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ABSTRACT
Personal instrumentation and monitoring services that col-
lect and archive the physical activities of a user have recently
been introduced for various medical, personal, safety, and
entertainment purposes. A general software architecture is
needed to support different categories of such monitoring
services. This paper presents a software architecture, imple-
mentation, and preliminary evaluation of SATIRE, a wear-
able personal monitoring service transparently embedded in
user garments. SATIRE records the owner’s activity and lo-
cation for subsequent automated uploading and archiving.
The personal archive can later be searched for particular
events to answer questions regarding past and present user
activity, location, and behavior patterns. A short feasibil-
ity and usage study of a prototype based on MicaZ motes
provides a proof of concept for the SATIRE architecture.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
data abstraction, information hiding ; D.4.7 [Operating Sys-
tems]: Organization and Design—distributed systems, real-
time and embedded systems; D.4.8 [Operating Systems]:
Performance—measurements; K.8.m [Personal Comput-
ing]: Miscellaneous

General Terms
Algorithms, Management, Measurement, Performance, De-
sign, Experimentation

Keywords
Personal Monitoring, Smart Attire, Human Activity Identi-
fication
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1. INTRODUCTION
Wearable personal monitoring devices (from pedometers

and calorie counters to fall-detectors for elderly individuals)
are being introduced increasingly to record and sometimes
archive different user activities for medical, safety, personal,
or entertainment reasons. The miniaturization of sensors
and the emergence of wireless sensor networks in progres-
sively decreasing form factors suggest that the trend of per-
sonal instrumentation will expand. Economic factors such
as the approaching retirement of baby boomers and the in-
creasing cost of health-care suggest viable applications of
embedded personal instrumentation. An example applica-
tion is one in which a patient needs to be monitored at
home for a prolonged period of time by a care-giver. A soft-
ware architecture is needed to facilitate development of such
wearable personal monitoring applications, promoting their
modularity and component reuse.

This paper presents the design, implementation, and eval-
uation of a wearable personal monitoring service, we call
SATIRE. It allows users to maintain a private searchable
record of their daily activities as measured by motion and
location sensors, which are two of the most popular sensing
modalities in personal instrumentation. This paper iden-
tifies the architectural requirements of such a service and
develops a flexible and modular software solution on proto-
typical off-the-shelf hardware embedded non-obtrusively in
a person’s garment (in the padding of a winter jacket in our
first prototype).

A major design goal of our service is transparency to the
user. By instrumenting the user’s attire non-obtrusively and
implementing transparent information collection, storage,
and upload, our service operates with no explicit input or
maintenance required from the user. A related major goal
is service longevity. To make the service practical, batteries
should not need to be changed more than once a year, which
means that they should last for at least one season 1. We
provide back-of-the-envelope calculations that show the fea-
sibility of this lifetime based on proposed power management
policies and expected usage patterns of (outer) garments.

Our current prototype records human activities and loca-

1Presumably a seasonal garment will not be worn more than
one season per year.



tion using 2-axis accelerometers and GPS respectively, stor-
ing the measurements locally until they can be uploaded.
This is achieved using a network of a few MicaZ motes wo-
ven into the lining and padding of a winter jacket. MicaZ
motes are an off-the-shelf device of a size that is roughly
half that of a modern cell-phone. By removing unneces-
sary components such as LEDs, the on-off switch, and AA-
batteries (which can be replaced by smaller Lithium-based
ones), it is feasible to embed the microcontroller-based de-
vice comfortably in many items of daily use such as footwear,
belt-buckles, purses, and laptop cases, among other personal
and wearable accessories. All recorded activity and location
data can be subsequently uploaded through an access mote
for private archival, from which past human activity and lo-
cation information can be reconstructed. The access mote
is a wireless gateway with Internet access that implements
the SATIRE information upload protocol on top of an ap-
propriate MAC-layer (802.15.4 in the case of MicaZ motes).
We envision that a person using SATIRE would install an
access mote at home (and at the office, if applicable). Cell-
phones with appropriate radio and MAC-layer support can
also implement access motes.

Observe that it is not our goal to provide continuous mon-
itoring of the person at all times. It is best to achieve such
continuity by collecting information from different sources
such as instrumentation in the person’s home, office, and
garments. Our focus here is on information collected from
the person’s attire only. We identify several problems and
corresponding architectural requirements in the development
of attire-based personal monitoring systems. We categorize
these problems into seven types, namely, (i) data collection
and storage, (ii) data upload, (iii) data synchronization, (iv)
power management, (v) reconstruction of activity logs, (vi)
user interface, and (vii) security and privacy.

In this paper, we develop simple solutions to five of the
seven problems, namely, data collection and storage, data
upload, data synchronization, reconstruction of activity, and
user interface. We also present a naive solution to protect
the user’s privacy. Finally, we provide a calculation of energy
consumption under a simple energy management scheme to
show that it meets longevity requirements.

Our work complements several smart in-home monitoring
systems that have been developed and described in recent
literature. Examples include the University of Virginia’s
Smarthouse [3], Georgia Tech’s Aware Home [19], and Uni-
versity of Florida’s Gator-Tech smart house [1]. These smart
homes are built with a suite of non-invasive sensors placed
in the environment of a person’s residence, which monitor
various human activities. Associated applications include
provision of virtual care, where loved ones can be continu-
ously informed about the activities and location of the user.
Among other applications, Intel’s proactive health research
[2] group has built a wireless sensor network (WSN) for mon-
itoring health care issues related to aging. Our wearable
service can augment the data collected by a smart home
by providing information regarding the user for periods of
time when the user is not in the vicinity of instrumented
infrastructure.

In addition to in-home systems, simple and cheap wear-
able accelerometric devices have been used in the past to
identify various human activities and gestures. Context in-
formation such as walking, walking upstairs/downstairs and
running is determined using accelerometers in [27], which is

used to display information as part of a Tourist guide appli-
cation. Various techniques for identification of gestures and
activities have been discussed in [30] and [33]. This work
is complementary to ours. Algorithms for activity classifi-
cation based on wearable sensor data can be incorporated
into our architecture in a modular plug-and-play manner.
The goal of this paper is precisely to provide a simple modu-
lar architecture into which different classification algorithms,
communication protocols, and data filters can be integrated
as components with well-defined interfaces.

The rest of the paper is divided into seven sections. Sec-
tion 2 discusses reasons for our choice of hardware. Sec-
tion 3 discusses a typical operational scenario and presents
a flexible and modular software architecture for the system.
Section 4 discusses the problems posed in the application de-
velopment in greater detail and presents solutions to these
issues. Section 5 describes two approaches that we employed
for human activity identification. Detailed evaluation of the
system is described in Section 6. Section 7 presents the
related work and Section 8 concludes this paper giving di-
rections for future work.

2. CHOICE OF HARDWARE
Motivated by the vision of having smart clothes which can

log daily activities of a person, we first consider the hardware
platform requirements of such an application. We divide the
hardware components into (i) sensing, (ii) memory/storage,
(iii) communication, (iv) processing, and (v) energy sup-
ply. This section summarizes the requirements in each of
the aforementioned dimensions and consequently makes an
argument for choosing a specific hardware platform.

Regarding sensing, we opted for acceleration and GPS
sensors in the first prototype since we are primarily inter-
ested with activity and location monitoring. Acceleration
data can be used to reconstruct activities based on motion
patterns. We demonstrate such reconstruction using hidden
markov models that are fed raw acceleration measurements
to recognize activity types.

The memory and storage requirements arise from the ex-
pected sampling rate of user activity and the expected pe-
riod of disconnected operation (i.e., operation where logging
must be performed locally in the absence of an access mote).
As described later in the paper, we show that 25 samples/s
is sufficient to identify many activities using accelerome-
ters. For a 2-axis accelerometer this gives 50 samples per
second. We also show that 1 byte is enough to represent
a sample. Under these conditions, each megabyte of stor-
age can log roughly 6 hours of disconnected operation. We
further show that compressing (e.g., run-length-encoding)
intervals of stillness can significantly reduce storage require-
ments. Hence, storage capacity that is a significant fraction
of a megabyte should be sufficient for logging most typi-
cal daily intervals of disconnected operation (e.g., the drive
from home to office for someone with an access mote at both
locations). Observe that to help save energy, logging should
be done in flash memory such that logs are persistent across
power-off intervals. This allows devices to execute at a low
duty cycle when no activity is recorded. With the log (and
code) residing in flash, the RAM requirements of our soft-
ware become minimal (only a few kilobytes to hold data
variables, a flash-page-size data buffer, a packet buffer, and
a single execution context).

For communication, we opted for wireless support since,



in general, different (i.e., physically separate) pieces of attire
should be able to collaboratively perform activity logging,
not to mention the need for wireless information upload. A
requirement on communication bandwidth stems from the
interval it takes to upload the entire log (which is a signifi-
cant fraction of a megabyte as derived above). It is desired
that the upload interval be less than one minute such that
transient encounters with an access mote are sufficient to
upload all logged data. Allowing for retransmissions, this
leads to an upload bandwidth requirement in the hundreds
of kilobits per second.

The processing requirements of logging are minimal. The
processing requirements and RAM requirements are consis-
tent with the capabilities of a microcontroller. Finally, the
device must be powered by a battery that lasts a season.
A range of microcontrollers can be found that consumes
power at a rate of 10-100 mW. At this rate, normal AA
batteries can power the microcontroller for days. We show
in this paper that aggressive power saving schemes can pro-
long that interval by approximately an order of magnitude
getting close to the target battery lifetime.

Consistent with the above requirements, we considered
several off-the-shelf microcontroller-based devices with wire-
less communication capabilities and an appropriately small
form factor. A suite of such devices was developed in re-
cent sensor networks research, such as Mica2dot, Tmote Sky,
Pluto and MicaZ.

The features of the above sensor nodes are summarized in
Table 1. These motes typically have a 8-bit microcontroller,
and are powered by 3V batteries.

From Table 1, we observe that the MicaZ motes are a
good choice. They have 2-axis accelerometers and a plug-
gable GPS module (available off-the-shelf). Usually, they
use two AA batteries which with suitable power manage-
ment techniques, can last for a full season. They use an
802.15.4 compliant radio which meets the upload bandwidth
constraint. They also include a 512KB flash which is suf-
ficient given the estimated logging requirements above. To
make the design lighter and more ergonomic, AA batteries
can be replaced with Lithium batteries. Lithium batteries
with more than twice the capacity of AA batteries exist to-
day, the use of which can extend the lifetime of the motes.
Since this is a simple research prototype, we did not consider
using Lithium batteries. The motes weigh about 18 grams
(excluding the batteries) and the sensor boards are about
the same weight as the motes. Whereas, two AA batter-
ies weigh 46 grams, which is considerably heavier than the
motes.

Observe that, the choice of our hardware is limited by
the currently available off-the-shelf components. In the fu-
ture, with better hardware, we will be able to create more
applications.

3. APPLICATION SCENARIO AND SOFT-
WARE ARCHITECTURE

In this section, we describe a typical operational scenario
and present a flexible and modular software architecture for
SATIRE.

3.1 Application Scenario
A typical person wearing a SATIRE jacket goes about

his/her normal daily activities as usual over the course of a

season. During that time, the jacket records sensory data
pertaining to the owner’s whereabouts and activities. When
the system comes in the vicinity of an access mote (a base
mote connected to a PC), the logged data is uploaded re-
liably to a private repository associated with the person.
Further, this data can be used to reconstruct the activities
and locations of the person, which is explained in detail in
the rest of the paper. This record can potentially act as a
memory aid or help doctors in augmenting a patient’s clin-
ical information. Figure 1 gives a typical usage scenario of
our system.

Figure 1: A typical operational scenario

3.2 System Architecture
The goals of our architecture are to allow flexible and

modular development of personal instrumentation software.
The architecture must accommodate a heterogeneous sys-
tem that changes rapidly (e.g., due to introduction of new
hardware, new system software, new sensor modalities, or
new applications). This calls for an application layer to
handle user interfaces for different applications. We are not
only motivated by the need to upgrade or extend garment
functionality over time (new software downloads to old gar-
ments are definitely within the realm of possibilities), but
also by the fact that many different garment instances with
different sensors should be able to leverage a common archi-
tecture. A future application might not focus on detecting
human motion alone, but could possibly record vital signs of
a person using sensors like EKG and pulse oximeter [21]. To
enable this flexibility, we need a parsing layer to process the
raw data generated by the introduction of new sensors. The
new sensor modalities may give rise to changes in algorithms
used for the reconstruction of the type of human activities
performed. Moreover, given the same sensory data, different
algorithms may be developed to identify different activities.
Hence, the need for an interpretation layer to handle differ-
ent algorithms that interpret the processed sensor data.

Based on the above characteristics of the architectural
framework, we propose a layered architecture as shown in
Figure 2, which advocates modularity and transparency,
where user involvement is kept to a minimum. This architec-
ture is two-dimensional, the first dimension is the PC/laptop
and the second dimension is the motes. The architecture is
layered to abstract out common concerns behind a standard
interface. Note that, the application, operating system and
the hardware layer abstractions on the motes side have been
well developed by the sensor network community. TinyOS
[4], a widely used operating system for sensor networks,



Characteristics Mica2dot Tmote Sky Pluto MicaZ
Off the shelf 2-axis accelerometer, humidity, light, accelerometer accelerometer, GPS,

sensing modalities light, microphone temperature light, temperature
Storage 512 KB 1 MB 1 MB 512 KB

Radio bandwidth 19.2 Kbps 250 Kbps 250 Kbps 250 Kbps

Table 1: Summary of characteristics of the Mica2dot, Tmote Sky, Pluto, and MicaZ motes

provides the necessary abstraction to enable introduction
of new sensor modalities. We propose data collection and
storage, upload, and data synchronization protocols at the
operating system layer. Further, we introduce layer 3, which
is the sensor specific protocols.

Flash logger protocol

Synch protocol
Upload protocol

Serial port

A1 A2 A3 An...
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Application
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  User interface
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Figure 2: Architectural framework
We now describe each layer in detail following the journey

of a given sensor data item. The item originates at the sen-
sor layer which passes it directly to the application at layer
4. The data is then passed down to layer 3, which is the filter
layer. It implements data processing algorithms which are
common to multiple applications. Such algorithms might
include stillness detection (used to trigger a power-saving
mode and reduce the amount of flash-consumption), aver-
aging, and other simple signal conditioning techniques. The
results are passed down to layer 2, which includes the op-
erating system and those protocols that are fundamental
to the working of the system, such as the upload proto-
col and the data logging protocol. This layer provides an
interface that higher-level applications and filters can wire
to using nesC (a programming language used for TinyOS)
wiring conventions. At the bottom of the stack is layer 1,
which implements communication device drivers. It will not
be described further in this paper. The layers on the mote
side are executed in real-time when the data is collected.

On the PC side, data is uploaded at layer 1 when the
motes on a garment come in contact with an access mote.
Such data are passed to layer 2, which is the parsing layer. It
collects and parses the raw bytes uploaded by the motes and
stores them as files of (time, sample) pairs or other standard
data formats. When a new sensor is used, we simply plug-in
its corresponding parsing module into this layer. For exam-
ple, GPS data is stored in the NMEA format. The name of
a file determines the type of sensor responsible for the data
within. Observe that changes in data representation will
only change the parsing layer and not affect any other layer.
The data collected by layer 2 could be used in many kinds of
applications for different purposes (other than activity iden-
tification). The interpretation layer (layer 3) is the off-line
data processing layer. It interprets the data collected using
various data mining or statistical and signal processing tech-

niques. Different algorithms for reconstruction of the type of
human activity can be plugged into this layer, thus enabling
easy upgrade of garment functionality. Layer 3 abstracts
the data-processing algorithms (named A1, A2, ..., An in
the figure) and presents their results in a standard format
as predicates asserted to layer 4, the application layer. Sub-
sequently, a user can generate a query such as “Where did I
eat lunch last time I visited New York City?” A query en-
gine or a logical inference engine at layer 4 can process those
queries. Multiple layer 3 algorithms can be executed on the
stored data, thus enriching the pool of predicates that can
be asserted regarding the user, facilitating more advanced
inference at layer 4.

Based on the above generalized architectural framework,
we developed the SATIRE system. Figure 3 details the spe-
cific modules which we have developed and the interactions
between each of these modules. Observe that the user in-
terface layer is further divided into three interacting sub-
layers. These are the web-interface, web-server and MySQL
database server.

HTML/
CGI request

HTML
response User Interface

perl interpreter
MySQL 
server

SQL
query

response
SQL

Accelerometric
data interpretation

GPS data
interpretation
algorithms

Standard data
formats

                Web−based User Interface

Raw data parsing algorithms

Serial port forwarder/Operating system

algorithms

Web server running

Populate database

Figure 3: Detailed architecture of the PC side, also
giving the interaction details of the layers.

The user feeds her query using the web-interface. The
web-server interacts with the web-interface and generates
dynamic HTML content to answer the user’s queries and
performs necessary interpretation of the queries. The MySQL
database server stores the users’ profiles. The current database
table for activity storage consists of the fields person, activ-
ity type, start time and end time. The person field indicates
the user with whom the data is associated, the activity type



is the nature of the activity performed (such as sitting, walk-
ing, climbing stairs, and eating) and the start and end times
of these activities are given by the start time and end time
fields respectively. Adhering to the general architecture we
have presented, we have shown that a simple modular sys-
tem can be developed efficiently.

4. PROBLEM DISCUSSION AND PROPOSED
SOLUTIONS

We describe the problems faced during the development
of each layer of our system. In the operating system layer
on the motes, the main problems include data collection and
storage, data upload to the PC, data synchronization, and
power management. The other layers on the motes have
been well developed by the sensor network community. On
the PC side, the main problems are reconstruction of activ-
ity logs in layer 3, developing a user friendly interface and
addressing privacy and security issues in layer 4. We will
describe these problems in further detail and present simple
yet efficient solutions to solve them.

4.1 Data Collection and Storage
4.1.1 Problem Discussion

In a typical operational scenario, the system will collect
data periodically and store it in the flash memory. A MicaZ
mote has 512 KB of flash memory, which is used for data
recording purposes. Hence, we observe that a single sensor
sampling at the rate of 30 Hz, generating 2 bytes per sample
will consume the flash memory in approximately four hours.
Increasing the number of sensors used will consume the flash
even faster! A simple proposition to reduce the amount of
flash consumed is to reduce the sampling rate, but this would
be inadequate as the data values recorded cannot be used
to reconstruct the activities. We conducted simple experi-
ments to identify an ideal sampling rate. We use walking as
the base activity to come up with an efficient sampling rate.
Every step taken is a peak in the accelerometric data. By
manually counting the number of peaks and then matching
it with the number of steps taken, a given sampling rate can
be justified. Our experiments were conducted on two differ-
ent subjects. From these experiments, we observed that the
number of footsteps taken were between three and six every
second. Hence, from Nyquist-Shannon’s sampling theorem,
the minimum (lossless) sampling frequency is at least 12 Hz.
Since this is the bare minimum required, we propose to use
the sampling rate of 25 Hz for each axis of the accelerome-
ter. Thus, we need other methods to reduce the amount of
flash consumed in order to increase the disconnected time
of operation of the system.

4.1.2 Proposed Solution
We propose two different methods to reduce the amount

of flash used without loss of the precision of data collected.
Both are different data compression algorithms based on the
observations we made during the deployment of the system.
The first method, termed the truncate filter takes advantage
of the output range of the accelerometer values. We ob-
served that the 10 bit output from the MicaZ accelerometer
does not vary widely and the output value range, for nor-
mal human activities, can be usually accommodated within
8 bits! This doubles the disconnected time of operation of

the system. An alternative solution to this problem is to
record only the differences between successive sensor read-
ings, which will again fit within 8 bits given the range of
data values. The second method takes advantage of the fact
that all the values need not be recorded if the accelerometer
output does not change. This means that we do not need to
record any data values when the clothing is still, as there is
no activity taking place. We observed that a typical user’s
jacket was still for a majority of the time. Our observations
were based on deployment of the system in two separate
scenarios. We propose the stillness filter, which identifies
whether the accelerometric signals indicate stillness. Ob-
serve that, stillness is indicated only if both the x and y
axes data values do not change over a brief period of time.
This filter calculates the energy of a discrete difference sig-
nal periodically for stillness detection. The total energy of
a discrete signal over n values is defined as:

E = Σn

i=1x
2

i where xi is a sample value (1)

Similar to run-length encoding, at the end of a stillness
interval, a special separator value is inserted in the log, in-
dicating that the jacket has been still and the number of
samples for which it has been still is recorded.

4.2 Data Upload
4.2.1 Problem Discussion

An important part of the system is to upload the data
collected to a server through an access mote. Three separate
issues are to be addressed as part of the upload protocol,
which are as follows:

• The rate at which the upload occurs, which directly
affects the amount of flash available.

• The upload transparency, which relieves the user from
the hassle of pressing a button or consciously making
a gesture to upload data.

• Reliability of upload, Loss of data packets can lead to
incorrect interpretation of activities or lack of data for
certain periods of time. As expected, when the user
moves away from the access mote, the packet reception
probability goes down.

We develop a new protocol optimized for our application
scenario, which meets the above goals.

4.2.2 Proposed Solution
Our protocol combines ideas from various data dissemina-

tion protocols like Deluge [15] and PSFQ [34]. It achieves the
goal of reliable, transparent and fast upload. Transparency
is achieved by using a beaconing scheme. The motes in the
system send beacons periodically, which are ACKed by the
base if the mote is in the range of the base. Reliability is
achieved using a NACK scheme. We tweaked the payload
size in TinyOS and the number of packets sent every second,
to come up with an optimal data rate to send data as fast
as possible. We use the CSMA MAC protocol which comes
with the TinyOS networking stack. Further discussion on
the parameter selection is presented in Section 6. Our pro-
tocol makes sure that only one mote is communicating with
the base at a given time to minimize collisions and increase
throughput. This is ensured as follows. The base listens to
the beacons from the motes and replies with a send data



packet to the first mote from which it hears a beacon. After
sending this packet, the base enters a state where it does
not reply to any further beacons. The base resets its state
after a timeout period, during which it does not receive any
data packet from the mote which it had granted permission
to send.

Listen for
packets

         increment packet counter              do nothing
Packet received/

End of burst received/
verify integrity, send positive
ACK if correct 

End of burst received/
verify integrity, send negative
ACK if incorrect

No beacon received/

Listen to Beacon

Beacon received/ Send
Ack to mote

Timeout/reset beacon state

reset beacon state
End of transmission/

Figure 4: State diagram for the base

Send packets
in burst mode

All packets sent/
send tx complete

No ACK received/
           do nothing

ACK received/
set send pointers

Send beacon

packet counter

Positive ACK
received/reset

Timeout/
reset beacon state

  ACK
Wait for

Negative ACK received/
reset internal pointers

Packets sent = burst size/
send burst complete

Packets sent < burst size/
   increment packet counter

Figure 5: State diagram for the motes on the person

Figures 4 and 5 summarize the upload protocol which we
present in the form of state diagrams. The annotations on
each arrow have the form X/Y, where X indicates the event
which has occurred and Y describes the action to be per-
formed on occurrence of this event.

4.3 Data Synchronization
4.3.1 Problem Discussion

We need a mechanism by which it is possible to corre-
late the activities recorded on different parts of the body.
This problem can be termed as the data synchronization
problem, where each data item collected needs to be tem-
porally correlated with data items collected on other motes.
This problem has been addressed in [36]. The scheme pre-
sented in [36] needs a base station in the vicinity of the
data collection nodes, which SATIRE cannot use, and thus
a new data synchronization scheme is needed. Apart from
the above scheme, there have been several time synchroniza-
tion protocols which synchronize the clocks on motes [23],
[13]. However, recording absolute time values leads to a
considerable overhead in the flash. The periodic message
exchanges contribute an additional overhead.

4.3.2 Proposed Solution
To maintain temporal correlation among the data values

collected on different motes, the simple beaconing scheme
used for data upload is also used to synchronize data streams
on the different motes in the network. Each beacon is iden-
tified by a beacon number and each mote is associated with

a set of unique beacon numbers, which wrap around suffi-
ciently far away in time not to cause ambiguity. Received
beacon numbers of other motes are recorded in real-time in
the flash mid-stream along with a separator, to differenti-
ate them from data sample values. When the streams are
reconstructed on the PC, identically numbered beacons are
aligned to the same time reference. The only overhead in
our method is that of recording the values of beacons in
the flash. Beacons samples occur several orders of magni-
tude less frequently than data, which makes their overhead
acceptable.

4.4 Power Management
4.4.1 Problem Discussion

Motes will need battery replacement after a rather short
amount of time. The typical lifetime of a mote which is
on for the entire period of time is about seven days. With
continuous logging and radio communication, the lifetime
may be further reduced. Replacement of batteries every
week is cumbersome and cost ineffective. Hence, a power
management scheme is necessary to extend the lifetime of
the system. An acceptable design goal for an outer garment
in our opinion is to last for about three months.

4.4.2 Proposed Solution
We propose to use a simple duty cycle based scheme. In

this scheme, a mote goes to sleep after it detects a brief
period of stillness. It wakes up after n seconds and checks
whether or not stillness continues. If the mote determines
that it is in motion, it starts logging data. Otherwise, it
goes to sleep again. During this cycle, the mote keeps track
of the amount of time it has been sleeping and logs this
information when the stillness interval terminates.

Figure 6 shows the statistics for the amount of time three
motes were still and the time they were recording motion
over a complete monitoring experiment. Figure 6 suggests
that most of the time the jacket is not in motion, which
implies that the person is moving around for only a brief
amount of time with the jacket on.

Figure 6: Percentage of time motes were still (static)
and motes were recording (dynamic)

Figure 6 validates that our proposed power management
technique will significantly extend the battery lifetime of
the system. The figure indicates that low-power operation
is possible at least 90% of the time.



If we assume a 5% duty cycle during low-power operation,
the lifetime of the system can be extended seven times, as
can be seen from Equation 2. In Equation 2, Pd is the power
consumption when the mote operates as described above,
Pn is the power consumption when the mote is active all
the time, and d is the duty cycle (in our case, it is 0.05).
The power consumption of the mote in a low-power state
is assumed to be negligible. This gives us Pd

Pn
to be about

seven, which translates into an increase in the lifetime of the
jacket from one to about seven weeks. This is close to the
season-long goal we set out for our smart jacket.

Pd = 0.1 × Pn + 0.9 × (d × Pn) (2)

As for the GPS mote, it draws a higher current than a
normal sensor and will last for about half a day if it is left
on continuously. The GPS mote takes about seven seconds
to obtain a fix (usually). In the active state, the GPS mote
obtains a fix every minute and sleeps for the rest of the
minute. When the jacket is still, it does not obtain a fix. In
this scenario, the GPS mote lasts for seven weeks ( 60

0.1×7
×0.5

days), which is close to our season-long goal.
Observe that, the introduction of the above power man-

agement scheme is problematic to the beacon based data
synchronization. This is because, when a mote sends a bea-
con, the other motes could be asleep and fail to record the
synchronization point. We resolve this problem by adopt-
ing the following simple method. Initially, all the motes
are awake. When the first mote sends its beacon, the other
motes listen, and synchronize their clocks to this beacon.
Due to clock drifts of upto 40µs per second, synchroniza-
tion will be lost after a certain time duration. If we assume
that, the mote is awake for t ms after sending its beacon (be-
fore going back to sleep), then synchronization will be lost
if the drift with another mote is more than t ms. This will
happen after t×1000

40
seconds. To achieve re-synchronization,

when a mote fails to receive a beacon from another mote, it
will remain awake until it receives a beacon from that par-
ticular mote. If t is significant (in the order of a hundreds
of milliseconds, which is a fair assumption, as the motes
will remain awake for a few hundred milliseconds in order
to check for stillness), then re-synchronization needs to be
done once in a few thousands of seconds.

4.5 Reconstruction of Activity Logs

4.5.1 Problem Discussion
Until now, we have described the issues arising on the

motes’ side. The system is not useful if it cannot reconstruct
the activities done in the past or if it is not possible to as-
sociate a real time with these activities and locations. The
problem of reconstruction of activities performed and loca-
tion inference is two-fold. First, we must determine the type
of activity performed. Examples include walking, sitting,
climbing stairs, typing, and reading. Second, we need
to associate a time with these activities. The first problem
has been addressed in the literature in the past and sev-
eral algorithms have been proposed [30], [27], [33] and [25]
to interpret the human activities and gestures from raw ac-
celerometric data. We compare the typical approach of us-
ing feature vectors to a new Hidden Markov Model (HMM)
based approach.

4.5.2 Proposed Solutions
Several features of a signal have been introduced in [30]

and [33] for the purpose of activity identification. A subset
of these features can be mapped onto a multidimensional
feature space which can be used for activity identification.
For example, the energy of the difference signal of the x
and y accelerometer axes is useful to identify some activi-
ties. Figure 7 plots a two-dimensional feature space, where
each dimension is the energy of the difference signal of the
corresponding accelerometer axis when passed through an
exponential weighted moving average (EWMA) filter. The
figure shows a map of the EWMA values of x versus that of
y for different activities. Outliers have been eliminated by
means of averaging.

Figure 7: Map of X vs Y EWMA values for certain
activities (Data obtained by performing specific ex-
periments)

From Figure 7, we can see that different activities have
clearly identifiable regions. If new activities are identified
that fall in the same region in the mentioned two-dimensional
feature space, we can use additional features to identify dif-
ferences between such activities. In Section 5, we compare
this identification approach to one that uses HMMs.

Given the raw data from the motes, we need to reconstruct
the real world time when a sample value was collected. To
do so, we go backwards in time. When data is uploaded by
the motes to an access mote, we assume that the last value
uploaded is the most recent value and assign it a time which
is the current time on the PC. Given the number of sample
values between two timestamps, we can get an estimate as to
when a particular sample value was collected. This method
only gives an approximate estimate due to clock drift on the
motes.

4.6 User Interface
4.6.1 Problem Discussion

Presenting the data to the user in a user-friendly manner
and yet providing sufficient and exact details is an interest-
ing problem. Observe that, multiple visualizations of the
same data are necessary because different users have differ-
ent tastes. Access to one’s profile should also be round-the-
clock and not limited to the user’s home or office computer.



4.6.2 Proposed Solution
A natural solution to address a round-the-clock availabil-

ity of the user data archive is to use the Internet. As dis-
cussed in Section 3, we use a web-server and a database
management system (DBMS) for answering the queries of
the user. The DBMS and the web-server are maintained
at a trusted remote centralized location, to which the users
can connect using the Internet. A simple user-interface with
authentication is provided, so that the user can log-in, up-
load activity logs, and query her profile’s database. Each
user owns a private location on the DBMS server, where her
data is encrypted and stored. Alternatively, users with pri-
vacy concerns can host their data on their home computer
(assuming it is constantly online). This solution addresses
the issue of privacy partially, as it secures access to the user’s
data.

4.7 Privacy and Security
4.7.1 Problem Discussion

The issue of privacy and security comes to the forefront
as the sensory data collected and archived may contain sen-
sitive information which belongs to the individual who has
been using the application. Hence, the system design should
address security concerns through the development of secure
channels of communication and not allowing unauthorized
access to information.

4.7.2 Proposed Solution
A basic privacy scheme which uses an access matrix for

checking who can access what will suffice for our initial pro-
totype. This will be part of the layer 4 on the PC side.
Security issues can be addressed by using an authentication
based scheme for initiating a data upload and using a secure
communication channel for the actual data upload to take
place. Such a scheme is presented in [18]. We have not im-
plemented secure communication in the current prototype.

5. HUMAN ACTIVITY IDENTIFICATION
In this section, we compare approaches taken for human

activity identification. Our first approach was to extract a
set of features from the accelerometric signal and use these
to identify activities which were well spread out in the fea-
ture space. This is similar to the approach taken in [30], and
we claim no novelty in this regard. Feature vectors have also
been used in speech recognition [31]. This approach is de-
scribed in more detail in Section 5.1.

We found that the accuracy of this approach was poor
when we used it to identify multiple activities. We provide
a further discussion of this in Section 6. To overcome the
drawback of using a static feature vector model, we used a
dynamic Hidden Markov Model (HMM) to solve the prob-
lem. HMMs have been used in several machine learning
and speech recognition applications [26]. This approach is
explained in Section 5.2.

5.1 Feature Vector based Identification
Our feature space consists of features such as average,

standard deviation, root mean square, range, integral, tem-
poral variation, and rotational direction. Temporal vari-
ation is the sum of absolute euclidean distances between
accelerometric vectors of any two successive time instances.

Rotational direction gives an idea of clockwise/anticlockwise
rotational movement during the activity [30].

An activity can be represented as a static n-dimensional
vector, where n is the number of features, obtained through
representative training data. To identify a given activity,
features are extracted from the raw accelerometric data, and
a least error match with the representative feature vectors
is found.

5.2 HMM based Identification
A Hidden Markov Model (HMM) is a statistical model

where the system being modeled is assumed to be a Markov
process with unknown parameters, and the challenge is to
determine the hidden parameters from the observable pa-
rameters, based on this assumption. Although HMMs have
been used in the past for machine learning and speech recog-
nition applications, to the best of our knowledge there has
not been much work on using HMMs for identification of
human activities using accelerometers [24]. In [24], HMMs
have been used to identify complex wood workshop activ-
ities. In contrast to this, our emphasis is on identifying a
broader range of mundane activities.

A HMM is characterized by the following:

• N : The number of hidden states

• M : The number of distinct observation symbols per
state

• AN×N : State transition probability distribution

• BN×M : Observation symbol probability distribution
for each state

• ΠN×1: Initial state distribution

There are two phases to using a HMM. The first is a train-
ing phase, where the HMM learns the model parameters
that maximize the probability of observing the representa-
tive data set. The second is the inference phase, where the
probability of an observation sequence to be classified is cal-
culated given the HMM model.

To solve the problem of human activity identification, we
use an ergodic (every state of the model can be reached from
every other state) and discrete observation HMM. For de-
tails of the training and inference techniques, the reader is
referred to [26]. For each activity, we have a N(N = 10)
state HMM, where a range of raw accelerometric data are
mapped onto a single observation symbol of the HMM. We
use a total of 120 observation symbols (M = 120) per state.
We use the well known Baum-Welch technique, which is
based on an Expectation Maximization (EM) algorithm, for
training the HMM for each activity. To identify an activ-
ity, we use a Forward-Backward procedure, which given a
HMM model, estimates the probability that the observation
sequence is generated by this model. Using this procedure,
the probability that the observation sequence is generated
by the HMM for each of the activities is calculated. The
activity that yields the highest probability is chosen as the
activity represented by the observation sequence.

6. EVALUATION
We split the evaluation into three parts. The first part

of our evaluation deals with micro-benchmarks which affect
the overall performance of our system. The next subsection



is concerned with the evaluation of the performance of the
protocols developed in Section 4. We then present a high
level evaluation of the overall performance of the system.

6.1 Micro-benchmarks
In order for the upload protocol to function well, we eval-

uate the parameters affecting communication performance
and use the best empirically determined values as the pa-
rameter settings for our system.

First, observe that data upload can use one of two meth-
ods. In the first one, packet upload is clocked. Every time
the timer fires, a packet is sent. An alternative method
to clocked packet transmission is to send each packet im-
mediately after the previous packet completes transmission,
which is signified by the sendDone event in TinyOS. This is
called a split phase command, since the send command re-
turns followed by the asynchronous signal sendDone, when
the operation is successful.

Figure 8 plots the sent and the received data rates when
the number of bytes in the packet are varied for a split phase
send. We notice that the maximum achievable data rate is
about 35 Kbps at the receiver. The advertised radio data
rate of MicaZ motes is 250 Kbps and that of the serial port
is 57.6 Kbps. We conducted an experiment to measure the
maximum data rate achievable on the serial port, and we
were able to achieve about 50 Kbps, which makes the serial
port the bottleneck. The base mote has only 512 KB of
flash memory, which makes it imperative for it to forward
a packet on the serial port as soon as it receives the packet
from the embedded sensor motes. Hence, the base mote has
to interleave the radio reception and forwarding of a packet
on the serial port, further reducing the achievable data rate.
This accounts for the 35 Kbps data rate we were able to
achieve.
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Figure 8: Comparison between sent and received
data rates using split phase send

We also notice from Figure 8 that due to the bursty send-
ing rate of split phase send, high losses are incurred. Hence,
we chose to use a clocked send approach. Here, we control
the data rate of the sender using a timer, so that the sending
data rate is maintained at about 30 Kbps. Figure 9 plots
the sent and received data rates for varying number of bytes
in a packet. We notice that for packet sizes greater than 68
bytes, we were able to achieve nearly lossless transmission.

We observe that while sending data, read operations occur
from the flash which prohibits any writes to the flash during
the send interval. Hence, it is important that the sensory
data collected be kept in volatile memory until they can be
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Figure 9: Comparison between sent and received
data rates using clocked send

written. The amount of volatile memory available for data
buffering is very small (less than 4KB). This imposes a con-
dition where reads and writes must be interleaved to reuse
the buffer space. Our upload protocol presented in Section 4
takes care of this problem by checking after every send (i.e.,
read) burst for any data collected from sensors and writing
such data into the flash in a write burst. Hence, upload
time (i.e., read burst time) becomes a dominating factor
that determines the buffering requirements in our system.
Note that, there are two different bottlenecks in our upload.
One is at the access mote attached to the PC, which is con-
strained by the rate at which data can be sent to the PC.
The other is on the mote in the jacket, where data needs to
be buffered during the upload, and reads/writes to the flash
need to be interleaved.

Figure 9 shows that nearly lossless transmission can be
achieved for data rates of about 30 Kbps. The percentage of
packets received for different data rates is plotted in Figure
10 for MicaZ motes. The data rate is varied by changing
the timer period. From this figure, we observe that the
percentage of packets received falls sharply for data rates
greater than 30 Kbps.
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We conclude from Figures 8, 9, and 10 that a good set of
values to send data without incurring heavy losses for MicaZ
motes is about 68 bytes per packet with about 55 packets
sent every second (a timer period of 21 ms), giving a net
data rate of roughly 30 Kbps, which we deem sufficient for



our purposes.
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It is a known fact that as the distance from the base is
increased, the packet loss also increases [35]. For the simple
ARQ/NACK based scheme we presented in Section 4, Figure
11 correlates the cost of reliability in terms of percentage
overhead with increasing distance from the base.

We observe that the overhead is quite high at large dis-
tances. From our experiments, we also observed that the
time taken for the reliable upload protocol to send packets
successfully is quite high when the distance from the base is
increased beyond 25-30 ft. This distance, however, may be
sufficient in practice. For example, it is consistent with the
dimensions of a walk-in closet or a cubicle, where a jacket
and an access mote can communicate. Also note that the
entire upload time is very small. Even substantial overhead
will extend this time by only a few seconds. Hence, the cost
of reliability is not an issue.

6.2 Protocol Performance Evaluation
This section evaluates the protocols we developed for the

system. Our prototype includes six motes, five of which
log the x and y axes accelerometer data and the sixth mote
runs a GPS module. All the motes are placed unobtrusively
inside the lining of a heavy winter jacket, which has been
specially created for these motes. Two motes were placed on
each arm (one below and one above the elbow) and one mote
was placed close to the waist, with all the y-axes pointing
downwards when in standing position (with the arms point-
ing down). The GPS mote can be placed anywhere, but the
GPS receiver is placed facing outwards for better satellite
reception.

Our architecture enables the easy introduction and re-
moval of filters. Figure 12 shows the amount of flash used2

when corresponding filters are applied. Data is presented
from snapshots of two different experiments involving two
different people.

We observe from Figure 12 that the amount of flash saved
by employing filters is quite high, indicating that a person’s
activities in a day are mainly confined to bursty intervals.
Filtering can also reduce the amount of energy consumed.
Since the number of times we write to the flash has de-
creased, it extends the disconnected operation period and
the battery life.

2the value is greater than 512KB since we use the flash as a
circular buffer
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We presented a method to use beacons to reconstruct the
time a particular sample value was collected. Figure 13 plots
the deviation of the theoretical sampling rate (which is 25Hz
for each accelerometer axis in our case) from the actual sam-
pling rate maintained by the system as calculated from bea-
con timestamps over the duration of an entire experiment.

We observed from the raw data summarized in Figure 13
that the deviation from the actual sampling rate is higher
when the system is in a disconnected mode of operation for a
longer time (not shown in figure). This shows that the clock
drift of the motes affects the correctness of reconstruction
of time. If the system is near the base most of the time,
the clock drift does not affect the calculated sampling rate
which means that the data synchronization protocol will be
more accurate. Hence, our method is approximate if the
time of disconnected operation is large and is quite accurate
when this time is smaller.

6.3 Overall System Performance
In this subsection, we present a performance evaluation of

the various sub-systems in SATIRE.

6.3.1 Human Activity Identification
We classify the activities into stationary and non-stationary.

An activity is classified as stationary, when the energy of the
difference signal (as described in Section 4.1) summed over
a period of time is lower than a threshold. Otherwise, the
activity is classified as non-stationary.

Different activity identification algorithms can be easily
plugged into the interpretation layer of our architecture. We



used two different interpretation techniques, namely identi-
fication using feature vectors and using HMM. In all our
activities, the data set was obtained by conducting each ac-
tivity for a period of ten minutes. A sample of one minute
was used to train the HMM for each activity. Ground truth
was verified by manually recording the activity at a given
time instant. Data sets were obtained for two different users.

Figures 14 and 15 plot the accuracy of detecting a set of
seven stationary activities using both the feature vector and
the HMM approaches for two different users. The activi-
ties considered were sitting, reading, typing, lying down,
standing in an elevator, writing, and eating with a fork

and knife (only for user 1). The feature vector approach
performed poorly when compared to the HMM approach.
This is due to the fact that the feature vector approach
does not consider the sequence in which the motion is per-
formed, but rather relies on a set of static features. Figure
16 plots the accuracy of identifying three non-stationary ac-
tivities, namely, walking, walking with an umbrella, and
climbing stairs for a user using HMM and feature vector
approaches.
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cation using HMMs and feature vectors for user 1

 0

 20

 40

 60

 80

 100

 120

Writing
Elevator

Lying
Typing

Reading

Sitting

Ac
cu

ra
cy

 (%
)

HMM
Feature vector

Figure 15: Accuracy of stationary activity identifi-
cation using HMMs and feature vectors for user 2

We then trained the HMM using one user’s data and
tested the accuracy of identifying the other user’s station-
ary activities. This is plotted in Figure 17. We observed
that sitting was classified with very high accuracy, while
reading and typing were not identifiable (zero accuracy for
reading). This suggests that, reading and typing are spe-
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Figure 16: Accuracy of non-stationary activity iden-
tification using HMMs and feature vectors
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cation without user specific training

cialized activities for each user, while sitting is a general
activity.

A new user can use the jacket to identify a set of pre-
trained general activities. To identify new activities or to
improve the accuracy of identification of existing activities,
the user can specially train the jacket to suit his/her needs.

6.3.2 Location Tracking using GPS
We added a GPS sensor mote to our system by introducing

a module in the parsing layer of our architecture. The GPS
mote can be used to track the location of the user when he or
she is not occluded from the GPS satellites. We conducted
experiments to track the location of a user. The experiment
was conducted over a period of seventy-five minutes, when
the user went home from his department and returned after
about thirty-five minutes. The GPS locations obtained from
this experiment were superimposed on a map of the area and
are shown in Figure 18 to visually present the route taken
by the user. From the figure, we notice that the period of
time the user was at home is displayed as a dense cluster of
points, towards the south-west portion of the route.

For the same experiment, we plot the speed-time graph
in Figure 19 and the activity recognized over time in Figure
20. The user first walked for about 15 seconds and then
took an elevator. After which, we identified that the user
was walking with a speed of about 1.5 m/s for about 25
minutes. This, we noticed was the time he walked to his
home. Then, he was stationary for about 35 minutes, after
which he walked back to the department at an average speed



Figure 18: Expt. 1: Location tracking using GPS

of 1.5 m/s. The user again used the elevator and walked for
about 15 seconds (to his office).
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Figure 19: Expt. 1: Speed vs. Time of user

We conducted another experiment, for which the location
details and the speed-time plots are shown in Figures 21 and
22, respectively. From these figures, we were able to deduce
that the user was walking in Region 1 (with an approximate
speed of 1.5 m/s) and was stationary for about 5 minutes
in Region 2. At about a time of 60 seconds, we observe
that the speed of the user was 0 m/s. This was because the
user was waiting to cross a busy road. The user’s speed was
found to fluctuate between 0 and 10 m/s during times 700
and 1150 seconds, indicating that the user was in a vehicle
that made frequent stops. In fact, this was found to be
true as the user was traveling in a campus bus, which made
frequent stops. From time 1150 seconds onwards, the user
was found to be walking at about 1.5 m/s.

In conclusion, the vision of smart attire (at least for outer
garments such as winter jackets) is quite realizable assuming
that hardware is developed that can be comfortably embed-
ded in the lining, which is protected (by proper enclosures)
from moisture, shocks, and chemicals (as in dry-cleaning).

7. RELATED WORK
We divide the related work into two sub-sections namely

gesture recognition interfaces and wearable computers.
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Figure 20: Expt. 1: Activities of user over time

Figure 21: Expt. 2: Location tracking using GPS

7.1 Gesture Recognition Interfaces
Gesture recognition and motion tracking have received

much attention in previous literature. Several efforts have
focused on hand motion recognition. For example, hand
motion capture was described using vision techniques [9]
and infrared [29]. Generally, one of the most widely inves-
tigated approaches for human body motion tracking is to
use cameras. Human motion is reconstructed from track-
ing features such as lights attached to human joints [16].
All the above methods require the use of external or head-
mounted cameras to track motion, which are cumbersome to
use. In contrast, our work focuses on human motion recog-
nition through the use of accelerometric data.

Accelerometers have been frequently used for performing
motion tracking. For example, an accelerometer-based ges-
ture recognition interface is presented in [8], which acts as a
pointing device and menu selector, among other options. In
[6], a low-cost and low-power wearable motion tracking sys-
tem is developed, based on integrated accelerometers. Sig-
nature verification using accelerometers is presented in [7]
that measures amplitude, phase and frequency of pen accel-
eration signals. Hand motion recognition using accelerome-
ters received further attention. An acceleration sensing glove
is presented in [25] that can detect and translate finger and
hand motions into computer interpreted signals. A hand
gesture recognition method is described in [32] using a hand
shape Data Glove for acquiring a series of hand shapes in a
continuous motion for gesture recognition. These techniques
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Figure 22: Expt. 2: Speed vs. Time of user

can be imported into our general architecture.
Gravity and magnetic field have often been used for po-

sition estimation. Magnetic field, Angular rate and Grav-
ity sensors (MARG sensors) are used in [5] to determine
the posture of an articulated body. In [28], a micro detec-
tor with integrated micro electro-mechanical sensors, such
as accelerometers and magnetometers, was used for motion
tracking and online simulation.

7.2 Wearable Computers
Several specialized wearable computing systems have been

described in recent literature. One common goal of many
systems has been to attain context awareness. Self-guided
tour applications received some attention. For example, a
cyberjacket was described in [27] for a tourist guide sys-
tem. In [12], a system that combines overlaid 3D graphics
of augmented reality with mobile computing is developed
to present information about a university campus. Other
context-awareness devices include a wearable jacket devel-
oped in [11] which uses knitting techniques and stretch sen-
sors to measure upper limb and body movement and con-
tains a 2-axis accelerometer. MIThril [10] describes a PDA-
centric architecture for wearable computers. A method to
recognize the context-awareness of the user from stream in-
puts from sensors worn by the person is described in [14].
This system uses sensors mounted on several circuit boards
and attached to a utility belt worn by the user. A sys-
tem with accelerometers on pants attached to a laptop to
interpret the raw sensor data using Kohonen maps and ma-
chine learning techniques is presented in [20]. In [17], a low
power, distributed platform that combines acceleration and
magnetic field sensors in a wearable, hierarchical network
is presented. The system is divided into subnetworks as-
signed to body parts that are connected to a local bus with
a dedicated master. This system can be used for context
sensing and gait analysis. Smart Attire introduces the next
generation of wearable computing systems in which wired
networks and centralized processing are replaced with wire-
less sensors individually equipped with their own micropro-
cessors, memory, and radio devices. This decentralization
offers more flexibility, scalability, and independence within
the computing platform.

Exciting research is also being done in the area of e-textiles
[22], where several prototypes of fabrics are being developed,
that make embedding sensors and processing elements in
clothing easy.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel way of recording sen-

sory data generated by outdoor human activities using a
wireless sensor network embedded unobtrusively in the cloth-
ing of a person. These data are collected remotely and up-
loaded to a base station opportunistically for reconstruction
of activities. In doing so, we identified the major issues and
problems involved in building such a system. We imple-
mented efficient solutions to these problems, which include
remote data logging (with increased disconnected operation
as the major issue), upload protocols for the raw sensory
data collected, and reconstruction of the type/time of activ-
ities performed. Each of these protocol implementations was
evaluated in a real world deployment by conducting several
experiments.

We also presented a flexible and modular software archi-
tecture for future development of smart attire systems that
simplifies introduction of new sensors and new algorithms.
We are yet to implement the power management protocol,
privacy, and security protocols presented in this paper on
the real system. Security and privacy issues have to be ad-
dressed due to the sensitive nature of the data collected.
Issues such as distributed processing have not yet been ad-
dressed in this paper. Our future work will develop an oper-
ating system for use over WSNs embedded in clothing and
for development of various algorithmic techniques to identify
different kinds of human activities. Another branch which
we are yet to explore is the usefulness of raw data for medical
applications.
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