
Reliable Stream Scheduling with Minimum Latency

for Wireless Sensor Networks
Hao-Tsung Yang∗, Kin Sum Liu∗, Jie Gao∗, Shan Lin†, Sirajum Munir§, Kamin Whitehouse‡, and John Stankovic‡

∗Department of Computer Science, Stony Brook University
†Department of Electrical and Computer Engineering, Stony Brook University

‡Computer Science Department, University of Virginia
§Bosch Research and Technology Center, Pittsburgh, PA

Abstract—As sensor networks are increasingly deployed for
critical applications, reliability and latency guarantee become
more important than ever to meet industrial requirements. In
this paper, we investigated the impact of link burstiness on stream
scheduling using a data trace of 3,600,000 packets collected from
an indoor testbed. We demonstrate that a good tradeoff between
reliability and latency can be achieved by allocating certain
time slots on each link for stream transmissions based on its
burst length and frequency distributions. With this observation,
we design transmission scheduling and routing algorithms for
data streams to meet a specified reliability requirement while
minimizing end-to-end latency. For the multi-stream scheduling
problem, we prove its NP-hardness and design an algorithm that
achieves the reliability guarantee and an O(log n) approximation
of minimizing the maximum end-to-end latency for any stream.
Trace-driven simulations show that our solution meets specified
end-to-end reliability requirements with latency up to 9.18 times
less than existing solutions.

I. INTRODUCTION
As sensing and wireless technologies become mature, wire-

less sensor networks are increasingly deployed for applications

including industrial plant monitoring [22], building occupancy

sensing [15], and manufacturing pipeline monitoring [19].

These applications usually require sensing data to be collected

periodically for real-time monitoring and diagnosis purposes.

Therefore, one or more real-time data streams need to be

transferred among the sensors and controllers via multi-hop

with high reliability to detect events of interest. However, the

problem of achieving specified reliability requirement in multi-

hop low power sensor networks is very challenging due to the

unpredictable packet loss caused by various interferences and

many other factors.

There has been extensive research on link quality modeling

and characterization. Srinivasan et al. [23] developed a link

model for measuring the bursty packet loss. Munir et al.

[17] focused on capturing the worst-case packet loss on each

link. These valuable results show that in a closed indoor

environment with limited external interferences, certain links

have more predictable reliability than others. Based on this

observation, a few wireless sensor network designs have suc-

cessfully achieved 100% reliability in deployed systems [7],

[20]. On the other hand, such high reliability is usually

obtained at the cost of high latency and energy consumption.

There are many applications require high reliability but not

necessarily 100% while the low end-to-end delay is also

preferred [12], [15], [19]. For instance, in a home health

monitoring system, 95% reliability is sufficient to monitor

the health condition of the user and a few packet loss does

not affect the monitoring quality significantly. Therefore, it is

desirable to find a good tradeoff between reliability and latency

in stream data transmission.

To address this problem, we first conduct an analysis of a

data trace collected from a real indoor sensor network testbed

to learn the patterns of packet loss on different links. We

show that most bursty links with low burst frequencies have

consistent loss patterns over a long time period. Therefore,

by allocating certain time slots on such links, i.e. restricting

the maximum number of retransmissions, a specified level

of link reliability and corresponding latency bound can be

achieved. Our solution is based on the following insight: most

of the links do not show their worst case burst behaviors

frequently. Hence, instead of allocating time slots based on

maximum burst length, if we allocate slots based on frequency

distribution of bursts subject to link interferences and utilize

load-balancing algorithm, the solution not only offers expected

reliability but reduces end-to-end latency significantly.

Thus, we design a cross-layer solution to schedule streams

with different reliability requirements. At link layer, a link

reliability table stores the numbers of time slots required

to achieve different levels of packet delivery ratio for this

link. At network layer, our algorithm decides the number

of allocated slots for each stream on each link to meet the

specified reliability requirement and minimize the maximum

end-to-end latency bound of all streams.When scheduling

single stream, our algorithm meets the reliability requirement

with the minimum latency bound. For multiple data streams

in the network, the interferences among streams need to

be considered. We prove the hardness of this problem and

design an approximation algorithm with reliability guarantee

and bounding the maximum latency. Differ from previous

researches which consider 100% reliability only [17], [20], our

algorithms prove rigorous guarantees on the maximum delay

with any given reliability requirements.

Extensive trace-driven simulations with 300 streams show

that our solution successfully meets all the specified reliability

requirements: given the stream reliability requirements 95%,

97%, 99%, the average end-to-end delivery rates achieved are

95.7%, 97.76%, and 99.16%.

The contributions of this paper are summarized as follows:

• We reveal the impacts of link burstiness on the reliability

and latency of stream transmissions with data-driven

analysis.

Fig. 1: A monitoring stream example: transmitting multiple samples
to the sink node

• We provide a cross-layer solution to meet the specified

reliability requirement and minimize end-to-end latency

bound.We prove the stream scheduling problem is NP-

hard and design an algorithm that achieves the specified

reliability guarantee and an O(log n) approximation of

minimizing the maximum end-to-end latency bound of

all streams. Note that the end-to-end latency can not be

infinity in such a case as the number of retransmissions

are restricted to a finite limit.

• Our solution successfully meets the end-to-end stream

reliability requirements while reducing end-to-end latency

by up to 9.18 times comparing to existing algorithms in

extensive trace-driven evaluations.

The rest of the paper is organized as follows, Section II

states the definition of the problem. In Section III, we discuss

how to build tables for trading reliability with delay at link

level and analyzes the steadiness of the tables. The design

of our algorithms is described in Section IV. We conduct

simulations for the proposed algorithms and report the results

in Section V. Finally, SectionVII is the conclusion.

II. DEFINITION
In many monitoring applications, periodic sensing data

streams are transmitted from the sensors to the sink via a multi-

hop network. A typical data stream instance (e.g. vibration,

acoustic, ECG) consists of a number of continuous or discrete

samples, which are transmitted with a batch, i.e. a set of related

packets. This scenario is summarized as follows:

1) Each stream generates a batch of multiple packets peri-

odically.

2) For each stream, there is a stream reliability requirement:

a specified percentage of batches is required to be deliv-

ered for the continuous monitoring purpose.

3) For each batch of packets, there is a batch reliability

requirement: a minimal percentage of packets is required

to be delivered reliably for each batch, to achieve the

quality of a sample.

This scenario is shown at Figure 1. Generally, each data

stream is represented by a sequence of batches of packets from

source s to sink t. The batch rate at the source is denoted by b,
which represents the number of batches per hour. The stream

reliability requirement is µ. Each batch has a set of p packets

and the batch reliability requirement is ξ. We formally describe

this stream scheduling problem as a 6-tuple (s, t, b, µ, p, ξ).

The formal description of our problem is as the following;

given a set of streams needs to be scheduled, each stream

i is represented by 6-tuple (si, ti, bi, µi, pi, ξi), how to find

routes and transmission schedules to meet the stream and batch

reliability requirement µi, ξi of all streams while minimizing

maximum latency? In this paper, we use time slots as the

measurement of latency. A time slot is a scheduling time unit

such that any node can transmit one packet to another node

and receive an acknowledgment if the packet is delivered.

III. LINK RELIABILITY TABLE CONSTRUCTION

A. Packet trace collection

We conducted a 21-day experiment on a testbed with 48

Tmote nodes running TinyOS. For each pair of two nodes,

a total of 3,600,000 packets is transmitted to evaluate packet

delivery traces. The transmission rate is approximately 200

packets per second for all links. The transmissions of different

links are scheduled at different time slots to avoid a collision.

The receiving status of each packet at every node is recorded

as a sequence of 0 and 1. More specifically, a packet delivery

trace D contains a 1 at position d means the d-th packet is

successfully received, which we denoted by D[d] = 1. So for

each link, we get a trace D with length 3,600,000.
B. Transmission for a batch

Consider a case of sending a batch of packets with the

retransmissions at the link layer, the transmitter keeps re-

transmitting the packets to the receiver until it receives the

full batch. Each transmission takes exact one time slot. In

our analysis, we set the number of allocated time slots l
per batch of each link. The transmitter will immediately stop

retransmitting the rest of packets in the batch if it already

uses l time slots. We change the number of the allocated time

slots l on different links to show how it affects reliability

requirements ξ, µ and the latency.

As the previous definition, a batch is treated as successfully

transmitted if and only if there are more than p ∗ ξ received

packets, where p is the number of packets per batch and ξ
is the batch reliability requirement. Therefore, given a trace

D, we can calculate the delivery rate, which is the rate of

successfully transmitted batches, if we assume the starting time

of the transmission is uniformly distributed in D.

In detail, denote | · | is the number of received packets in

a length of the trace. Given parameters p, l, for an arbitrary

starting time slot d at trace D, the number of received packets

during the time slot d to d+ l − 1 is

min(|D[d, d+ l − 1]|, p). (1)

Since we assume the starting time is uniformly distributed

on the trace, we calculate the empirical distribution function

Fl respected to the number of received packets among all

possible starting time d. Therefore, the delivery rate of a batch

is actually the value of 1− Fl(x ≤ p ∗ ξ).
Figure 2 is such an example with batch size p = 5 and batch

requirement ξ = 80%. It shows the cumulative distribution of

received packets in a batch under different allocated time slots

l. For simplicity, we only show allocated time slots l being 5,

15, 100, or 1000.

Now, by drawing a vertical line as the threshold of specific

batch requirement ξ with size p, each distribution gives the

percentage of batches that satisfies ξ. For example, allocating

5 time slots for each batch gives you 91.5% delivery rate for

ξ = 80% (1−F5(x ≤ 5 ∗ 80%) = 91.5%). Therefore, we can

record this delivery rate under different allocated time slots l.

Fig. 2: Empirical distribution for different values of l (allocated time
slots)

ξ = 80%, p = 5
Delivery rate 91.5% ... 95.5% ... 97.5% ... 100%

Allocated time slot 5 ... 15 ... 100 ... 1000

TABLE I: Link reliability table record the batch delivery rate

with corresponding allocated time slots at trace D

Notice that these tables might cannot reflect link qualities

for the long term in reality. However, we can also easily update

tables in real time system. By taking the transmission results

as an additional training set, we can use a weight parameter to

combine the old and the new training set for updating tables.

C. Link reliability table

Based on our empirical analysis, we design the link reliabil-

ity table as a 2-column data frame recording (batch) delivery

rates and allocated time slots on a link. It treats delivery rate

as the key such that our algorithm can query the minimum

allocated time slots for the link to meet specific delivery

rate. The allocated time slots for different delivery rates are

calculated based on the trace analysis. The example is shown

at Table I.

We found that the tables of different links are highly corre-

lated with the link burstiness, so we classify links according

to different patterns of burstiness and discuss table steadiness

among all classes as follows.

With many complex factors affecting bursty packet loss

distribution, each link might show a totally different charac-

teristic of the tradeoff between delivery rate and latency. If

the link usually suffers from long consecutive packet losses,

then increasing allocated time slots does not improve delivery

rate significantly. On the other hand, if the link suffers from

short bursty loss, increasing the allocated time slots might

enhance reliability. Here a bursty packet loss is represented

by a substring with consecutive 0’s in the delivery trace.

Based on this intuition, we look at the bursty packet loss fre-

quency and length on different links. We define average burst

length as the average length of burstiness and burst frequency

as the average number of burstiness within one hour of the

delivery trace. Next, we classify links into 4 classes by their

burst length and burst frequency. We pick links with 70% PRR

as available links and use the median values as the threshold to

divide these classes, i.e. burst frequency per hour ≥ 1157 is

high-frequency links and average burst length ≥ 2.57 as long

burst length links. Table II is the distribution of these classes.

HFLB : High-frequency with long-burst length.

HFSB : High-frequency with short-burst length.

LFLB : Low-frequency with long-burst length.

LFSB : Low-frequency with short-burst length.

HFLB HFSB LFLB LFSB

29.7% 21.3% 21.3% 29.7%

TABLE II: Link class distribution on our testbed

If burst distribution is stable, the link reliability tables

should be stable too, given that the measurement is taken

for a sufficient period to capture the distribution of burst.

To check table steadiness of each class, we calculate the

standard deviation of delivery rate over different measurement

days with the numbers of allocated time slots. The standard

deviation is calculated from a set of reliability tables with

same measuring length but different measuring days. For

consistency, we use 3 days of a delivery trace as measuring

length (our analysis shows the tables change little with more

than 3 days of a delivery trace.) Therefore, for each link, there

are 18 reliability tables and we calculate the standard deviation

among them.

0.0000

0.0025

0.0050

0.0075

1 2 3 5 10 30 50 100 300
allocated time slots

S
.D

.
o
f
d
e
liv

e
ry

 r
a
te

Class
HFLB
HFSB
LFLB
LFSB

Fig. 3: The average standard deviation of delivery rate over different
measuring days among all classes

Figure 3 shows the standard deviation given different num-

ber of allocated time slots in each class. The x-axis is the

number of allocated time slots and y-axis is the average

standard deviation of each class. Error bars showed the stan-

dard errors among links at the same class. Generally, the

delivery rate changes little with a high number of allocated

time slots(> 30). However, for HFLB and HFSB classes, the

delivery rate is not stable with a low number of allocated time

slots. We believe it is because links in these classes suffer

burstiness frequently, which affect burst distribution hugely

and make link reliability diverse among different measuring

days. In sum, the standard deviation of the delivery rate among

all classes is lower than 1%, which we believe is stable enough

for most applications. For other applications with hard real-

time guarantees, we suggest using LFLB and LFSB links since

these links show very low standard deviation(< 0.1%), which

imply high consistency of the tradeoff between reliability and

delay.

In long-term, the classes of links need to be updated

according to table changes. The update frequency is based on

the environment of sensor network. According to our analysis,

it is suitable to update classes once per month in our testbed.

Such overhead is manageable for real world application.

IV. SCHEDULING ALGORITHM DESIGN

In this section, we will describe how to use the link reliabil-

ity tables to achieve end-to-end stream reliability requirements

with minimum delay. We start from three different application

scenarios and we will discuss the algorithms for each scenario

separately.

Notice that our scheduling algorithms are focused on choos-

ing routes for each stream rather than transmission time

slots. Therefore, for the flexibility, we don’t consider internal

interference in second and third scenarios because it is also

relevant to transmission schedule and the protocol of sensor

network. However, we also provide a scheduling algorithm

which avoids internal interference in section IV-D3.

A. Three streaming scenarios

To quantify the end-to-end latency, recall that one packet

transmission will take a time slot. The exact length of a time

slot depends on the implementation of the protocol and here

we count the number of slots taken from source to destination.

Depending on applications, we may have three streaming

scenarios, single stream with a single batch, single stream with

multiple batches and multiple streams with multiple batches.

s t
20 30 20

batch
stream

Fig. 4: One stream transmitting one batch with latency bound =
20+30+20 = 70. In the worst case, the only batch may require 70
packet transmissions along the route to reach node t.

Single Stream with a Single Batch. In this scenario, we

assume that there is only a single data stream in the network

and the stream has only a single batch of packets. Figure 4

illustrates one example. Suppose in this example we need to

allocate 20, 30, and 20 time slots respectively along the route

to achieving the reliability requirement. Therefore the worst

case end-to-end latency for the single batch to successfully

arrive from s to t with the given reliability requirement is 70,

by adding up the allocated slots along the route.

In general, each link may have multiple entries in the link

reliability table. Thus we want to find among all routes that

satisfy the given reliability requirement the one with minimum

total latency. This problem has similarity to finding the shortest

path when the weight of a link is taken as the number of

allocated time slots of the link. But the challenge is to consider

the reliability of the route as well. Later we show how to use

a dynamic programming algorithm to solve it optimally.

s t
20 30 20

stream

batch batch batch

Fig. 5: One stream transmitting multiple batches with latency bound
= 30. In the worst case, the node t may need to wait for 30 packet
transmissions to receive a new batch.

Single Stream with Multiple Batches. In this case, we have

a single data stream with multiple (possibly infinite) batches

of packets. For the example in Figure 5, the node s generates

and sends out batches continuously. Now we have a pipeline

of packets traveling along the route. While the first batch is

being transmitted on the second link the second batch can

be transmitted along the first link (here we assume it is the

full-duplex sensor network for simplicity). It will still take

70 time slots for the first batch to arrive at the destination.

But after that, every 30 slots the destination receives another

batch. In this case, the natural latency measurement is the

throughput of the flow – the number of time slots for receiving

an additional batch, which is the bottleneck latency along the

route. Again we find the route with maximum throughput

(minimum bottleneck latency) among all routes that meet the

reliability requirement.

s0 t0

20

20

20

s1 t1

1010

30

stream 0

stream 1

batch

batch batch

batchbatch

batch

Fig. 6: Two streams transmitting multiple batches with latency bound
= 30+20 = 50. In the worst case, the node t0 (t1) may need to wait
for 50 packet transmissions to receive a new batch from source s0
(s1) since the two streams take turn to use the shared link.

Multiple Streams with Multiple Batches. In Figure 6, one

of the links is shared between two streams, requesting 30 and

20 slots respectively for each batch. To meet the reliability

guarantee for the shared link we run round-robin on all the

data streams through it. Therefore, the latency for a batch to

get through the shared link in this example is 50 = 30 + 20
as the link is shared by two streams. For each data stream, we

measure its throughput as the bottleneck latency among the

links on its route. We look for routing algorithms such that

the maximum throughput for all streams is minimized.

B. Single Stream with a Single Batch

As explained earlier, finding a route to minimize latency

for a single stream with a single batch is similar to finding

the shortest path. We adapt and modify the Floyd-Warshall

algorithm[6] which uses a dynamic programming approach.

The main challenge is to handle the reliability requirement.

In particular, each link has multiple entries in its reliability

table and we need to select and combine the link reliability

to meet the end-to-end reliability requirement. This difference

is reflected in how we combine the subproblems in the DP

formulation. For a high-level idea, we are storing and updating

a table for each pair of nodes x, y to record the tradeoff

between reliability and allocated time slot for source s and

destination t.
The details are provided in the Algorithm 1. For every pair

of source x and destination y, we maintain a table Txy(S)
which records the reliability tradeoff of a path from x to y
using intermediate nodes only from the set S. Initially Txy(∅)
is obtained directly from the data traces [Line 4]. The final

solution can be found in table Tst(V), where V is the set of

all vertices. The program builds upon subproblems: each time

we introduce a new node into the set S at a time [Line 6], we

incrementally update the tables [Line 9] until S = V [Line

12]. The value l of the entry (µ, l) ∈ Tst(V) is the minimum

end-to-end latency to achieve reliability requirement for the

Algorithm 1 Find-minimum-time-slot-path

1: procedure FIND-FASTEST-PATH(s, t, p, ξ)

2: S ← ∅
3: for any two vertices x, y do

4: initialize(Txy(S, p, ξ))

5: end for

6: repeat

7: pick a vertex v in V/S
8: for any two vertices x, y do

9: update(Txy(S ∪ {v}, p, ξ))

10: end for

11: S ← S ∪ {v}
12: until S = V ⊲ If all vertices added, done

13: return Tst(V, p, ξ)
14: end procedure

x y

v

Txy(S)

Txv(S) Tvy(S)

Fig. 7: Two operations to update node-to-node tables. After concate-
nating Txy(S) and Tvy(S), we can compare it with Txy(S).

stream. Note that the relative frequency of transmission is not

applicable to the single stream case so the parameter bi is not

used in the algorithm.

Since we are only working on the tables parameterized by p
and ξ. The notation for Txy(S, p, ξ) is abbreviated to Txy(S)
whenever the context is clear. The remaining question is to

update the table. For doing so, we need to introduce two

operations, compare and concatenate.

Concatenate. The Concatenate operation is to combine the

tradeoff information from two tables Txv(S) and Tvy(S) for

some set S (v 6∈ S) (i.e., the end node of the first table is the

start node of the other table). We can concatenate the tables for

xv and vy to form a new table denoted as T v
xy which considers

paths going through v. Taking Figure 7 as an example.

For each entry (gj , lj) ∈ T v
xy, the allocated time slot lj is

equal to the minimum sum of allocated time slots from all the

combinations between (gp, lp) and (gq, lq) satisfying gj . That

is,
(gj , lj)← (gj , min

gp·gq≥gj
(lp + lq)), (2)

where (gp, lp) ∈ Txv(S), (gq, lq) ∈ Tvy(S). Naively, to

calculate a single new entry (gj , lj), it takes O(k2) where

k is the number of entries in each table, to evaluate all

the combinations of gp and gq . However, notice that lp is

monotonically increasing when gp is increasing, so as lq.

Therefore, if we fix the entry’s index at ṗ in Txv(S) when

calculating the entry j in Txy(S), the minimum value of

(lp + lq) must be at the entry with the minimum index q
such that gṗ · gq ≥ gj . In addition, for each entry ṗ, this

corresponding q is pre-computable and we can store them in

a k × k matrix. Hence, to calculate all the combinations of

gp and gq, we can always look up corresponding gq from the

matrix. The time complexity of computing an entry (gj , lj)
reduces to O(k) in this way. With pre-computation, deriving

all entries in T v
xy takes only O(k2).

Compare. The Compare operation is used to compare the

tradeoff of two different paths. After we derive T v
xy by the

concatenate operation, we need to revise the current estimate

in Txy(S) with this new information to form the new table

Txy(S ∪ {v}). We perform the following procedure. For each

entry (gj , lj) ∈ Txy(S ∪ {v}),

(gj , lj)← (gj ,min(lpj , l
q
j)), (3)

where (gj , l
p
j) ∈ Txy(S) and (gj , l

q
j) ∈ T v

xy. This operation
takes time O(k).

The update operation is defined as:

Update(Txy(S∪{v})) := Compare

{
Conc.(Txv(S), Tvy(S))

Txy(S)

The time complexity of update takes O(k2 + k), where k
is the number of entries in each table. In sum, the total time

complexity is O(|V |3k2) for Algorithm 1. This algorithm only

records the optimal tradeoff from s to t. However, it is easy

to also record the path by inserting one more column in every

table. This column reports the path and allocated time slot

setting at each edge from x to y and then we can get both

time slot allocation and its corresponding path.

C. Single Stream with Multiple Batches

When the single stream has multiple batches we look

for the path with minimum bottleneck delay. Algorithm 1

can be slightly modified to solve this problem by adjusting

the concatenate operation. Specifically, considering a stream

sending multiple batches, the end-to-end delay is the largest

allocated time slot among all edges (weight of the bottleneck

link) in the route. In this case, we can retain most parts of the

algorithm in Section IV-B but modify concatenate operation

from summing allocated time slots to taking the maximum.

Concatenate for Multiple Batches For each entry (gj , lj) ∈
T v
xy, the allocated time slot lj is equal to the minimum

of maximum allocated time slots from all the combinations

between (gp, lp) and (gq, lq). That is,

(gj , lj)← (gj , min
gp·gq≥gj

(max(lp, lq)), (4)

where (gp, lp) ∈ Txv(S), (gq, lq) ∈ Tvy(S). The analysis of

time complexity is the same as Section IV-B. Therefore the

running time for single stream with multiple batches routing

is also O(|V |3k2), k is the number of entries for each table.

D. Multiple Streams with Multiple Batches

For multiple streams, the latency bound is the maximum

latency (bottleneck) on a link to fulfill the reliability require-

ment of all streams. In general, multiple streams may share

edges. Since an edge sends only one batch at a time, the total

latency on an edge per batch is the sum of slots we allocate

for each stream on this edge. For the notations, we denote rje

is the allocated time slots for stream j on edge e and re as

the sum of slot for stream using edge e, which is,

re =
∑

j

rje. (5)

The maximum latency per batch is denoted as δ which is

the maximum of re in the network, which is,

δ = max
e∈E

re. (6)

In addition, different streams transmit at different rates
which are characterized by the relative transmission frequency

parameter b. We must consider its effect on the allocated time

slots in determining δ.

We analyze and solve this problem in two parts. In the

first part, we prove that finding the smallest possible δ is

NP-hard. In the second part, we provide a O(log |V |) online

approximation algorithm for δ where V is the node set.

1) NP-hardness Proof: To prove hardness, we reduce the

edge-disjoint path problem (EDP) to multiple streams with

multiple batches routing problem. In a classic EDP, given

a graph G = (V,E) and a set of source-sink pair vertices

{(s1, t1), (s2, t2), ..., (sk, tk)}, we need to return whether there

exists a set of edge-disjoint paths for all the pairs. Given an

EDP instance, we turn it into an instance of our problem.

In the setting of our routing problem, we set the sensor

network topology to be graph G and each source-sink pair

(si, ti) in EDP is convert to a stream (si, ti, b, 100%, 1, 100%),
where the relative frequency b is an arbitrary integer greater

than the number of total edges |E|. In addition, link reliability

table at each edge e has only one entry (100%, 1), which

means every edge is perfectly reliable. Now, if there is an

edge-disjoint solution for all pairs in the EDP instance, all

streams can be satisfied with per batch latency δ ≤ b. On the

other hand, if there does not exist edge-disjoint paths for all

the pairs, two streams will share an edge. The transmission

time on that edge must be at least 2b time slots.

Therefore, the routing problem is an NP-hard problem. In

addition, the same reduction shows that it is NP-hard to find

a 2-approximation on the maximum latency of all streams.

2) Approximation Algorithm: In this section, we describe

an algorithm that provides O(log |V |) approximation on the

maximum latency, where |V | is the number of nodes in graph

G. The algorithm is online. That is, we assume the streams

come one at a time and we update the latency bound δ for each

time we arrange a new stream. We prove that every time after

we schedule a new stream, the latency δ is no greater than

βδ∗, where β = O(log |V |) and δ∗ is the latency of optimal

scheduling for the same set of data streams. For clarity, we

put the proof at Appendix A and give the main idea in this

section.

Our algorithm is inspired by the online algorithm for load

balancing problem, which is to minimize the maximum traffic

load while satisfying all the requests [1]. The main idea is

to introduce an exponential weight function on each edge and

run shortest path algorithm. In our case, we choose routes only

among those that meet the given reliability requirements. The

good thing is that we can again use dynamic programming to

handle this part. For convenience, we first define some table

operations. For the notations, Te is the reliability table of edge

e and a is a constant.

• Te · a: For each entry (g, l) ∈ Te , (g, a · l) ∈ Te · a
• Te + a: For each entry (g, l) ∈ Te, (g, a+ l) ∈ Te + a
• aTe : For each entry (g, l) ∈ Te, (g, al) ∈ aTe

The Assign-route algorithm is shown in Algorithm 2. The

input is a new stream that is not assigned yet. G is the

topology of the sensor network. Λ, β are the parameters used

to ensure the approximation factor. After receiving the inputs

of a new stream, Assign-Route constructs new tables by

including the exponential function of the currently allocated

time slots on each edge. Then it runs Find-minimum-time-

slot-path Algorithm on these modified tables T̂ to assign the

route. This is to make sure the new route avoids the already

congested edges and achieves load balancing [Line 4 to 7]. a
is a chosen constant bigger than 1.

Notice that the allocated time slot of each edge [Line 8] is

calculated from the exponential reliability tables. Therefore,

we need to run Find-minimum-time-slot-path again with re-

spect to original link reliability tables [Line 9] to get the right

allocated time slot setting with the correct scale [Line 10]. We

record the assignment of time slots in each edge for this new

stream at [Line 11]. And update latency bound δ [Line 12].

In the end, we test whether the current estimate of latency

bound δnew is still within the approximation parameter β or

not [Line 13 to 17]. We show β = O(log |V |) in Appendix A.

The time complexity for Algorithm 2 is the one of trans-

forming each entry of tables to exponential value and the one

of running Algorithm 1. Therefore, the total complexity is

O(|E|k + |V |3k2).

3) Scheduling Algorithm: In the previous subsections, we

describe how we choose routes with an online fashion based

on applications’ reliability needs. For our scheduling protocol

of each hop, we use TSCH which inherits from WirelessHART

and ISA100.11a [2]. Our scheduling algorithm is sender-

based slots sharing which is inspired by Simon et al [4]. The

algorithm is to determine the specific time slots for packet

transmission and avoid the internal interference.

To determine the transmission schedule of all the nodes,

we randomly pick an unscheduled node and let it pick the

earliest time slots greedily without causing interference with

the existing schedule. We iteratively pick a new node to

schedule until all nodes decide their transmission schedule.

For instance, assume we have 4 nodes with node x & y
having interference and node z & w having interference. Each

node needs 3 time slots to transmit. According to our sender-

based algorithm, we may assign node x & z using time slots 1

to 3 and node y & w using time slots 4 to 6 for transmissions.

Note that this transmission scheduling algorithm is a heuris-

tic greedy algorithm. However, if the optimal algorithm uses

the same way of avoiding internal interference as us, the

objective function remains the same and the approximation

factor O(log |V |) still holds.

Algorithm 2 Assign-route

1: procedure ASSIGN-ROUTE(s, t, b, µ, p, ξ, G,Λ, β, r)

2: / ∗ Λ: upper bound of latency

3: / ∗ β: designed performance guarantee

4: /∗ r: current allocated time slots for previous streams

5: ∀e ∈ E, r̃e ← re/Λ
6: ∀e ∈ E, T̃e ← Te · b/Λ
7: ∀e ∈ E, T̂e ← aT̃e+r̃e − ar̃e

8: T̂st(V) = Find-minimum-time-slot-path(s, t, p, ξ)
w.r.t. link reliability tables T̂ . Schedule stream(s, t, µ)
with T̂st(V) to get the route P .

9: ∀e ∈ P, T́e ← Te ⊲ If e /∈ P, T́e is empty

10: T́st(V) = Find-minimum-time-slot-path(s, t, p, ξ)
w.r.t. link reliability tables T́ . Schedule stream(s, t, µ)
with T́st(V) to get the allocated time slot setting ĺe in

P
11: ∀e ∈ P , re ← re + ĺe · b
12: δnew ← maxe∈E re
13: if δnew > βΛ then

14: return : fail
15: else

16: return : success, r
17: end if

18: end procedure

Fig. 8: Comparison on reliability of different algorithms. Our
algorithm A-95 (A-97,A-99) satisfies stream requirements of 95%
(97%,99%) and the latency of our algorithm is only 10.8%
(14.8%,38.6%) of ETX and 15.8% (21.6%,56.2%) of Bmax.

V. EVALUATION

For the evaluation, we collected execution trace of 17 days

from the testbed. We divide traces into two separate set, 12

days for training and 5 days for testing. The training part of

the historical information is used to build the link reliability

tables of each link in the network. The granularity of the tables

is 0.5%. Then we generate 300 streams with random source

and destination pair. For each stream, the batch requirement

(BPRR) is fixed at 80% and the batch size is 5 packets. Both

tables and information of 300 streams are the inputs to our

Assign-route algorithm. After the algorithm selects the route

and allocated time slots of each stream, we simulated the

stream transmissions with these settings using the testing set

to determine whether a packet transmission is successful.

To compare the performance of our algorithm and the

baseline ones, we evaluate the empirical latency, miss rate, and

energy consumption under the setting of 300 streams between

random source and destination. For the baseline algorithms,

we perform shortest path routing with the weight being Bmax

[17] and ETX [3]. After route selection, the allocated time

slots on each edge of a Bmax shortest path is naturally the

Bmax value (Bmax). For paths based on ETX, the number of

retransmissions is 5 (ETX-5) and infinity (ETX-inf). For our

algorithms, we run A(ssign-route) Algorithm with different

stream reliability requirements at 95%, 97% and 99% (A-

95, A-97, A-99). After we determine the route and allocated

time slots in each algorithm, we can empirically study their

performance.

In Figure 8, the miss rate from the experiment shows that

our algorithms all are able to satisfy the required stream

reliability requirement (miss rate ≤ 1− µ). The miss rates of

the baseline algorithms are lower. The reasons are two-folded.

First, Bmax and ETX-inf use much more re-transmissions

than our algorithm because Bmax considers worst-case bursti-

ness and ETX-inf allocates time slots until the batches are

transmitted successfully. This will be reflected in the energy

consumption. Second, both ETX algorithms over-utilize the

most reliable links in the network and will cause congestion in

them. This will be reflected in both latency and load balancing

in a heavily used network. From the simulation of 300 streams,

our algorithms achieve a better tradeoff between reliability

(miss rate) and latency. While our algorithms meet all the

required reliability, latency is significantly reduced.

The energy consumption of different algorithms to fulfill

all the streams is computed based on the total number of

packet transmissions. We assume a single packet transmission

over any direct wireless link will consume the same amount

of energy. Figure 9a shows the average number of packet

transmissions per stream. Since each stream needs to transmit

3 (b = 3) batches of 5 packets (p = 5), the minimum number

of packet transmissions in each course of time per stream is

15. The energy consumption of Bmax, ETX based routing

is higher because they choose long paths that are as reliable

as possible and they re-transmit for a longer period. While

our algorithms satisfy all the reliability requirement, they only

need to transmit 1
2 or even 1

3 amount of packets compared to

the baseline algorithms. As our algorithms try to minimize

the bottleneck, they will avoid using the same set of edges

for different streams. This results in more disjoint paths. In

Figure 9b and Figure 9c, our algorithms achieve a good load

balancing of energy among nodes and transmitting edges. This

is a particularly important feature if the network is battery-

powered.

In Figure 10, we report the how latency observed empir-

ically from the experiments changes when the number of

streams increases. From the figure, A(ssign-route) algorithms

achieve low latency compared to other methods since we

effectively minimize bottleneck while maintaining reliability

requirement. Moreover, we can get a lower latency with a

lower reliability requirement. This practical result matches

the theoretical latency bound. On the other hand, the latency

0

400

800

1200

1600

ETX−5 ETX−n Bmax A−95 A−97 A−99

#
 p

a
c
k
e
ts

 s
e
n
t/
re

c
e
iv

e
d
 p

e
r

n
o
d
e

(a) Comparison on average energy
consumption per stream of different
algorithms

0

100

200

300

400

ETX−5ETX−inf Bmax A−95 A−97 A−99

#
 p

a
c
k
e

ts
 s

e
n

t
p

e
r

lin
k

(b) Comparison on average packets
sent per link of different algorithms

0

400

800

1200

1600

ETX−5 ETX−n Bmax A−95 A−97 A−99

#
 p

a
c
k
e
ts

 s
e
n
t/
re

c
e
iv

e
d
 p

e
r

n
o
d
e

(c) Comparison on average packets
sent and received per node of different
algorithms

Fig. 9: Energy consumption comparison in different aspects between ETX-based, Bmax-based, and our algorithm

0

2000

4000

6000

0 100 200 300
streams

L
a
te

n
c
y
 (

m
s
)

ETX−5

ETX−inf

Bmax

A−95

A−97

A−99

Fig. 10: Latency vs. Traffic Load. The growth rate of latency for
our algorithms is much lower than Bmax and ETX.

increases less than linearly with the number of streams for our

algorithms. This shows the scalability of A-route algorithms

to avoid congestion in a network with a heavy workload.

VI. RELATED WORK

Providing reliable real-time transmission in wireless sensor

network has been explored in many early [5], [24], and

recent works [16], [21], [11]. In those research, estimating

link reliability plays an important role, which is challenging

due to unpredictable noise and interference. There are many

proposed metrics trying to model link quality such as β-factor,

[23], Bmax [17], or Gilbert-based models [13]. Meanwhile,

other research builds real-time systems by combining these

metrics with routing or schedule algorithms to provide reliable

transmission among all streams. For example, Le et al. [14]

use a physical model to predict packet loss on each link and

further provided an energy efficient transmission with end-to-

end reliability guarantee. Suriyachai [24] and Potter [21] use

Bmax to measure link quality and develop heuristic scheduling

algorithm to ensure end-to-end transmission reliability. These

works focus on packet scheduling to reduce interference and

also improve reliability.

Different from scheduling algorithms, routing algorithms

for reliable communication are usually focus on latency and

energy issues. Hammoudeh et al. [10] maintain reliability

in clustering routing by rotating cluster heads periodically

to balance energy consumption. In addition, there are other

papers that consider the balance between latency and energy

consumption. Guha et al. [8] observe the tradeoff between

energy, latency, and link capacity. They aim to optimize

the unicast latency and capacity while maintaining energy

conservation at a certain level. Naveen et al. [18] provide a

favorable tradeoff between end-to-end packet delay and the

number of nodes in the forwarding path. Lastly, some of

the works focus on wireless sensor networks with unreliable

links. For example, Guo et al. [9] use Opportunistic Flooding

to predetermine routing and working schedule. Their works

have a shorter delay while consuming only 20%-60% of the

transmission energy compared to other traditional designs.

However, the scenario is for broadcast communication, which

cannot apply to unicast cases.

Compared to their works, we focus on unicast streaming

scenarios with varied end-to-end reliability requirements. By

exploring empirical data trace, we use data-driven methods to

identify link quality and build tables for balancing reliability

and delay at each link. We provide new routing algorithms

for reliable transmission with load-balancing and minimum

latency.
VII. CONCLUSION

In this paper, we proposed algorithms to achieve reliable

communication and minimize end-to-end latency bound. Our

algorithms are motivated by the empirical study of link quality

characteristics and have demonstrated superior performance in

simulations.
ACKNOWLEDGMENTS

This research is supported by National Science Foundation

(CNS-1618391, CNS 1553272, CNS 1536086, CNS 1463722,

IIS 1460370, DE-EE0007682) and Air Force Office of Scien-

tific Research (FA9550-14-1-0193.)

APPENDIX
Theorem 1: Algorithm Assign-route can be used to achieve

O(log |V |) competitive ratio with respect to latency bound δ
To prove theorem 1, we firstly define the notations of our

scenario and prove lemma 1. Followed by lemma 1 we acquire

theorem 1.

Let P = {P1, P2, ..., Ph} be the routes assigned to

stream 1 through h by the online algorithm, and let P ∗ =
{P ∗

1 , P
∗
2 , ..., P

∗
h} be the routes assigned by the optimal algo-

rithm. Given a set of routes P , define the sum of allocated

time slots at edge e after the first j streams are satisfied by

re(j) =
∑

i:e∈Pi, i≤j

rie

and let δ(j) = maxe∈E re(j). Similarly, define r∗e(j) and
δ∗(j) to be corresponding quantities for the routes produced

by optimal algorithm. Our goal is to produce a set of route P
that minimized δ(h)/δ∗(h), we denoted as δ/δ∗ for simplicity.

For convenience, we define the notion of a designed per-

formance guarantee β as follows: the algorithm accepts a

parameter Λ and never creates the load that exceeds βΛ. The

algorithm is allowed to return “fail” and refuses to route a

circuit if Λ < δ∗, otherwise, it has to route all streams. Notice

that we can use a doubling technique to overcome the problem

that Λ is unknown.

Lemma 1: If δ∗ ≤ Λ, then there exists β = O(log |V |)
such that algorithm Assign-route never fails. Thus, the sum of

allocated time slots for all streams at any edge never exceeds

βΛ
Proof: To simplify the formula, we will use tilde to denote

normalization by Λ, for example r̃e(j) = re(j)/Λ. Define the

potential function:

φ(j) =
∑

e∈E

ar̃e(j)(τ − r̃∗e(j)),

where a, τ > 1 are constants. Note that φ is a function of

both r̃e and r̃∗e . If the online algorithm satisfies the (j + 1)st

stream with route Pj+1 and the optimal algorithm satisfies it

with route P ∗
j+1, we get the following change in the potential

function:

φ(j+1)−φ(j) ≤
∑

e∈Pj+1

(τ− r̃e(j))(a
r̃e(j)+r̃j+1

e ·pj+1−ar̃e(j))

−
∑

e∈P∗

j+1

ar̃e(j) · r̃j+1∗

e · pj+1

≤
∑

e∈P∗

j+1

(τ−r̃e(j))(a
r̃e(j)+r̃j+1

e ·pj+1−ar̃e(j))−ar̃e(j)·r̃j+1∗

e ·pj+1

≤
∑

e∈P∗

j+1

ar̃e(j)(τ(ar̃
j+1
e ·pj+1 − 1)− r̃j+1

e · pj+1).

The first inequality follows because re(j+1) ≤ re(j)+rj+1
e ·

pj+1, where pj+1 is the parameter of batch size in stream

j + 1. The second inequality holds from the fact that Pj+1 is

the path with minimum sum of allocated time slots for stream

j+1 with respect to the tables aT̃e+r̃e−ar̃e . The last inequality

follows because r̃j+1∗

e ≤ r̃j+1
e and we also ignores the value

of r̃e(j).
Since the j+1st stream is satisfied by the optimal algorithm

by assigning it the route P ∗
j+1, which means that e ∈ P ∗

j+1 :
0 ≤ r̃e(j + 1) ≤ δ∗/Λ ≤ 1. Therefore, in order to show that

the potential function does not increase, it is sufficient to show

that x ∈ [0, 1] : τ(ax− 1) ≤ x, which is true for a = 1+1/τ .

Initially, φ(0) ≤ τ |E|. Since φ does not increase, and since

r∗(j) ≤ 1, then after satisfying h requests, we have∑

e

(τ − 1)are(|E|)/Λ ≤ τ |E|.

The last inequality, and the fact that τ > 1 implies

max
e∈E

re(k) ≤ Λ loga(
τ |E|

τ − 1
) = O(Λ log |V |).

REFERENCES

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing
of virtual circuits with applications to load balancing and machine
scheduling. Journal of the ACM (JACM), 44(3):486–504, 1997.

[2] I. S. Association et al. Ieee standard for local and metropolitan area
networks-part 15.6: wireless body area networks. IEEE Standard for

Information Technology, IEEE, 802(6):1–271, 2012.

[3] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. Wireless Net-
works, 11(4):419–434, 2005.

[4] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne. Orchestra:
Robust mesh networks through autonomously scheduled tsch. In
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 337–350. ACM, 2015.

[5] S. Ehsan and B. Hamdaoui. A survey on energy-efficient routing
techniques with qos assurances for wireless multimedia sensor networks.
Communications Surveys & Tutorials, IEEE, 14(2):265–278, 2012.

[6] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems, SenSys ’09, 2009.
[8] S. Guha, P. Basu, C.-K. Chau, and R. Gibbens. Green wave sleep

scheduling: optimizing latency and throughput in duty cycling wire-
less networks. Selected Areas in Communications, IEEE Journal on,
29(8):1595–1604, 2011.

[9] S. Guo, L. He, Y. Gu, B. Jiang, and T. He. Opportunistic flooding in low-
duty-cycle wireless sensor networks with unreliable links. Computers,

IEEE Transactions on, 63(11):2787–2802, 2014.
[10] M. Hammoudeh and R. Newman. Adaptive routing in wireless sen-

sor networks: Qos optimisation for enhanced application performance.
Information Fusion, 22:3–15, 2015.

[11] S. Jang, H. Jo, S. Cho, K. Mechitov, J. A. Rice, S.-H. Sim, H.-J. Jung,
C.-B. Yun, B. F. Spencer Jr, and G. Agha. Structural health monitoring
of a cable-stayed bridge using smart sensor technology: deployment and
evaluation. Smart Structures and Systems, 6(5-6):439–459, 2010.

[12] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In 2007 6th International Symposium on Information

Processing in Sensor Networks, pages 254–263. IEEE, 2007.
[13] S. M. Kim, S. Wang, and T. He. cetx: Incorporating spatiotemporal

correlation for better wireless networking. In Proceedings of the 13th

ACM Conference on Embedded Networked Sensor Systems, pages 323–
336. ACM, 2015.

[14] T. Le, W. Hu, P. Corke, and S. Jha. Ertp: Energy-efficient and reliable
transport protocol for data streaming in wireless sensor networks.
Computer Communications, 32(7):1154–1171, 2009.

[15] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse. The smart thermostat: Using occupancy
sensors to save energy in homes. In Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’10, 2010.
[16] M. A. Mahmood, W. K. Seah, and I. Welch. Reliability in wireless

sensor networks: A survey and challenges ahead. Computer Networks,
79:166–187, 2015.

[17] S. Munir, S. Lin, E. Hoque, S. Nirjon, J. A. Stankovic, and K. White-
house. Addressing burstiness for reliable communication and latency
bound generation in wireless sensor networks. In Proceedings of the

9th ACM/IEEE International Conference on Information Processing in

Sensor Networks, pages 303–314. ACM, 2010.
[18] K. P. Naveen and A. Kumar. Tunable locally-optimal geographical

forwarding in wireless sensor networks with sleep-wake cycling nodes.
In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[19] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam.
Closing the loop: A simple distributed method for control over wireless
networks. In Proceedings of the 11th International Conference on

Information Processing in Sensor Networks, IPSN ’12, 2012.
[20] W.-B. Pöttner, H. Seidel, J. Brown, U. Roedig, and L. Wolf. Constructing

schedules for time-critical data delivery in wireless sensor networks.
ACM Trans. Sen. Netw., 2014.

[21] W.-B. Pöttner, H. Seidel, J. Brown, U. Roedig, and L. Wolf. Constructing
schedules for time-critical data delivery in wireless sensor networks.
ACM Transactions on Sensor Networks (TOSN), 10(3):44, 2014.

[22] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-time scheduling for
wirelesshart networks. In Proceedings of the 2010 31st IEEE Real-Time

Systems Symposium, RTSS ’10, 2010.
[23] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis. The beta-

factor: Measuring wireless link burstiness. In Proceedings of the 6th
ACM Conference on Embedded Network Sensor Systems, SenSys ’08,
2008.

[24] P. Suriyachai, J. Brown, and U. Roedig. Time-critical data delivery in
wireless sensor networks. In Distributed Computing in Sensor Systems,
pages 216–229. Springer, 2010.

