses.
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Note that our FCS architecture can incorporate different real-time scheduling policies and QoS
optimization algorithms. Our work focuses on the steady and transient state performance of the feedback
control loop rather than evaluating the basic scheduling policies or QoS optimization algorithms.

7.5. Profiling the Controlled Real-Time Systems

In the first set of experiments, we profile the controlled system to verify the saturation properties of the
controlled variables, miss ratio M(k) and CPU utilization U(k), and measure the miss ratio factor Gy,
which is a key system parameter used for computing the Controller parameter Kp in miss ratio control
(Equation 18a).

Since we are interested in the properties of the controlled system, we turn off the Controller and the
QoS Actuator of FECSIM in the profiling experiments. A set of step loads 9.(0, L) with different
overload level L, are used to stress FECSIM with for 60 sec. Each step load is composed of a set of tasks
with an average total requested utilization of L. The experiments are repeated for both EDF/P and
DM/PA configurations. We plot the measured average CPU utilization and average miss ratio
corresponding to each step load level L, in Figure 5a (DM/PA) and Figure 5b (EDF/P). Each point in the
figures represents the average value of 5 runs. The 90% confidence intervals of the average missratio are
also shown, while the confidence intervals of the average utilization are skipped because it is always
within £1% from corresponding average val ues.
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Figure 5: Controlled Variables vs. Total Requested Utili zation

7.5.1. Profiling Resultson DM/PA

First, we study the profili ng results on DM/PA (Figure 5a). CPU utili zation U(K) saturates at 100% after
the step load level L, exceals 100%. Missratio M(K) saturates at 0 when the average total requested
utili zation A’ is below 90%, and ceadline misses gart to occur when A’ reades 90%.

When A" > 902, the system’ s average missratio increases as the total requested utili zation increases.
We measure the maximum slop d the missratio curve nea the boundry of the saturation zone to
approximate the missratio fador Gy. In Figure 5(a), the maximum slope is 0.447when the average total
requested utili zation increases from 100% to 11Q%. Therefore, the worst-case miss ratio fador Gy =
0.447for the DM/PA settling.

7.5.2. Profiling Results on EDF/P

Seoond,we study the profili ng results on EDF/P (Figure 5b). CPU utili zation U(K) saturates at 100% after
the step load level L, exceals 100%. Missratio M(k) saturates at O when the average total utili zation A’ is
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below 1006, and ceadline misses dart to occur when A’ readies 100% (the deadline misses when A’ =
100% is due to randam exeaution times of the workload).

When A’ is above 100%, the system’s average missratio increases as the total requested utili zation
increases. In Figure 5b, the maximum slope is 0.447when the average total requested Uili zationincreases
from 100% to 110%. Therefore, the worst-case missratio fador Gy = 1.254for the EDF/P setting.

FC-UM
FC-U FC-M
Kp (DM/PA) 0.414
Kp (EDF/P) 0.185 0.148
W (Sampling 0.5sec
Window)

Table 2: Controll er Parameters of FCS Algorithms

7.6. Controller Parameters

Based on the worst-case utili zation ratio G, and the worst-case missratio fador Gy, we compute the
Controller parameter using Equations 18a and 18b.The resultant Cortroller parameter Kp for ead FCS
algorithmislisted in Table 2.

7.7. Performance References

The missratio reference depends on the gplicdion’s requirement and tolerance to dealline mises in
steady state. For example, Amazoncom may accet a higher miss ratio reference than E-Trade.com
because usually a merchandize purchase has less grict timing constraints than stocking trading
transadions. We asume that amissratio reference Ms= 2% (in bah FC-M and FC-UM) is appropriatein
our simulated applications. The utili zation reference Us shoud be lower than the nominal utili zation
threshold o the basic scheduling padlicy and the task set. Us shoud aso be lower than 100%, the
saturation boundry of the utili zation control. Since the theoreticd utilization boundof EDF and a
periodic task set is 100% in the ided case [19], we set Us= 90% in bah FC-M and FC-UM in the EDF/P
case. Although it has been shown that DM and general (aperiodic and/or periodic) task sets have a
theoreticd utili zation bound 6 58%, this boundis too pessmistic for our mixed aperiodic/periodic task
set. For example, in ou profili ng experiments (Figure 5a), the utili zation threshald Ay, appeasto beinthe
range (90%, 10®%). We choose Us = 80% in FC-U and Us = 90% in FC-UM. FC-UM has a more
optimistic utili zation reference than FC-U because the missratio control in FC-UM provides a worst-case
boundfor the dosed-loop performance even if the utili zation reference becomes higher than the adual
utili zation threshold. The dhasen performancereferences are summarized in Table 3.

FC-U FC-M | FC-UM
80% (DM/PA)

Us oo @EDmp) | VA | 90%

Ms | N/A 2% 2%

Table 3: Performance References of FCS Algorithms

7.8. Evaluation Experiment A: Arrival Overload

In this dion, we present the performance evaluation results of three FCS algorithms, FC-U, FC-M, and
FC-UM in resporse to an arrival overload SL(0, 15®%6). The exeaution time fador is Gy = 2. Therefore,
the average exeadution time of ead task was twice the estimation. An open loop scheduling algorithm
using a fixed utili zation constraint B = 80% for QoS Optimization is also evaluated as a baseline. The
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same scheduling policies (DM and EDF) and QoS optimization algorithm (the HV DF algorithm) are used
for all FCS agorithms and the baseline. A zero initial value for B(0) = O for the total estimated utilization
B(k) isused in this section. A larger initial value for B(K) is used in Experiment B (Section 7.9) to reduce
the settling time of FC-M and FC-UM. We now describe the results for each of the scheduling a gorithms.

781 FC-U

First, we look at FC-U with DM/PA (Figure 6a). In response to the arrival overload, FC-U increases the
CPU utilization U(k) by increasing the total estimated utilization B(k) of the tasks in the system. The
increasing B(K) is enforced by the QoS Actuator that increases task QoS levels with the QoS optimization
algorithm HVDF. By 4.5 sec, the settling time predicted by our control analysis, U(K) reaches 77.1%,
which iswithin 3.6% of the reference Us = 80%. Thisresult is close to our prediction that the U(K) should
reach within 2% of the reference by 4.5 sec. The small difference between the experimental results and
the theoretical prediction is due to the randomness of our workload. U(k) never reaches beyond 80% in
the transient state (before 4.5 sec). This result is also consistent with our theoretical prediction of zero
overshoot, Uy = 0.
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Figure 6: FC-U in response to an arrival overload

The CPU utilization U(k) remains stable all through the run. After 4.5 sec, the utilization stays close
to 80% and the system error stays close to zero. Because U(k) stays below the utilization threshold, the
miss ratio M(k) = 0 in throughout the run.

The performance of FC-U with EDF/P (see Figure 6b) is similar to that of FC-U with DM/PA. At 4.5
sec, FC-U increases the CPU utilization U(k) to 87.14%, within 3.2% of the reference Us = 90%. U(K)
never reaches beyond 90% in the transient state (before 4.5 sec). The CPU utilization U(k) remains stable
al through the run and close to 90% after 4.5 sec. Because U(K) stays below the utilization threshold, the
miss ratio M(k) = 0 throughout the run.
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Figure 7: FC-M in response to an arrival overload

782. FC-M

The performance evaluations of FC-M with DM/PA and EDF/P areillustrated in Figure 7. We first study
FC-M with DM/PA. In response to the arrival overload, FC-U increases the total estimated utilization
B(k) by increasing the QoS levels of arriving or admitted tasks. Due to the saturation of the miss-ratio
control, the settling time of FC-M in response to the arrival overload is longer than the prediction based
on the linear model (Equation 11). M(k) stays at O for the first 26.5 sec since the beginning of the arrival
overload. The system settles at approximately 30 sec when M(k) reaches 1.23% (within 0.77% to the
reference Ms = 2%) and U(K) reaches 94.44%. We can shorten the settling time of FC-M in response to
arrival overload by assigning a larger initial value to the total estimated utilization B[0] (as shown in
Section 7.9). M(K) never reaches beyond 2% and therefore achieves zero miss ratio overshoot in the
transient state.

M(K) remains stable throughout the run. In steady state (after 30 sec), M(K) stays close to 2% and
below 5% throughout the run except for M(k) = 5.97% at 31.5 sec. Thisresult shows that the steady state
error isclose to O as predicted by our analysis.

We also observe that with FC-M, the CPU utilization U(K) in steady state is clearly higher than the
CPU utilization (close to 80%) in the run of FC-U. Thisis because by directly controlling the miss ratio,
FC-M can change the CPU utilization to the vicinity of the (a priori unknown) utilization threshold,
which is higher than the utilization reference of FC-U that is set to 80% a priori.

The performance of FC-M with EDF/P (Figure 7b) is similar to the case of DM/PA. The settling time
is approximately 87 sec when the miss ratio reaches 2.88%. FC-M with EDF/P achieves zero overshoot in
transient state. The miss ratio stays close to 2% in steady state and remains stable throughout the run.
Similar to the case of DM/PA, FC-M with EDF/P also has a higher CPU utilization (close to 100%) than
FC-U with EDF/P (close to 90%) in steady state.

In summary, compared with FC-U, FC-M achieves higher CPU utilization and robustness with regard
to utilization threshold variations at the cost of alow, but non-zero missratio in steady state.
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Figure 8: FC-UM in resporse to an arrival overload

783. FC-UM

The performance evaluations of FC-UM with DM/PA and EDF/P are ill ustrated in Figure 8. First, we
study the performance of FC-UM with DM/PA. After the overload arrives, FC-UM increases the
utili zation U(k). Similar to FC-M, the missratio M(k) stays at 0 and the CPU utili zation U(k) increases
slower than FC-U. In the beginning of the run, the (saturated) missratio control computes a smaller
control signal Dgw(0) = Kp(Ms — M(0)) = 0.414%0.02-0) = 0.008than df the utili zation control’s sgnal
Deu(0) = Kp(Us— U(0)) = 0.185%0.9-0) = 0.167.Due to the min operation oncontrol inpus from the two
Controllers, the miss ratio control dominates the control loop in the starting phase. The miss control
signal remains 0.008 and stays snmaler than the utilization control signal, which deaeases as the
utili zation U(K) increases. At time 27 seg, the utili zation U(54) reates 94.9% and the missratio M(54) =
0.93%. Now the utili zation control signal Dgy(54) = -0.009 keames snaller than the missratio control
signa Dgu(54) = 0.004and takes over the control loop. Becaise the utili zation threshold is higher than
the utili zation reference Us = 90%, the utili zation control dominates the cntrol loop,and U(K) stays close
to 90% while the missratio stays at 0 after 27 sec. Therefore, the settling time is approximately 27 sec
Since neither U(K) nor M(K) surpasses its correspondng reference in transient state (before 27 seg), FC-
UM adiieves 0 avershod in bah U(k) and M(Kk).

In the steady state, the utili zation U(k) stays close to 90% and, rence, FC-UM adhieves zero steady
state @ror in term of the utili zation. The missratio M(k) remains close to (%, lower than the missratio
reference Ms = 2% throughou the steady state except M(63) = 2.04%. This is becaise the utili zation
reference is lower than the utili zation threshold and therefore dominates the cntrol loop in the steady
state. Note that if the utili zation reference were higher than the utili zation threshold, the missratio control
would daminate the antrol loopand FC-UM would achieve zero steady error in term of missratio and a
steady state utili zation close to the utili zation threshold. The system remains gable throughou the run.

The performance of FC-UM with EDF/P (Figure 8b) is smilar to the cae of FC-UM with DM/PA.
The missratio control dominates the cntrol 1oop in the beginning of the experiment urtil 75 sec (the
settling time) when the utili zation control starts to take over the cntrol loop. FC-UM with EDF/P
adhieves zero overshod in bah utili zation U(k) and M(k). Because the utili zation reference Us is lower
than the utili zation threshold, FC-UM with EDF/P achieves zero steady state aror in term of utili zation
and the missratio stays at 0 throughou the steady state.

In summary, FC-UM combines the alvantages of both FC-U and FC-M and adieves zero stealy
state missratio in the nominal case when the utili zation reference is lower than the utili zation threshold.
Furthermore, FC-UM can also achieve a low steady state missratio even if the system'’s utili zation
threshold changes to lower than the utili zation reference.
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Figure 9: Open loop QoS optimization in response to an arrival overload

Utilization; MissRatio (%)

7.8.4. Open Loop QoS Optimization

In comparison with the FCS algorithms, the system scheduled by the open loop QoS optimization
algorithm suffers from high miss ratios with both DM/PA and EDF/P (see Figure 9). This is because the
task execution time is on average twice that of the estimation and the QoS optimization algorithm
overloaded the CPU due to the incorrect estimations on task execution time. On the other hand, the
system would suffer from low CPU utilization if the task execution time were lower than the estimation
(see Section 7.9). This result demonstrates that the open loop QoS optimization algorithm is incapable of
maintaining satisfactory performance in face of unpredictable workload.

In summary, we have demonstrated that all of our three FCS algorithms, FC-U, FC-M, FC-UM can
provide desired performance guarantees in terms of miss ratio and CPU utilization in steady state and
achieve satisfactory performance profiles in response to an arrival overload 9.(0, 150%) when the
average task execution times is different from the estimation. In contrast, the open-loop QoS optimization
failsto provide such performance guarantees in face of the same overload.

Interval (sec) 0-100 100-200 200-300 300-400
G, 0.8 1.26 2 15

Table 4: Execution time factor G, in Experiment B

7.9. Evaluation Experiment B: Arrival/lnternal Overload

In the second set of evaluation experiments, we stress our FCS algorithms and the baseline with a more
unpredictable load profile than the one used in Experiment A. The new load profile causes an arrival
overload of 9.(0, 150%) in the beginning of each run. Furthermore, the average task execution times of
al tasks vary every 100 sec to create internal overload in the system. The execution time factor G,’
throughout the run is shown in Table 4. The execution time factor G,” instantaneously jumps from 0.8 to
1.26 at time 100 sec. This change causes a 57.5% increase in the average execution time of every task.
Suppose the total requested utilization of the system is A(200) before the jump, the execution time change
corresponds to an internal overload of SL(A(200), 1.575A(200)). A similar step load SL(A(400),
1.575A(400)) occurs again at time 200 sec when G,” jumps from 1.26 to 2. The jump at time 300 sec, on
the other hand, creates an internal underload SL(A(600), 0.75A(600)) (modeled as a negative step signal)
when G’ instantaneously decreases from 2 to 1.5.
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In this set of experiments, a larger initial value B(0) = 80% is assigned to the estimated requested
utilization B(k) to shorten the settling time of FC-M and FC-UM in response to arrival overloads. The
open-loop baseline uses a fixed B(k) = 80% and B(k) = 90% for QoS optimization with DM/PA and
EDF/P, respectively. Due to space limitations, only the results of FC-UM and the open-loop baseline are
presented in detail. The detailed results of FC-U and FC-M are available in [24].
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Figure 10: FC-UM in response to an arrival/internal overload

79.1. FC-UM

The run of FC-UM with DM/PA and EDF/P is illustrated in Figure 10. We first study the run of FC-UM
with DM/PA.. In response to the arrival overload at time 0, the miss ratio control dominates the control
loop in the transient state until the utilization approaches the utilization reference Us = 90% when the
utilization takes over the control loop. Because the utilization reference is lower than the utilization
threshold, the utilization control dominates the control loop and the system settles to steady state at 17.5
sec. The miss ratio M(K) stays at 0% most of the time while in steady state, and the utilization U(k) stays
close to 90%.

The system stays in the steady state until 200 sec when the average execution time of every task
increases from 0.8 to 1.26. The utilization U(K) overshoots to 100% and the miss ratio overshoots to
24.53%. Although both the miss ratio control and the utilization control compute negative control signals
in response to the internal overload, the miss ratio takes over the control loop because the utilization
saturates at 100% resulting in a control signal with a smaller magnitude. The miss ratio control dominates
the control loop until the utilization approaches 90% and the miss ratio becomes zero. The FC-UM then
takes over and the system settles to a new steady state at 105 sec with an average miss ratio of 0.07% and
an average utilization of 89.85% (steady state error Eg; = 0.15%).

FC-UM responds similarly to the internal overload at 200 sec when the execution factor increases
from 1.26 to 2. The system settles down to a satisfactory steady state within 2.5 sec. In the steady state
(from 203 sec to 300 sec), the average miss ratio is 0.12% and the average utilization is 89.71% (steady
state error Eg; = 0.29%).

At time 300 sec, the execution time factor decreases from 2 to 1.5 and the utilization U(K) drops to
69.24%. Similar to the beginning of the run, FC-UM increases total estimated utilization B(k) by
improving task QoS levels. At time 308.5 sec, U(K) increases to 92.02% while the system resettles in a
steady state with an average miss ratio of 0.07% and an average utilization close to 89.90% (the steady
state error Eg; = 0.10%).

The performance of FC-UM with EDF/P is similar to the above case with DM/PA. FC-UM with
EDF/P successfully reacts to both the arrival overload and the internal overload and (re)settles to
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satisfactory steady states while the miss ratio stays close to 0% and the utilization stays close to 90%
despite of the difference in execution times. This observation verifies that FC-UM has zero sensitivity
with regard to execution time variations and provides robust performance guarantees in face of
unpredictable workloads.
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Figure 11: Open loop QoS optimization in response to an arrival/internal overload

7.9.2. Open-Loop QoS Optimization

The performance of the open-loop baseline with DM/PA and EDF/Pisillustrated in Figure 11. In contrast
with our FCS agorithms, the open-loop baseline fails to provide performance guarantees in miss ratio or
utilization in both EDF/P and DM/PA tests. When task execution times are lower than the estimations
(from 0O to 100 sec), the baseline algorithm underutilizes the CPU (with utilization U(K) closeto 72%). On
the other hand, when the execution exceeds the estimations (from 100.5 sec to 400 sec), the system
suffers from persistent deadline misses. For example, the baseline with DM/PA has an average miss ratio
of 9.23% from 200.5 sec to 300 sec and the miss ratio reaches 94.1%. The baseline with EDF/P has an
average missratio of 51.39% in the same period.

In summary, our evaluation results verify that our FCS algorithms can provide the following
performance guarantees under the stability condition in Equation 22:

1) Stahility in face of arrival overload and internal overload

2) System miss ratio and utilization stay close to the corresponding performance reference in steady

state regardless of variations in task execution times
3) Satisfactory settling time and low overshoot in transient state

In addition to the performance profiles, the average performance of the FCS algorithms and the
baseline are shown in Figure 12a (DM/PA) and Figure 12b (EDF/P). The considered performance metrics
include the average miss ratio M,, average CPU utilization U,, and the Average Value Completion Ratio
V, defined as the total completed value divided by the total values of all the arriving tasks at the highest
QoS level. V, characterizes the utility and throughput of the system throughout the run. All of the above
metrics is computed based on the performance throughout the run. Every data point in Figure 12ab is the
mean of 5 repeated runs. The 90% confidence interval of each M,, U,, and V, is within £0.91%, +0.23%,
and +1.25%, respectively, to its mean. We can see that all the FCS algorithms consistently outperform the
open-loop baseline in terms of average miss ratio and the value completion ratio.
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Figure 12: Average performance of FCS agorithms and the open-loop baseline
(Ma: Average Miss Ratio; Ua: Average Utilization; Va: Average Vaue Completion Ratio)

In summary, our evaluation results demonstrate that our three FCS agorithms provide robust and
precise performance guarantees in term of utilization and miss ratio even when the workload significantly
varies from the estimation. Furthermore, they also achieve satisfactory transient state performance
profilesin responseto arrival and internal overload. In contrast, an open loop QoS optimization algorithm
failsto provide such guarantees when the workload deviates from the a priori estimation.

8. Conclusions

In summary, this paper presents a feedback control real-time scheduling (FCS) framework for adaptive
real-time systems. An advantage of the FCS framework is its use of feedback control theory (rather than
ad hoc solutions) as a scientific underpinning. We apply a control theory based design methodology to
systematically design FCS algorithms to satisfy desired transient and steady state performance
specifications of real-time systems. In particular, we establish an analytical model and analyses of FCS
algorithms, which are major challenges and key steps for the design of adaptive real-time systems. Based
on our model, we identify different types of real-time applications where each FCS algorithm can be
applied. Performance evaluation results demonstrate that our analytically tuned FCS algorithms provide
robust steady and transient state performance guarantees for periodic and aperiodic tasks even when the
task execution time varied by as much as 100% from the estimation.
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