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ABSTRACT
Traditional transportation systems in metropolitan areas often suf-
fer from inefficiencies due to uncoordinated actions as system ca-
pacity and traffic demand change. With the pervasive deployment
of networked sensors in modern vehicles, large amounts of infor-
mation regarding traffic demand and system status can be collected
in real-time. This information provides opportunities to perform
various types of control and coordination for large scale intelli-
gent transportation systems. In this paper, we present a novel re-
ceding horizon control (RHC) framework to dispatch taxis, which
combines highly spatiotemporally correlated demand/supply mod-
els and real-time GPS location and occupancy information. The
objectives include reducing taxi idle driving distance and match-
ing spatiotemporal ratio between demand and supply for service
quality. Moreover, our RHC framework is compatible with differ-
ent predictive models and optimization problem formulations. This
compatibility property allows us to model disruptive passenger de-
mands and traffic conditions into a robust optimization problem.
Extensive trace driven analysis with a real taxi data set from San
Francisco shows that our solution reduces the average total idle
distance by 52%, and reduces the total supply demand ratio error
across the city by up to 45%.
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∗This work was supported by NSF grant numbers CNS-1239483,
CNS-1239108, CNS-1239226.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Intelligent Transportation System, Real-Time Taxi Dispatch, Re-
ceding Horizon Control, Mobility Pattern

1. INTRODUCTION
Sensing and wireless networking technologies are increasingly

deployed in transportation systems, such as highway management,
traffic light control, supply chains, and autonomous vehicles. These
systems demonstrate significant safety and efficiency improvements
over traditional systems. In modern taxi networks, real-time occu-
pancy status and Global Positioning System (GPS) location of each
taxi can be collected. This data set provides rich spatiotemporal
information about passenger demand and their mobility patterns.
Hence, real-time information provides opportunities to improve co-
ordination of taxi networks, for higher service quality, and lower
idle driving distance.

Traditional metropolitan taxi networks heavily rely on drivers’
experience to identify passengers on streets and maximize indi-
vidual profit. However, self-interested, uncoordinated behaviors of
drivers cause spatiotemporal mismatch between supply and passen-
ger demand. There are taxi dispatch services operated by large taxi
companies. Most of these services dispatch taxis based on locality
or greedy algorithms, such as sending the nearest vacant taxi to pick
up a passenger [15], or first-come, first-served. Such approaches
prioritize immediate customer satisfaction at the cost of global re-
source utilization and service fairness, because the potential cost of
rebalancing the entire taxi supply network is not considered.

In this paper, we consider the following design challenge: op-
timizing for anticipated future idle driving cost and globally ge-
ographical service fairness, while fulfilling current, local demand.
To accomplish such goal, a control framework is needed to incorpo-
rate both system models learned from historical data and real-time
GPS information. To the best of the authors knowledge, no previ-
ous work has considered this problem. Zhang and Pavone design
an optimal rebalancing method for autonomous cars, that consid-
ers both global service fairness and possible future costs [27], but
idle driving distance and GPS information are not considered. Both
costs of idle cruising and missing tasks are included to assign trucks



in the temporal perspective in [25], but real-time location informa-
tion is not involved in the assignment.

To utilize large-scale real-time information of the taxi network,
we consider a computational efficient, moving time horizon frame-
work. Moreover, the dispatch solutions need to consider future
costs of balancing supply demand ratio under practical constraints.
Thus, we take a receding horizon control (RHC) approach to dy-
namically dispatch taxis in large-scale networks. General learning
techniques are applied to historical monitoring data sets, to charac-
terize passenger mobility patterns and demand models [26], which
then provide demand predicting model besides current bookings in
the system. Real-time GPS and occupancy information is collected
to update supply and demand information for future dispatch. Our
design aims to regulate the mobility of idle taxis for high perfor-
mance large-scale transportation management.

The contributions of this work are as follows,
• To the best of our knowledge, we are the first to design an

RHC framework for large-scale taxi dispatching. Compared
with current local greedy algorithms, the novel framework
allows us to consider both current and future requests, saving
costs under constraints by involving expected future costs for
re-balancing supply.
• The framework combines large-scale data in real-time con-

trol. Sensing data is used to build predictive passenger de-
mand, taxi mobility models, and serve as real-time feedback
for RHC.
• Extensive trace driven analysis based on a San Francisco taxi

data set shows that our approach reduces average estimated
taxi network idle distance by 52% as in Figure 5, and the
total supply demand ratio error of all regions by 45% as in
Figure 6, compared to the actual historical taxi system per-
formance.
• Spatiotemporal context information such as disruptive pas-

senger demand is incorporated into our control framework.
This allows our control solutions to be more robust and accu-
rate to such disturbances under uncertain contexts as shown
in Figure 8.

The rest of the paper is organized as follows. More related work
is introduced in Section 2. The structure of taxi monitoring system
and control problems are introduced in Section 3. The taxi dispatch
problem is formulated, followed by an RHC framework that inter-
acting between historical model and real-time information in Sec-
tion 4. A case study to evaluation the RHC framework with a real
data set is shown in Section 5. Concluding remarks are provided in
Section 6.

2. STATE-OF-THE-ART
There are three categories of research topics related to our work:

taxi dispatch systems, transportation system modeling, and multi-
agent coordination and control.

A number of recent works study taxi dispatching services along
with the pervasive deployment of GPS in mordern taxis. Authors
of [23] focus on minimizing total customer waiting time by con-
current dispatching multiple taxis and allowing taxis to exchange
their booking assignments. In [22, 12, 21], authors aim to maxi-
mize drivers’ profits by providing routing recommendations. These
works give valuable results, but they only consider the current pas-
senger requests and available taxis. Our design uses receding hori-
zon control to consider both current and predicted future requests.

Various mobility and vehicular network modeling techniques have
been proposed for transportation systems [5, 4]. Researchers have
developed methods to predict travel time [7, 10], traveling speed [3],

and charaterize taxi performance features [14]. These works pro-
vide insights to transportation system properties and suggest po-
tential enhancement on transportation system performance. Our
design takes a step further to develop dispatch methods based on
available predictive data analysis.

There is a large number of works on mobility coordination and
control. Different from taxi services, these works usually focus
on region partition and coverage control so that coordinated agents
can perform tasks in their specified regions [6, 1, 11]. Other re-
lated works include dynamic vehicle routing problems [2] and ro-
bust traffic flow management under uncertainty [24]. Their task
models and design objectives are different from taxi dispatching
problem. Also, model predictive control has been widely applied
for process control, task scheduling, cruise control, and multi-agent
transportation networks [16, 17, 13]. These works provide solid
results for related mobility scheduling and control problems. How-
ever, none of these works incorporates both the real-time sensing
data and historical mobility patterns into a receding horizon con-
trol design, leveraging the taxi supply based on the spatiotemporal
dynamics of passenger demand.

3. TAXI DISPATCH PROBLEM: MOTIVA-
TION AND SYSTEM

Taxi networks provide a primary transportation service in mod-
ern cities. Most street taxis respond to passengers’ requests on their
paths, and take passengers to their specified destinations. There-
fore, existing taxi networks rely on drivers to drive around and
arbitrarily pick up passengers on streets. This service model has
successfully served up to 25% public passengers in metropolitan
areas, such as San Francisco and New York [9, 18]. In existing
taxi networks, a couple of key dynamics affect their service qual-
ity: a) dynamic passenger demand. The spatiotemporal patterns of
demand include both regular factors, such as rush hours and busy
areas, and irregular ones, such as weather, traffic, holiday schedule,
major events, etc. b) dynamic taxi supply. Taxis have different mo-
bility patterns, since each driver has his/her own working schedule
and cruising areas. From the perspective of system performance,
balancing spatiotemporal taxi supply across the whole city is a de-
sign requirement, similar to the idea of balancing server node uti-
lization in [27]. On the other hand, idle driving introduces a direct
cost, hence, we also consider another system-level objective — to
reduce total idle driving cost instead of individual driver’s profit.

Existing infrastructures serve as the basis of our design. Taxi
companies in metropolitan areas already monitor the performance
of the taxi network in real time. Figure 1 shows a typical monitor-
ing infrastructure, which consists of a large number of geograph-
ically distributed sensing and communication components in each
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Figure 1: A prototype of the taxi dispatch system



taxi and a data center. In particular, the sensing components include
a GPS unit and a trip recorder. Each taxi automatically reports its
GPS location and occupancy status to the data center via cellular
radio. The data center collects and stores data. Then, the monitor-
ing center sends dispatch commands to taxi drivers also via cellular
radio, which notify drivers over the speaker or on a special dis-
play. We assume that the geographical coordinates of every taxi
are available in real time.

Given both stored historical data and the real-time taxi monitor-
ing information described above, the process of dispatching taxis
includes two phases: analysis of historical data and real-time com-
putation of dispatch solution. This paper focuses on phase two;
more precisely, we provide a scalable control framework that dis-
patches vacant taxis to balance current and future demand with
small idle driving distance, by utilizing both historical data and
real-time monitoring data. It is worth noting that heading to the
allocated position is part of idle driving distance for a vacant taxi,
which introduces a trade-off between the two design objectives.
Hence, one design constraint we consider is to match global supply
and demand without introducing large idle driving cost.

4. ALGORITHM DESIGN

4.1 Taxi Dispatch Problem Formulation
Informally, the goal of our taxi dispatch system is to schedule

vacant taxis towards current and future passengers with least total
idle mileage. Based on the spatiotemporal patterns of passenger de-
mands in the city, the dispatch center dynamically allocates vacant
taxis to different regions in order to match the passenger demands.
We use supply demand ratio of different regions as a measure of
service quality, since sending more taxis for more requests is a nat-
ural system-level requirement, to make customers of different po-
sitions equally satisfied. A similar service metric of service node
utilization rate has been proposed in [27].

To calculate a dispatch solution, the system is equipped with
model learning techniques to predict spatiotemporal patterns of pas-
senger demand, either purely from history data, or combining real-
time information of the taxi network. The real-time information
includes each taxi’s GPS location and occupancy status with a time
stamp that periodically reported to the dispatch center.

Besides balancing supply and demand, another design require-
ment is to include future cost when calculating the current dispatch
solution. It is difficult to perfectly predict the future of the large-
scale taxi service system in practice, hence, we use a heuristic fu-
ture idle driving distance to describe anticipated future cost asso-
ciated to meeting customer requests. Considering control objec-
tives and computational efficiency, we choose a receding horizon
approach. We assume that the optimization time horizon is T , in-
dexed by k = 1, . . . , T .

4.1.1 Supply and demand in taxi dispatch
With a large amount of historical data on taxi GPS and occu-

pancy status, we extract basic dynamic demand information, such
as demand during rush hours and in busy areas. We assume that
the entire area of a city is divided into n regions according to some
specific method. For example, a city can be divided into adminis-
trative sub-districts. We also assume that during a time slot k, the
total number of requests we want to serve by current vacant taxis
at the j-th region is denoted by rkj , the total number of requests in
the entire city is denoted by Rk =

∑j=n
j=1 r

k
j , and define a request

vector as rk ∈ R1×n : [rk1 , . . . , r
k
n]. These are the demands we

want to meet during time k = 1, . . . , T with minimal idle driving
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(b) A dispatch solution – taxi 2
goes to region 4, taxi 4 goes to
region 3, and taxi 6 goes to re-
gion 4.

Figure 2: Unbalanced supply and demand at different regions
before dispatching and possible dispatch solutions. A circle
represents a region, with a number of predicted requests ([·] in-
side the circle) and vacant taxis ({ taxi IDs } outside the circle)
before dispatching. A black dash edge means adjacent regions.
A red edge with a taxi ID means sending the corresponding va-
cant taxi to the pointed region, to balance supply demand ratio.

cost.
Given the latest occupancy status information, we assume there

are total N vacant taxis in the entire city that can be dispatched.
The initial supply information consists of real-time GPS position
for the i-th vacant taxi, denoted by P 0

i ∈ R1×2, i = 1, . . . , N ,
and the initial position matrix for all available taxis is denoted by
P 0 ∈ RN×2 (How does information of occupied taxis affect the
supply/demand model will be discussed in subsection 4.2).

The basic idea of the dispatching problem is illustrated in Fig-
ure 2. Specifically, each region has a predicted number of requests
the dispatch system needs to meet, and vacant taxis with IDs at
different locations given real-time sensing information. The sup-
ply demand ratio at each region before dispatching is unbalanced.
We want to find a dispatch solution in order to balance the supply
demand ratio, while satisfying practical constraints and not intro-
ducing large idle driving cost for current and future time. Once the
taxi reaches the target location to pick up passengers, the dispatch
system will wait until the next dispatch period.

4.1.2 Variables, constraints and a cost function
With the above initial information about supply and demand, to

calculate a dispatch decision at the region level for current vacant
taxis, we define the dispatch order matrix Xk ∈ {0, 1}N×n as a
binary variable matrix, satisfying that Xk

ij = 1 if and only if the
i-th taxi is sent to the j-th region during time k. Then the constraint

Xk1n = 1N , k = 1, . . . , T,
must be satisfied, since every taxi should be dispatched to one re-
gion at time k, where 1N be a length N column vector of all 1s.

A routing process for a taxi usually needs a starting position and
a destination position first, and then the driver follows the path
shown on the GPS unit in the taxi. Since the routing process design
is not the focus of this work, the dispatch center can simply sends a
two dimensional GPS location for the taxi driver as destination. In
practice there are taxi stations on the road in a metropolitan area,
and each taxi has a preferred station or is randomly assigned one by
the monitoring system at every region. Denote the preferred geom-
etry location matrix for the i-th taxi by Wi ∈ Rn×2, and [Wi]j –
the j-th row ofWi is the dispatch position sent to the i-th taxi when
Xk

ij = 1. It is equivalent to send the following location vector to
the i-th vacant taxi:

Xk
i Wi =

∑
q 6=j X

k
iq[Wi]q +Xk

ij [Wi]j = [Wi]j ∈ R1×2,



Parameters Description
N the total number of vacant taxis
n the number of regions

rk ∈ R1×n the total number of predicted requests to be served by current vacant taxis at each region
Ck ∈ [0, 1]n×n matrix that describes taxi mobility patterns during one time slot
P 0 ∈ RN×2 the initial positions of vacant taxis provided by GPS data
Wi ∈ Rn×2 preferred positions of the i-th taxi at n regions
α ∈ RN the upper bound of distance each taxi can drive for balancing the supply
β ∈ R+ the weight factor of the objective function
Rk ∈ R+ total number of predicted requests in the city
Variables Description

Xk ∈ {0, 1}N×n the dispatch order matrix that represents the region each vacant taxi should go
dki ∈ R+ heuristic idle driving distance of the i-th taxi for reaching the suggested location

Table 1: Parameters and variables of the RHC problem (8).

since Xk
iq = 0, Xk

iqWi = [0 0] for q 6= j. Wi does not need to
change with time k and can be set up by the dispatch system before
calculating the dispatch solution.

Cost for violating service fairness: One design requirement
is to fairly serve the requests across the entire city. An intuitive
measurement of whether demand is matched at every region is:

error=
∑n

j=1 |s
k
j − rkj |,

where skj is the total number of vacant taxis sent to the j-th re-
gion. However, even supply is already fairly allocated to each re-
gion, this error can still be large, since the total number of vacant
taxis and requests are different. Therefore, to measure how supply
matches demand at different regions, we use the measure metric—
supply demand ratio. When the supply demand ratio of every re-
gion equals to that of the whole city, we have the following equation
for j = 1, . . . , n, k = 1, . . . , T ,

1T
NX

k
·j

rkj
=

N

Rk
, ⇐⇒

1T
NX

k
·j

N
=

rkj
Rk

, (1)

where Xk
·j is the j-th column of matrix Xk. For expression conve-

nience, equation (1) is equivalent to the following equation about
two row vectors

1

N
1T
NX

k =
1

Rk
rk, k = 1, · · · , T. (2)

But equation (2) is too strict to be a constraint, since variables are
integers, and taxis’ driving speed is limited that they may not be
able to reach far away for serving some request in time k, and there
may be no feasible solutions satisfying (2). Thus, we define the
total supply demand error cost JE to measure how much the global
supply demand ratio is violated at all regions

JE =

T∑
k=1

∥∥∥∥ 1

N
1T
NX

k − 1

Rk
rk
∥∥∥∥
1

. (3)

Estimated idle driving distance associated with meeting the
dispatch solutions: Traversing from positionP 0

i to positionX1
iWi

for service will introduce cost since the taxi drives on the road with-
out picking up a passenger in order to serve a target region. Hence,
we consider to minimize this kind of idle driving distance while
dispatching taxis. Driving in a city is approximated as traveling on
a grid road. To estimate the distance without knowing the exact
path, we use the Manhattan norm or one norm between two geom-
etry positions, which is widely applied as a heuristic cost in path
planning algorithms [19]. We define dki ∈ R as the estimated idle
driving distance of the i-th taxi for reaching the dispatched loca-
tion Xk

i Wi, then the distance associated with going to X1
iWi is

approximated by

d1i = ‖P 0
i −X1

iWi‖1, i = 1, . . . , N.

To consider possible future costs in the current dispatch solution
as re-balancing costs, we need to estimate the driving distance to
reach Xk

i Wi from the ending position of time k− 1 for serving re-
quests described by rk. However, during time k− 1, taxis mobility
pattern is related to the pick-up and drop-off locations of passen-
gers, which is not controlled by the dispatch system. So we assume
the estimated ending position during k − 1 is approximated as a
linear function of the starting position Xk−1

i Wi provided by the
mobility pattern model, denoted by:

EP k−1
i = f(Xk−1

i Wi), f : R1×2 → R1×2. (4)

For instance, when taxi’s mobility pattern during time slot k is
described by a matrix Ck ∈ Rn×n satisfying

∑n
j=1 Cij = 1,

where Ck
ij is the probability that a taxi drops off a passenger at

region j near the end of time k when the trace starts from region i.
Then the process to get a heuristic dki is illustrated in Figure 3.

Remark 1. When road congestion information is available to the
dispatch system, function in (4) can be generalized to include real-
time congestion information. For instance, there is a high probabil-
ity that a taxi stays in the same region for time k under congestion.

It is worth noting that we do not assume the information of pas-
senger’s destination is available to the system for future time slots
k = 1, . . . , T , since many passengers just wait for service at taxi
stations instead of reserving one in advance in metropolitan areas.
When destination and travel time of all trips are provided to the
dispatch center via additional software or device for time k, the
information is considered as a constant matrix P k in problem (8),
instead of the function defined in (4).

Given Xk−1
i and the mobility pattern matrix Ck−1 ∈ [0, 1]n×n,

the probability of ending at each region for taxi i is
p =

∑n
j=1[C

k−1]jI(X
k−1
ij = 1) = Xk−1

i Ck−1 ∈ R1×n,

where the indicator function I(Xk−1
ij = 1) = 1 if and only if

possible path

Mahattan norm

Longitude

Latitude

Figure 3: Illustration of a heuristic future driving distance for
k = 2: predict ending location EP 1

i in (5), get a heuristic dis-
tance to location X2

iWi denoted by d2i in (6).



Xk−1
ij = 1, and [Ck−1]j is the j-th row of Ck−1. We take the

expected value of the i-th taxi by the end of time k − 1 at each
dimension as a predicted ending location of the i-th taxi

EP k−1
i =

n∑
j=1

pj [Wi]j = pWi = Xk−1
i Ck−1Wi ∈ R1×2. (5)

If we send a taxi to a target location Xk
i Wi at the beginning of

time k from position EP k−1
i , the approximated driving distance is

dki = ‖(Xk−1
i Ck−1 −Xk

i )Wi‖1, k = 2, · · · , T, i = 1, . . . , N.
(6)

Here dki is only a heuristic distance function of Xk−1
i and Xk

i ,
since the estimation accuracy depends on the predicting accuracy
of the mobility pattern model. We use the expected ending posi-
tion (not expected distance, this is a non-convex function ofXk

i ) to
avoid a random variable distance dki , since a random variable will
result in a stochastic programming that computationally expensive
for a large-scale optimization problem. The distance d1 is based on
real-time location information P 0, and we use heuristic d2, . . . , dT

to measure possible future costs for meeting requests. We consider
the effect of an inaccurate model when choosing T , which is dis-
cussed in the Remark, and experiment result is shown in Section 5.

The distance every taxi can drive should be bounded during lim-
ited time, and this distance upper bound for every taxi is denoted
by a vector α ∈ RN any dk should satisfy

dk 6 α.
Total idle driving distance to satisfy service fairness is denoted by

JD =

T∑
k=1

N∑
i=1

dki (7)

4.1.3 An RHC problem formulation
Since there exists a trade-off between two objectives as discussed

in Section 3, we define a weight parameter β when summing up the
costs related to both objectives. To summarize, we formulate the
following problem (8) based on the definitions of variables, param-
eters, constraints and objective function

minimize
Xk,dk

J = JE + βJD

=

T∑
k=1

(∥∥∥∥ 1

N
1T
NX

k − 1

Rk
rk
∥∥∥∥
1

+ β

N∑
i=1

dki

)
subject to d1i = ‖P 0

i −X1
iWi‖1, i = 1, . . . , N,

dki = ‖fk(Xk−1
i Wi)−Xk

i Wi‖1,
i = 1, . . . , N, k = 2, . . . , T,

dk 6 α, k = 1, 2, . . . , T,

Xk1n = 1N , k = 1, 2, . . . , T,

Xk
ij ∈ {0, 1}, i, j ∈ {1, 2, . . . , N}.

(8)

A list of parameters and variables is shown in Table 1. In particular,
if transition probability Ck, k = 1, . . . , T is learned by the mod-
eling technique, dki = ‖(Xk−1

i Ck−1 − Xk
i )Wi‖1. When mixed

integer programming is not efficient enough for a large-scale taxi
network regarding to the problem size, one relaxation method is re-
placing the constraint Xk

ij ∈ {0, 1}, ∀k, i, j by
0 ≤ Xk

ij ≤ 1,

With this approximation, every element of Xk is not restricted to
a binary variable. After getting an optimal solution X1 of relaxed

form (8), for the i-th taxi, set the largest value of X1
i to 1, and the

others to 0. This may violate the constraint of d0i , however, we set a
conservative upper bound and it does not effect the dispatch effects
in the experiment. The computational complexity of the relaxation
form of (8) is polynomial of Vn = nNT .

Remark 2. Previous work has developed multiple ways to learn
passenger demand and taxi mobility patterns [3, 7, 12], and ac-
curacy of the predicted model will affect the results of dispatch
solutions. With perfect knowledge of customer demand and taxi
mobility models, we can set a large time horizon to consider future
costs in the long run. However, in practice we do not have perfect
predictions, thus a large time horizon may amplify the prediction
error over time. With an approximated mobility pattern matrix Ck,
the dispatch solution with large T is even worse than small T , as
shown in Figure 12. Applying real-time information to adjust taxi
supply is a remedy to this problem. Formulation (8) is one compu-
tationally efficient approach to describe the design requirements.
Modeling techniques are beyond the scope of this work, and dis-
patch methods considering effects of different modeling approaches
is a future work.

4.1.4 A robust RHC problem
One advantage of the formulation (8) is its flexibility to adjust

the constraints and objective function according to different condi-
tions. With prior knowledge of scheduled events that disturb the de-
mand or mobility pattern of taxis, we take the effects of the events
into consideration by setting uncertainty parameters. For instance,
when we have basic knowledge that total demand in the city during
time k is about R̃k, but each region rkj belongs to some uncertainty
set, denoted by an entry wise inequality Rk

1 � rk � Rk
2 , given

Rk
1 ∈ Rn, Rk

2 ∈ Rn. Then rkj ∈ [Rk
1j , R

k
2j ], j = 1, . . . , n, and is

an uncertainty parameter instead of a fixed one as in problem (8).
If we ignore the change of R̃ for different rk and fix it on the de-
nominator, by adding an uncertain range space for rk, we have a
robust optimization problem (9)

min.
Xk,dk

max
Rk

1�rk�Rk
2

J =

T∑
k=1

(∥∥∥∥ 1

N
1T
NX

k − 1

R̃k
rk
∥∥∥∥
1

+ β

N∑
i=1

dki

)
subject to constraints of problem (8).

(9)

The robust optimization problem (9) is solvable in real-time, and
we have the following Lemma 1

Lemma 1. The robust RHC problem (9) can be solved exactly as
a deterministic optimization problem.

PROOF. In the objective function, only the first term is related
to rk. To avoid the maximize expression over an uncertain rk, we
first optimize the term over rk for any fixed Xk. Let Xk

·j represent
the j-th column of Xk, then

max
Rk

1�rk�Rk
2

∥∥∥∥ 1

N
1T
NX

k − 1

R̃k
rk
∥∥∥∥
1

= max
Rk

1�rk�Rk
2

n∑
j=1

∣∣∣∣∣ 1N 1T
NX

k
·j −

rkj

R̃k

∣∣∣∣∣
=

n∑
j=1

max
rkj ∈[R

k
1j ,R

k
2j ]

∣∣∣∣∣ 1N 1T
NX

k
·j −

rkj

R̃k

∣∣∣∣∣ .
The second equality is true because we can optimize each rkj sepa-



rately in this equation. For Rk
1j ≤ rkj ≤ Rk

2j , we have

Rk
1j

R̃k
≤

rkj

R̃k
≤
Rk

2j

R̃k
.

Then the problem is to maximize each absolute value for j =
1, . . . , n. Consider the following problem for x, a, b ∈ R to exam-
ine the character of maximization problem over an absolute value:

max
x0∈[a,b]

|x− x0| =

{
|x− a|, if x > (a+ b)/2

|x− b|, otherwise

=max{|x− a|, |x− b|}
=max{x− a, a− x, x− b, b− x}.

Similarly, for the problem related to rkj , we have

max
rkj ∈[R

k
1j ,R

k
2j ]

∣∣∣∣∣1NX
k
·j

N
−
rkj

R̃k

∣∣∣∣∣ =max{

∣∣∣∣∣1NX
k
·j

N
−
Rk

1j

R̃k

∣∣∣∣∣ ,∣∣∣∣∣1NX
k
·j

N
−
Rk

2j

R̃k

∣∣∣∣∣}.
(10)

Thus, with slack variables tk ∈ Rn, we re-formulate the robust
RHC problem as

min
Xk,dk,tk

J ′ =

T∑
k=1

(

n∑
j=1

tkj + β

N∑
i=1

dki )

subject to tkj ≥
1NX

k
·j

N
−
Rk

1j

R̃k
, tkj ≥

Rk
1j

R̃k
−

1NX
k
·j

N
,

tkj ≥
1NX

k
·j

N
−
Rk

2j

R̃k
, tkj ≥

Rk
2j

R̃k
−

1NX
k
·j

N
,

j = 1, . . . , n, , k = 1, . . . , T,

constraint of problem (8).

Then we reduce the robust RHC problem to a deterministic opti-
mization problem.

Taxi mobility patterns during disruptive events are not easily esti-
mated (in general), while we have knowledge such as a rough num-
ber of people are taking part in a conference or competition, or even
more customer reservations because of events in the future. By in-
troducing extra knowledge besides historical data model, the dis-
patching system responds to such disturbances faster than the situ-
ation without a robust optimization. Comparison of results of (1)
and problem (8) is shown in Section 5.

4.2 RHC Framework Design
Demand and taxi mobility patterns can be learned from histori-

cal data, but they are not sufficient to calculate a dispatch solution
with dynamic positions of taxis. Hence, we design an RHC frame-
work to adjust dispatch solutions and incorporate historical model
with real-time sensing information. Real-time GPS and occupancy
information then act as feedback by providing latest taxi locations,
and demand-predicting information for an online learning method
like [26]. Formulation (8) or (9) are embedded in one iteration of
the algorithm, to provide dispatching solutions.

Though we get a sequence of solutions in T steps–X1, . . . , XT ,
we only send recommendations to vacant taxis according toX1.We
summarize the complete process of dispatching taxis with both his-
torical and real-time data as Algorithm 1, followed by a detail com-
putational process of each iteration.

Algorithm 1: RHC Algorithm for real-time taxi dispatch
Inputs: Time slot length t1 minutes, period of sending
dispatch solutions t2 minutes (t1/t2 is an integer); a preferred
station location table for every taxi in the network; estimated
request vectors r̂(h1), h1 = 1, . . . , 1440/t1, mobility patterns
f̂(h2), h2 = 1, . . . , 1440/t2; parameters of problems (8), (9):
prediction horizon T ≥ 1, β, and α.
Initialization: The predicted requests vector r = r̂(h1) for
corresponding algorithm start time h1.
while At the beginning of each t2 time slot do

(1). Update sensor information for initial positions of
vacant taxis P 0 and occupied taxis P ′0, total number of
vacant taxis N , preferred dispatch location matrices Wi.
if time is the beginning of an h1 time slot then

Calculate r̂(h1) if the system applies an online
training method; count total number of occupied taxis
no(h1); update vector r.

end
(2). Update the demand vectors and mobility functions rk,
fk(·)(for example, Ck), k = 1, 2, . . . , T.
(3). if there is priority knowledge of disruptive events such
that rk is in an uncertainty set then

solve relaxed form of problem (9);
else

solve relaxed form of problem (8);
end
(4). Send dispatch orders to vacant taxis according to the
optimal solution of matrix X1. Let h2 = h2 + 1.

end
Return: Stored sensor data and dispatch solutions.

Remark 3. Predicted values of requests r̂(h1) depend on the mod-
eling method of the dispatch system. For instance, if the system only
applies historical data set to learn each r̂(h1), r̂(h1) is not updated
with real-time sensing data. When the system applies online train-
ing method such as [26] to update r̂(h1) for each h1, values of r,
rk are calculated based on the real-time value of r̂(h1).

4.2.1 Update r
We receive sensing data of both occupied and vacant taxis in real-

time. Predicted requests that vacant taxis should serve during h1 is
re-estimated at the beginning of each h1 time. To approximate the
service capability when an occupied taxi turns into vacant during
time h1, we define the total number of drop off events at different
regions as a vector dp(h1) ∈ Rn×1. Given dp(h1), the probability
that a drop off event happens at region j is

pdj(h1) = dpj(h1)/1
T
ndp(h1), (11)

where dpj(h1) is the number of drop off events at region j during
h1. We assume that an occupied taxi will pick up at least one pas-
senger around after turning vacant, and approximate future service
ability of occupied taxis at region j during time h1 as

roj(h1) = dpdj(h1)× no(h1)e, (12)

where d·e is a ceil function, no(h1) is the total number of current
occupied taxis at the beginning of time slot h1, provided by real-
time sensor information of occupied taxis. Let

r = r̂(h1)− ro(h1),
then the estimated service capability of occupied taxis is deducted
from r for time slot h1.



Taxicab GPS Data set Format
Collection Period Number of Taxis Data Size Record Number ID Status Direction
05/17/08-06/10/08 500 90MB 1, 000, 000 Date and Time Speed GPS Coordinates

Table 2: San Francisco Data in the Evaluation Section. Giant baseball game in AT&T park on May 31, 2008 is a disruptive event we
use for evaluating the robust optimization formulation.
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(a) Requests during weekdays
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(b) Requests during weekends

Figure 4: Requests at different hours during weekdays and weekends, for four selected regions. A given historical data set provides
basic spatiotemporal information about customer demands, which we utilize with real-time data to dispatch taxis.

4.2.2 Update rk

We assume requests are uniformly distributed during h1. Then
for each time k of length t2, if the corresponding physical time
is still in the current h1 time slot, the request is estimated as an
average part of r; else, it is estimated as an average part for time
slot h1 +1, h1 +2, . . . , etc. The method is described as following

rk =

{
1
H
r, if (k + h2 − 1)t2 ≤ h1t1

1
H
r̂(
⌈

(k+h2−1)t2
t1

⌉
), otherwise

where H = t1/t2. When there is disruptive events and estimated
request is a range r̂(h1) ∈ [R̂1(h1), R̂2(h1)], similarly we set rk

to an uncertain set of 1/H[R̂1(h1), R̂2(h1)].
The lengths of discrete time slots for learning historical mod-

els and updating real-time information do not need to be the same,
hence in Algorithm 1 we consider a general case for different t1, t2.
The main computational cost of each iteration is on step (3), and
t2 should be no shorter than the computational time of the opti-
mization problem. We regulate parameters according to experi-
mental results based on a given data set, since there are no closed
form equations to decide optimal design values of these parame-
ters. How to adjust parameters such as objective weight β, time
slots t1, t2, prediction horizon T are shown in Section 5.

4.2.3 Generalization of Algorithm 1
Distributed RHC algorithm: Since the relaxed form of iter-

ation step (3) is polynomial of the problem size Vn, a central-
ized framework works well for a certain range of variable num-
bers based on the computational capability of the monitoring sys-
tem (see Section 5 for more detail). When centralized computation
is not efficient enough for a large-scale problem, we can design a
distributed information collecting and iterative computing RHC al-
gorithm. In general a distributed framework introduces a trade-off
between dispatch cost and computational complexity, and is one
direction of future work.

Real-time information of waiting requests: We do not restrict
the data source of waiting requests – it can be either predicted re-
sults or customer reservation records. Some companies provide taxi
service according to the current requests in the queue. If reserva-
tions are received by the dispatch system, we then assign value of
the waiting requests vector rk in (8) according to the reservation,
and the solution is subject to customer bookings.

5. CASE STUDY: METHOD EVALUATION
We conduct trace-driven simulations based on a San Francisco

taxi data set [20] summarized in Table 2. In this data set, a record
for each individual taxi includes four values: the geometric position
(latitude and longitude), a binary indication of whether the taxi is
vacant or with passengers, and the Unix epoch time. With these
records, we learn average requests and mobility patterns of taxis,
which serves as the input of Algorithm 1. We note that our learning
model is not restricted to the data set used in this simulation, and
other models [26] and date sets can also be incorporated.

We implement Algorithm 1 in Matlab using an optimization tool-
box called CVX [8]. We assume that all vacant taxis follow the dis-
patch solution and go to suggested regions. Inside a target region,
we assume that a vacant taxi automatically picks up the nearest re-
quest, and we calculate the total idle mileage including distance
across regions and inside a region by simulation. The mileage be-
tween two points is approximated as proportional to their geograph-
ical distance on the road map, since a city is a small area on the
earth surface. Geometric location of a taxi is directly provided by
GPS data. Hence, we calculate geographic distance directly from
the data first, and then convert the result to mileage.

Experimental figures shown in Subsection 5.1 and 5.3 are aver-
age results of all weekday data from the data set of Table 2. Results
shown in Subsection 5.2 are based on weekend data.

Estimate request and drop off vectors: Requests during differ-
ent times of a day in different regions vary a lot, and Figure 4 com-
pares bootstrap results of requests r̂(h1) on weekdays and week-
ends for selected regions. This shows a motivation of this work—
necessary to balance the number of taxis according to the demand
from the perspective of system-level optimal performance. Drop
off vectors dp(h1) are also calculated via bootstrap method.

5.1 RHC with real-time sensor information
Real-time GPS and occupancy data provides latest position in-

formation of all vacant and occupied taxis. When dispatching avail-
able taxis with true initial positions, the total idle distance is re-
duced 52% compared with the result without dispatch methods, as
shown in Figure 5. This is because the optimization problem (8) re-
turns a solution with smaller idle distance cost given more accurate
initial position information P 0. Figure 5 also shows that even ap-
plying dispatch solution calculated without real-time information
is better than non dispatched result.



Based on the partition of Figure 7, Figure 6 shows that the supply
demand ratio at each region of the dispatch solution with real-time
information is closest to the supply demand ratio of the whole city,
and the error

∥∥ 1
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1T
NX

k − 1
Rk r

k
∥∥
1

is reduced 45% compared with
no dispatch results. Even the supply demand ratio error of dis-
patching without real-time information is better than no dispatch
solutions. We still allocate vacant taxis to reach a nearly balanced
supply demand ratio regardless of their initial positions, but idle
distance is increased without real-time data, as shown in Figure 5.
Based on the costs of two objectives shown in Figures 5 and 6, the
total cost is higher without real-time information, mainly results
from a higher idle distance.
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Figure 5: Average idle distance comparison for no dispatch,
dispatch without real-time data, and dispatch with real-time
GPS and occupancy information. Idle distance is reduced 52%
given real-time information, compared with historical data
without dispatch solutions.
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Figure 6: Supply demand ratio of the whole city and each re-
gion for different dispatch solutions. With real-time GPS and
occupancy data, the supply demand ratio of each region is
closest to the global level. The error of supply demand ratio∥∥ 1
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is reduced 45% with real-time informa-
tion, compared with historical data without dispatch solutions.

Figure 7: A heatmap about the density of our San Francisco
taxicab GPS data set, with a region partition method. The
denser the area, the more the GPS data points. Region 3 cov-
ers several busy areas, include Financial District, Chinatown,
Fisherman Wharf. Region 7 is mainly Mission District, Mis-
sion Bay, the downtown area of SF.

To estimate a mobility pattern matrix Ĉ(h2), we define a ma-
trix T (h2), where T (h2)ij is the total number of passenger tra-
jectories that starting at region i and ending at region j during
time slot h2. We also apply bootstrap process to get T̂ (h2), and
Ĉ(h2)ij = T̂ (h2)ij/(

∑
j

T̂ (h2)ij).

For simulation simplicity, we partite the city map to equal-area
regions. to get the longitude and latitude position Wi ∈ Rn×2 of
each vacant taxi, we randomly pick up a station position in the city
map by uniform distribution.

5.2 Robust optimization
One disruptive event of the San Francisco data set is Giant base-

ball at AT&T park, and we choose the historical record on May 31,
2008 as an example to evaluate the robust optimization formula-
tion (9). Customer request number for areas near AT&T park is af-
fected, especially Region 7 around 5 : 00pm, which increases about
40% than usual. Figure 8 shows that with a robust optimization
formulation (9), the error
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is reduced 25%

compared with problem (8), 46% compared with historical supply
data without dispatch. Even under solutions of (8), the total supply
demand ratio error is reduced 28% compared historical data with-
out dispatch. In general, we consider the factor of disruptive events
in a robust RHC iteration, thus the system level supply distribution
responses to the demand better under disturbance.

5.3 Design parameters for Algorithm 1
Parameters like the length of time slots, the region division func-
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Figure 8: Comparison of supply demand ratio at each region,
for solutions of robust optimization (9), problem (8) in the RHC
framework, and historical data without dispatch. With the dis-
patch solution of problem (9), the supply demand ratio of each
region is closer to the ratio of the whole city, and the total sup-
ply demand ratio error
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is reduced 46%.
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Figure 9: Comparison of supply demand ratios at each region
during one time slot for different β values. When β is smaller,
we put less cost weight on idle distance that taxis are allowed
to run longer to some region, and taxi supply matches with the
customer requests better.



β 0 2 10 without dispatch
s/d error 0.645 1.998 2.049 2.664

idle distance 3.056 1.718 1.096 4. 519
total cost 0.645 5.434 13.009 47.854

Table 3: Average cost comparison for different values of β. Idle
distance is calculated as the difference between geographical
coordinators of two points.

tion, the objective weight parameter and the prediction horizon T
of Algorithm 1 affect the results of dispatching cost in practice.
Optimal values of parameters for each individual data set can be
different. Given a data set, we change one parameter to a larger/s-
maller value while keep others the same, and compare results to
choose a suboptimal value of the varying parameter. We compare
the cost of choosing different parameters for Algorithm 1, and ex-
plain how to adjust parameters according to experimental results
based on a given historical data set (including both GPS and occu-
pancy record) for a city.

How the objective weight of (8) – β affects the cost: How to
choose the number of regions: The cost function includes two
parts — idle cruising cost and the supply demand ratio mismatch
cost. This trade-off between two parts is addressed by β, and the
weight of idle distance increases with β. A larger β returns a solu-
tion with smaller total idle geographical distance, while a larger er-
ror between supply demand ratio, i.e., a larger
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value. The two components of the cost with different β by Al-
gorithm 1, and cost of historical data without dispatch algorithm
are shown in Table 3. The supply demand ratio mismatch cost is
shown in the s/d error row. The idle distance row shows the dis-
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Figure 10: Average total idle distance of taxis at different hours.
When β is larger, the idle distance cost weights more in the total
cost, and the dispatch solution causes less total idle distance.
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Figure 11: Average total idle distance of all taxis during one
day, for different region partitions. Idle distance decreases
with a larger region-division number, till the region number
increases to a certain level.

tance between geographical coordinators between points, since the
idle driving distance in problem (8) is calculated based on GPS
sensing data.

We calculate the total cost as (s/d error +β× idle distance) (Use
β = 10 for the without dispatch column). Though with β = 0 we
can dispatch vacant taxis to make the supply demand ratio of each
region closest to that of the whole city, a larger idle geographical
distance cost is introduced compared with β = 2 and β = 10.
Compare the idle distance when β = 0 with the data without dis-
patch, we get 23% reduction; compare the supply demand ratio
error of β = 10 with the data without dispatch, we get 32%.

Average total idle distance during different hours of one day for
a larger β is smaller, as shown in Figure 10. The supply demand
ratio error at different regions of one time slot is increased with
larger β, as shown in Figure 9.

How to decide the number of regions: In general, the dispatch
solution of problem (8) for a vacant taxi is more accurate by divid-
ing a city into regions of smaller area, since the dispatch solution
is closer to road-segment level. However, we should consider other
factors when deciding the number of regions, like the process of
predicting requests and mobility patterns based on historical data.
A linear model is not a good prediction for future events when the
region area is too small, since pick up and drop off events are more
irregular in over partitioned regions. While Increasing n, we also
increase the computation complexity (the area of each region does
not need to be the same as we divide the city in this experiment).

Figure 11 shows that the idle distance will decrease with a larger
region division number, but the decreasing rate slows down; while
the region number increases to a large number, the average cost
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Figure 12: Average total idle distance at different time of one
day compared for different prediction horizons.When T = 4,
idle distance is decreased at most hours compared with T = 2.
For T = 8 the costs are worst.
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Figure 13: Comparison of average total idle distance for differ-
ent t2 – the length of time slot for updating sensor information.
With a smaller t2, the cost is smaller. But when t2 = 1 is too
small to complete calculating problem (8), the dispatch result is
not guaranteed to be better than t2 = 10.



also increases because the linear model applied in this work does
not describe system’s behavior well.

How to decide the prediction Horizon T : In general, when
T is larger, the total idle distance to get a good supply demand
ratio in future time slots should be smaller. However, when T is
large enough, increasing T can not reduce the total idle distance
any more, since the model prediction error, especially the error of
estimating mobility pattern matrix Ck compensates the advantage
of considering future costs. For T = 2 and T = 4, Figure 12 shows
that the average total idle distance of vacant taxis at most hours of
one day decreases as T increases. For T = 8 the driving distance
is the largest. Theoretical reasons are discussed in Section 4.2.

Decide the length of time slot t2: For simplicity, we choose the
time slot t1 as one hour, to estimate requests. A smaller time slot t2
for updating GPS information can reduce the total idle geographical
distance with real-time taxi positions. However, one iteration of
Algorithm 1 is required to finish in less than t2 time, otherwise the
dispatch order will not work for the latest positions of vacant taxis,
and the cost will increase. Hence t2 is constrained by the problem
size and computation capability.

Figure 13 shows that smaller t2 returns a smaller idle distance,
but when t2 = 1 Algorithm 1 can not finish one step iteration in one
minute, and the idle distance is not reduced. The supply demand
ratio at each region does not vary much for t2 = 30, t2 = 10
minutes and t2 = 1 hour. Comparing two parts of costs, we get
that t2 mainly affects the idle driving distance cost in practice.

6. CONCLUSION
In this paper, we propose a novel RHC approach for the taxi dis-

patch problem. This method utilizes both historical and real-time
GPS and occupancy data to build models, and applies predicted
models and sensing data to decide locations for vacant taxis con-
sidering multiple objectives. From a system level perspective, we
compute suboptimal dispatch solutions when reaching a global bal-
anced supply demand ratio with least associated cruising distance,
under given constraints. By applying the RHC framework on a
San Francisco data set, we show how to regulate parameters in
the framework design process according to experiments. Evalua-
tion results support the system level performance improvements of
our RHC framework. In the future, we will enhance problem for-
mulation considering information like passenger destination, road
congestion, and effects of model uncertainties.
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